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ON THE MAXIMUM WEIGHTED IRREDUNDANT
SET PROBLEM

RICARDO D. KATZ AND DANIEL SEVERÍN

Abstract. We present a generalization of a well-known domination param-
eter, the upper irredundance number, and address its associated optimiza-
tion problem, namely the maximum weighted irredundant set (mwis) problem,
which models some service allocation problems. We establish a polynomial-
time reduction to the maximum weighted stable set (mwss) problem that we
use to find graph classes for which the mwis problem is polynomial, among
other results. We formalize these results in the proof assistant Coq. This is
mainly convenient in the case of some of them due to the structure of their
proofs. We also present a heuristic and an integer programming formulation
for the mwis problem and check that the heuristic delivers good quality solu-
tions through experimentation.

1. Introduction

Domination problems are among the most important optimization problems that
combinatorial optimization and graph theory address. This is due to at least two
reasons. On the one hand, we have their great applicability to real-life problems
(see below an example corresponding to the problem considered in this paper). On
the other hand, we have the NP-completeness of the basic domination problems
and their relationships to other NP-complete problems, and the subsequent inter-
est in finding polynomial-time solutions to domination problems for special graph
classes. As a consequence, there is a vast literature about the parameters defining
these problems (e.g., we refer the reader to [12, 13] for more information and addi-
tional references). Indeed, according to Favaron et al. [8], more than 1500 research
papers about dominating sets have been published up to 2002, and this topic is still
active nowadays (e.g., see [1]). As we shall see below, this extensive research also
includes weighted versions of the main domination parameters. This work concerns
a weighted generalization of a parameter introduced in [3], the upper irredundance
number.

To precisely introduce the problem considered here and its relationship to the
basic domination problems, let G = (V, E) be a simple graph. Given v ∈ V ,
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188 R. D. KATZ AND D. SEVERÍN

we denote by N(v) the neighborhood {u : (v, u) ∈ E} of v, and by N [v] its closed
neighborhood N(v)∪{v}. These concepts are extended to sets of vertices as follows:
given S ⊆ V , N(S) .=

⋃
v∈S N(v) and N [S] .=

⋃
v∈S N [v]. A set S ⊆ V is called

stable if N(S)∩S = ∅. The independence number α(G) is the maximum cardinality
of a stable set in G. A vertex v is said to dominate a vertex u when u ∈ N [v],
or equivalently when d(v, u) ≤ 1, where d(v, u) is the distance between v and u
(i.e., the number of edges in a shortest path connecting them). A set D ⊆ V is
called dominating if N [D] = V . The domination number γ(G) is the minimum
cardinality of a dominating set in G, and the upper domination number Γ(G) is
the maximum cardinality of a minimal dominating set in G. The independence
domination number ι(G) is the minimum cardinality of a set which is stable and
dominating simultaneously. Given a set D ⊆ V and a vertex v ∈ D, sD(v) .=
N [v]−N [D−{v}] is the set of private vertices of v in D (it contains those vertices
only dominated by v). The set D is called irredundant if sD(v) ̸= ∅ for all v ∈ D. In
other words, each vertex of D must dominate at least one vertex not dominated by
any other vertex of D, see Figure 1 below for an example. The upper irredundance
number IR(G) is the maximum cardinality of an irredundant set in G. The lower
irredundance number ir(G) is the minimum cardinality of a maximal irredundant
set in G.

The Cockayne–Hedetniemi domination chain ([12, Theorem 3.10]) states that
ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) for any graph G. Moreover, this
chain of inequalities is still valid for a weighted version of these parameters [22],
i.e., when the objective is to maximize/minimize the weight of the considered sets
instead of their cardinality. Given a vector of positive weights w ∈ ZV

+ (associated
with the vertices of G) and a set of vertices S ⊆ V , the weight of S is defined as
w(S) .=

∑
v∈S w(v). Weighted parameters are denoted with w as a subscript, e.g.,

αw(G) stands for the maximum weight of a stable set in G.
The maximum weighted stable set problem, corresponding to αw, and the min-

imum weighted dominating set problem, corresponding to γw, are widely studied
NP-hard problems. On the other hand, the problems associated with the remain-
ing weighted parameters have recently started to gain attention among researchers.
For instance, [21] proposes several approaches to solve (a generalized version of) the
weighted independent dominating set problem, corresponding to ιw, and [2] studies
the weighted upper dominating set (wuds) problem, where it is proved (among
other results) that the computation of the corresponding parameter Γw is strongly
NP-hard even in a subfamily of subcubic split graphs.

In this work, we study the problem associated with IRw, that is:

Maximum Weighted Irredundant Set (MWIS) Problem. Given a simple
graph G = (V, E) and a weight vector w ∈ ZV

+, find an irredundant set D such
that w(D) is maximum.

This is the weighted version of the upper irredundant set (uis) problem.
The weighted upper domination parameters Γw and IRw can be used to model

certain service allocation problems. Consider a city divided into areas where a
service whose quality decreases with the distance to its location (e.g., mobile phone
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Figure 1. Left: a maximum weighted minimal dominating set
(Γw(G) = 3). Right: a maximum weighted irredundant set
(IRw(G) = 4), where the dashed arrows link vertices of the ir-
redundant set to their private vertices.

connection) is to be provided. Assume that the service is properly provided to the
area in which it is located, as well as to its neighboring areas. If each allocation of
the service has a fixed high cost, no allocation to an area is desired if all the areas
covered by this allocation are covered by other allocated areas. Thus, if the city is
modeled by a graph whose vertices are the areas and there is an edge between two
vertices if the corresponding areas are neighbors, then the set of allocated areas
must correspond to an irredundant set of this graph. Besides, suppose that each
area has a profit associated with it (e.g., representing the proportion of people who
would benefit from the allocation of the service to that area), and that it is desired
to maximize the sum of these profits, even if this may leave some areas with no (or
poor) service. This can be modeled as a mwis problem where the weights of the
vertices are given by the profits of the corresponding areas. If it is required that all
the areas were covered, then it becomes a wuds problem. As an example, consider
the graph of Figure 1, which models a city divided into 5 areas. The weights are
displayed next to the vertices, so in this example there are two neighbor areas with
the highest profit. A solution of the wuds problem is shown on the left, and one
of the mwis problem on the right. Both sets (the places where the services are
located) are displayed by vertices inside boxes. Thus, the total profit in the second
case is higher, at the expense of leaving an area with no (or poor) service.

This paper is organized as follows. In Section 2 we study some basic properties
of the mwis problem. Section 3 is devoted to presenting a polynomial-time reduc-
tion to the mwss problem which is used to prove that the mwis problem can be
solved in polynomial time on certain input instances (these results were formalized
in the proof assistant Coq). In Section 4 we propose a heuristic and an integer
programming formulation for solving the mwis problem, and perform some com-
putational experiments. In particular, we obtain an optimal solution of an instance
that models a service allocation on the city of Buenos Aires. Supplementary ma-
terial concerning this work, which includes the formalized theory, the code of the
heuristic, the implementations of integer programming formulations for the mwis
and wuds problems, and an appendix with further explanations, is available at
github.com/aureus123/graph-theory.
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2. Basic properties of the mwis problem

Theoretical bounds are one of the first features that are proposed when a new
parameter is analyzed, as they can in particular be used to check the optimality
of a given solution. A natural lower bound for IRw(G) is Γw(G) as we pointed
out above. An upper bound for IR(G) is given in [12, Theorem 3.17]: IR(G) ≤
|V (G)| − δ(G), where δ(G) is the minimum degree of G. This bound is tight for
complete multipartite graphs, i.e., graphs composed of stable sets, with an edge
connecting any two vertices of different stable sets, and for complete split graphs,
i.e., graphs composed of a complete graph and a stable set, with an edge connecting
any vertex of the complete graph with any vertex of the stable set. On the other
hand, the paw and bull graphs (see Figure 2 below) are examples where this bound
is not tight, although it is possible to get a better bound at the expense of a
procedure of greater computational complexity. In this sense, we propose two
upper bounds for IRw(G): m1

.= w(V )− δw(G) and m2
.= w(V )− δ′

w(G), where

δw(G) .= min{w(N [u]− {v}) : v ∈ V, u ∈ N [v]}

and

δ′
w(G) .= min{w((N [u1] ∪N [u2])− {v1, v2}) : v1, v2 ∈ V,

u1 ∈ N [v1]−N [v2], u2 ∈ N [v2]−N [v1]}. (2.1)

Note that m2 is tight for the paw and bull graphs when w(v) = 1 for all v ∈ V .

Lemma 2.1. For any simple graph G = (V, E) and any weight vector w ∈ ZV
+,

we have IRw(G) ≤ m1. Moreover, if G does not have any universal vertex (i.e., a
vertex v such that N [v] = V ), then IRw(G) ≤ m2.

Proof. Let D be an irredundant set such that w(D) = IRw(G), v a vertex in D,
and u a private vertex of v. Then, we have (N [u]−{v})∩D = ∅, and so IRw(G) =
w(D) ≤ w(V − (N [u] − {v})) = w(V ) − w(N [u] − {v}) ≤ w(V ) − δw(G). When
G does not have universal vertices, D must contain at least two vertices, say v1
and v2 (otherwise, i.e., if D was composed of just one vertex v, we would obtain
an irredundant set with a weight greater than w(D) by adding to D any vertex
not adjacent to v). Let u1 and u2 be private vertices of v1 and v2, respectively.
Then, we have (N [u1] ∪ N [u2] − {v1, v2}) ∩ D = ∅, and so IRw(G) = w(D) ≤
w(V )− w(N [u1] ∪N [u2]− {v1, v2}) ≤ w(V )− δ′

w(G). □

Regarding complexity, mwis is an NP-hard problem. In fact, Alice McRae in
her Ph.D. thesis [17] showed that the uis problem is NP-hard even in line graphs of
bipartite graphs, or equivalently, in {claw, diamond, odd-hole}-free graphs. There
are some results of parameterized complexity too. If the uis problem is parame-
terized by the size of the output set, then the resulting problem (i.e., determining
whether a graph has an irredundant set of size k where k is the parameter) is
W[1]-complete in the W hierarchy (for the definition of this hierarchy and for more
details about the theory of fixed parameter tractability, see e.g. [5]), i.e., it has
the same hardness than deciding if a given graph contains an independent set of
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size k. However, deciding whether a graph G = (V, E) has an irredundant set of
size |V | − k is fixed-parameter tractable [7].

On the other hand, we can mention some families of graphs where the mwis
problem can be solved in polynomial time. If G is a complete graph and v is a
vertex with highest weight, then {v} is an irredundant set of maximum weight, and
IRw(G) = w(v).

Given two instances (G1 = (V1, E1), w1) and (G2 = (V2, E2), w2) of the mwis
problem, let (G+, w) be the instance that consists of the disjoint union of G1 and
G2, with weights w(v) = wi(v) if v ∈ Vi for i = 1, 2. Then, we have:

IRw(G+) = IRw1(G1) + IRw2(G2).
This property allows us to restrict the resolution of the mwis problem to connected
graphs. Now, let (G∨, w) be the instance that consists of the join of G1 and G2,
i.e., the union of G1 and G2 with additional edges that connect every vertex of
G1 to every vertex of G2, and weights defined as above. If D is an irredundant
set of G∨, then it is straightforward to see that there are three possibilities: (1)
D ⊆ V1, (2) D ⊆ V2, or (3) D = {v1, v2}, where vi is not an universal vertex of Gi

for i = 1, 2. Therefore, we have:
IRw(G∨) = max{IRw1(G1), IRw2(G2), M1 + M2},

where Mi = max{wi(v) : v ∈ Vi, Vi ⊈ N [v]} for i = 1, 2.
We recall that cographs are graphs that can be constructed from isolated vertices

by disjoint union and join operations, and its recognition can be performed in linear
time. Thus, the discussion above leads to the following result:

Lemma 2.2. The mwis problem is linear on cographs with any vector of positive
weights.

This linearity result can be extended to graphs of bounded cliquewidth due to
Courcelle’s Theorem and the fact that mwis can be expressed as a LinEMSOL(τ1)
problem (see [4] for more information on the latter problem).

3. A polynomial-time reduction to the mwss problem

In this section, we present a polynomial-time reduction from the mwis problem
to the mwss problem. This transformation is useful for two reasons. First, a mwis
problem can be transformed and then solved with state-of-the-art mwss solvers, see
Section 4. Second, we can find graph classes where the mwis problem is polynomial
via this reduction, e.g., {claw, bull, P6, C6}-free graphs as we shall see below.

Given a simple graph G = (V, E) and a weight vector w ∈ ZV
+, we define the

instance (G′ = (V ′, E′), w′) of the mwss problem as follows:
V ′ .= {uv : u ∈ V, d(v, u) ≤ 1},
E′ .= {(uv, zr) : uv, zr ∈ V ′, uv ̸= zr, d(v, z) ≤ 1 ∨ d(r, u) ≤ 1},
w′(uv) .= w(u) for all uv ∈ V ′.

From now on, we decorate a graph with a prime to refer to the graph obtained by
applying the transformation above; for example, claw′ denotes the graph obtained
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from claw by this transformation. The same notation will be applied to the vertex
set, edge set and weight vector.

Theorem 3.1. By defining G′ and w′ as above, we have IRw(G) = αw′(G′).

Proof. To prove this theorem, it suffices to show that for each irredundant set D
of G there exists a stable set S of G′ such that w′(S) = w(D), and for each stable
set S of G′ there exists an irredundant set D of G such that w(D) = w′(S).

Let us start with the proof of the first property, so assume D is irredundant.
For each v ∈ D, let pv be a private vertex of v in D (such a vertex exists since D
is irredundant). Note that we have vpv ∈ V ′ since pv ∈ N [v]. Thus, taking S as
the set {vpv : v ∈ D}, we have S ⊆ V ′, and since S clearly satisfies w′(S) = w(D),
to complete the proof of the first property it is enough to show that S is stable.
With this aim, let vpv and upu be distinct vertices in S (which amounts to v ∈ D,
u ∈ D and v ̸= u). Then pv /∈ N [u] and pu /∈ N [v] because pv is a private vertex
of v in D and pu is a private vertex of u in D. It follows that vpv and upu are not
adjacent in G′ by the definition of E′. We conclude that S is stable, completing
the proof of the first property.

Now we prove the second property, so assume S is stable. Let D be the set
{u : there exists v such that uv ∈ S}. Note that, since S is stable, if uv and ur
belong to S, then we necessarily have v = r. It follows that w(D) = w′(S), and
so to prove the second property it remains to show that D is irredundant. With
this aim in mind, let u be any vertex in D. Then, there exists v such that uv ∈ S.
We claim that v is a private vertex of u in D, from which we can conclude that
D is irredundant since u is an arbitrary vertex in D. Indeed, since uv ∈ S ⊆ V ′,
we have v ∈ N [u]. Besides, for any z ∈ D − {u} there exists r such that zr ∈ S,
and since S is stable we know that uv and zr are not adjacent in G′. It follows
that v /∈ N [z] by the definition of E′. This completes the proof of our claim, and
in consequence of the second property. □

There is a vast collection of results on the complexity of the mwss problem;
one can navigate the website graphclasses.org, select a graph class and see which
complexity class is retrieved from the Weighted independent set section, with refer-
ences included. Some of these graph classes are characterized by forbidden induced
subgraphs.

Let us recall that a graph G1 = (V1, E1) is said to be an induced subgraph of
a graph G2 = (V2, E2), denoted by G1 ⊂̇ G2, if there exists an injective map
f : V1 → V2 that preserves the edge relationship, i.e., such that (u, v) ∈ E1 ⇔
(f(u), f(v)) ∈ E2. Given a set of graphs H, a family of graphs G is said to be
H-free if no graph in H is an induced subgraph of a graph in G.

Determining the complexity of a problem for {G}-free graphs, for some (eventu-
ally small) G, is the subject of several works. In the case of the mwss problem, its
complexity on {G}-free graphs (and unrestricted on the weight vector) is known for
every graph G with 3 or 4 vertices. Two particular cases where the mwss problem
is polynomial are claw-free [18] and co-paw-free graphs [16], where a claw is K1,3,
and a co-paw is the complement of a paw (for the latter see Figure 2). We next
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bullpaw G
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Figure 2. A paw, a bull and two graphs of order 7.

use this and the reduction presented above to find graph classes where the mwis
problem is polynomial. This follows from the following results:

Lemma 3.2. G has a claw, a bull, a P6, or a C6 as induced subgraph if and only
if G′ has a claw as induced subgraph.

Lemma 3.3. G has a co-paw, a G7
1, or a G7

2 as induced subgraph if and only if G′

has a co-paw as induced subgraph.

In the statements above, P6 and C6 are, respectively, a path and a cycle graph
with 6 vertices, and bull, G7

1 and G7
2 are the graphs depicted in Figure 2. Therefore,

we have:

Theorem 3.4. Let Xclaw
.= {claw, bull, P6, C6} and Xcopaw

.= {co-paw, G7
1, G7

2}.
Then, for any weight vector, the mwis problem can be solved in polynomial time
on Xclaw-free and Xcopaw-free graphs.

Proof. Let G be an Xclaw-free graph. Then, G′ is claw-free by Lemma 3.2. Hence,
obtaining αw(G′) is polynomial [18], and so is IRw(G) by Theorem 3.1. Using
Lemma 3.3 and [16], a similar reasoning can be applied to Xcopaw-free graphs. □

Remark 3.5. If some of the graph classes considered in Theorem 3.4 were of
bounded cliquewidth, then Courcelle’s Theorem would imply that the mwis prob-
lem is linear on this class, as mentioned above. To the best of our knowledge, it
is not known whether these graph classes are of bounded cliquewidth or not (it is
known that some of their superclasses are not, see graphclasses.org). Even if they
were shown to be of bounded cliquewidth, the bound might be high and the algorithm
provided by Courcelle’s Theorem might be difficult to further analyze.

Before presenting the proofs of Lemmas 3.2 and 3.3, let us note the follow-
ing simple results on the induced subgraph relation and the graph transformation
introduced above.

Lemma 3.6. If H ⊂̇ G then H ′ ⊂̇ G′.

Proof. If H ⊂̇ G, there exists an injective map f : V (H) → V (G) that preserves
the edge relationship. Let f ′ : V (H ′) → V (G′) be the map defined by f ′(uv) =
f(u)f(v). Note that the injectivity of f ′ follows readily from the injectivity of f .
So to prove the lemma, it suffices to show that f ′ preserves the edge relationship.
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Figure 3. A claw in bull′, P ′
6 and C6

′, and a co-paw in G7
1

′ and
G7

2
′ (note that G7

1 and G7
2 only differ in the edge (3, 7), which is

displayed here by a dashed line).

Indeed, we have (uv, zr) ∈ E(H ′) ⇔ ((uv ̸= zr) ∧ (v ∈ N [z] ∨ r ∈ N [u])) ⇔
((f(u)f(v) ̸= f(z)f(r)) ∧ (f(v) ∈ N [f(z)] ∨ f(r) ∈ N [f(u)])) ⇔ (f ′(uv), f ′(zr)) ∈
E(G′), where the second equivalence follows from the fact that f is injective and
preserves the edge relationship. □

Corollary 3.7. If H ⊂̇ G and K ⊂̇ H ′, then K ⊂̇ G′.

Proof. By Lemma 3.6, we have H ′ ⊂̇ G′, and so K ⊂̇ G′ by the transitivity of the
induced subgraph relation. □

Lemma 3.8. For any graph G, we have G ⊂̇ G′

Proof. Let f : V → V ′ be the map defined by f(v) = vv. Since f is clearly injective,
to prove the lemma it is enough to show that it preserves the edge relationship.
Indeed, we have (u, v) ∈ E ⇔ ((u ̸= v)∧(u ∈ N [v]))⇔ ((uu ̸= vv)∧(u ∈ N [v]∨v ∈
N [u]))⇔ (uu, vv) ∈ E′, which completes the proof. □

We are now ready to present the proofs of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. We first prove that if G has a claw, a bull, a P6 or a com-
plement of C6 as induced subgraph, then claw ⊂̇ G′. In virtue of Corollary 3.7,
it is enough to prove that claw ⊂̇ H ′ for any H ∈ Xclaw (e.g., if claw ⊂̇ bull′,
then bull ⊂̇ G implies claw ⊂̇ G′ by this corollary). By Lemma 3.8, we know that
claw ⊂̇ claw′. Besides, Figure 3 displays the vertices of bull′, P ′

6 and C6
′, which

show that these graphs have a claw as induced subgraph.
To prove the necessity part of Lemma 3.2, suppose that G′ has a claw as induced

subgraph. Then, since we need to prove that G is not {claw, bull, P6, C6}-free,
the idea is to divide the proof into several cases in each of which we can show
that G has a claw, a bull, a P6 or a complement of C6 as induced subgraph.
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As claw ⊂̇ G′, there exists an injective map f ′ : V (claw) → V ′ that preserves
adjacencies. Without loss of generality, assume that V (claw) = {a, b, c, d} and that
a is the central vertex of the claw, i.e., that a is adjacent to the other three vertices.
If a1a2, b1b2, c1c2, d1d2 ∈ V ′, with a1, a2, b1, b2, c1, c2, d1, d2 ∈ V , are the images by
f ′ of the vertices of the claw a, b, c and d, respectively, then we know the following:

(i) For each x ∈ {a, b, c, d}, we have x1 = x2 or x1 is adjacent to x2 in G.
(ii) For any x, y ∈ {a, b, c, d} such that x ̸= y, we have x1x2 ̸= y1y2. That is,

x1 ̸= y1 or x2 ̸= y2.
(iii) For each x ∈ {b, c, d}, we have a1 = x2 or a1 is adjacent to x2 in G or

a2 = x1 or a2 is adjacent to x1 in G.
(iv) For any x, y ∈ {b, c, d} such that x ̸= y, we have x1 ̸= y2, x1 is not adjacent

to y2 in G, x2 ̸= y1 and x2 is not adjacent to y1 in G.
Indeed, (i) follows from the definition of V ′, (ii) from the injectivity of f ′, (iii) from
the preservation of adjacencies (implying that a1a2 is adjacent to b1b2, c1c2 and
d1d2 in G′), and (iii) from the preservation of no-adjacencies (implying that b1b2,
c1c2 and d1d2 are not adjacent to each other in G′). Conversely, if some vertices
a1, a2, b1, b2, c1, c2, d1, d2 of a graph G satisfy the properties above, then G′ has a
claw as induced subgraph. We conclude that we need to consider all the possible
cases in which the properties above are satisfied, and show that in each of them G
has a claw, a bull, a P6 or a complement of C6 as induced subgraph.

The simplest case is when a1 = a2, b1 = b2, c1 = c2 and d1 = d2. In this case,
we exhibit a claw in G, i.e., we provide an injective map f : V (claw) → V that
preserves adjacencies. Let f map the central vertex to a1 and the others to b1, c1
and d1. By (ii), the vertices a1, b1, c1 and d1 are different in G, so f is injective.
By (iii) and (iv), a1 is adjacent to b1, c1 and d1 but b1, c1 and d1 are not adjacent
to each other, thus f preserves adjacencies.

The next case we consider is when a1 = a2, b1 = b2, c1 = c2 and d1 ̸= d2. Again,
we exhibit a claw in G by proposing that f maps the central vertex to a1, two
of the other three vertices to b1 and c1, and the remaining one to d1 if a1 = d2
or a1 is adjacent to d1, or to d2 if a1 = d1 or a1 is adjacent to d2 (note that one
of these conditions must be satisfied by (iii)), so we have four subcases here. We
proceed as before and use the properties above to prove that f is injective and
preserves adjacencies in each of the resulting cases. Note that, having this proved,
by symmetry we could also prove the case a1 = a2, b1 ̸= b2, c1 = c2, d1 = d2, and
the case a1 = a2, b1 = b2, c1 ̸= c2, d1 = d2.

The number of cases increases as the equalities x1 = x2, for x ∈ {a, b, c, d}, are
replaced by inequalities since this entails the existence of different sets of edges
in G and some symmetries may not hold anymore. But this is how a proof can be
systematically constructed, see the discussion below. □

Proof of Lemma 3.3. We first prove that if G has a co-paw, a G7
1 or a G7

2 as induced
subgraph, then co-paw ⊂̇ G′. For this, we use again Corollary 3.7, and conclude
that it is enough to prove that co-paw ⊂̇ H ′ for any H ∈ Xcopaw. Figure 3 points
out the vertices of G7

1
′ and G7

2
′ which show that these two graphs have a co-paw

as induced subgraph. Besides, we know that co-paw ⊂̇ co-paw′ by Lemma 3.8.
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As in the case of the proof of Lemma 3.2, to prove the necessity part of Lemma 3.3
we essentially consider all the graphs G such that co-paw ⊂̇ G′, and show that
each of them has a co-paw, a G7

1, or a G7
2 as induced subgraph. The hypothesis

co-paw ⊂̇ G′ is replaced by properties that must be satisfied by a set of vertices
of G, similar to the ones given in the proof of the necessity part of Lemma 3.2.
Again, the proof is obtained by considering all the possible cases leading to a set
of vertices and edges satisfying these properties, see the discussion below. □

As the proofs of the necessity parts of Lemmas 3.2 and 3.3 are based on a
large number of cases, it makes little sense to try to present all of them here.
Indeed, due to their number, in a traditional paper-and-pencil proof it would be
difficult to make sure that all the possible cases are considered and that each one
is tackled properly. Moreover, it would be even harder for a reader to check this.
Fortunately, nowadays there is a way to increase the level of trust in this kind of
results. We think that in this situation the use of a proof assistant turns out to be
very convenient (e.g., see [11]).

The formalization of mathematics is an area of computer science concerned with
expressing and proving mathematical statements in a highly structured language,
using a pre-established set of inference rules. Correctness of results is automati-
cally checked by a tool called proof assistant. Formalizing proofs provides several
benefits, including new ways of visualizing and interacting with the mathemati-
cal corpus. Currently, there is a community devoted to formalizing known results
of several branches of mathematics. In the case of graph theory, the four color
theorem was one of the first long proofs to be formalized in a proof assistant [9],
more precisely in Coq.1 We recall that this theorem was first proved by K. Appel
and W. Haken in 1976, and it had the peculiarity that it was necessary to prove
thousands of cases, called configurations, although this task could be carried out
mechanically by a computer. Later, the number of configurations was reduced to
633, but it is still a large number to be considered “manually verifiable”. The for-
malization of such a result in a proof assistant such as Coq has the advantage of
reducing trust only to the proof assistant, without involving other software. That
is, a “skeptical” reader neither needs to trust in a program that checks all the con-
figurations nor has to write her/his own program to be convinced of the correctness
of the theorem, she/he only needs to trust in the proof assistant.

Taking this into account, we proved Lemmas 3.2 and 3.3 with Coq using the
extension Ssreflect [10] and the formalized graph library developed in [6, 22]. In
this regard, it is worth mentioning that this proof assistant let us prove cases that
we would have probably missed without it. Besides, it allowed us some kind of
automation (which could be probably improved) in the proof of the fact that a
set of vertices of a graph induces some subgraph, avoiding us in this way to check
repeatedly the same kind of properties, a task that usually leads to mistakes. For
this work, we also formalized the first bound of Lemma 2.1, Lemmas 3.6 and 3.8,
and Theorem 3.1, among other related results, summarizing 7108 lines of Coq code.

1See https://rocq-prover.org/.
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This formalization was presented in [15]; we refer the reader to the supplementary
material for further details.

4. A heuristic for the mwis problem

This section is not intended to present a cutting-edge algorithm for the mwis
problem but rather one that works reasonably well and does not need to generate
the transformed graph of Theorem 3.1. The experimental results presented below
provide evidence that this algorithm would be a good option for instances that are
beyond the possibilities of exact approaches, and that it would outperform mwss
heuristics applied to the transformed graph.

We propose a heuristic that delivers upper and lower bounds for IRw(G). The
upper bound is obtained following Lemma 2.1, computing m2, while the lower
bound is computed by constructing an irredundant set. In order to satisfy the
hypothesis of the mentioned lemma, we assume that G does not have any universal
vertex. Nevertheless, if G had universal vertices, these could be iteratively removed
by virtue of the following observation: if (G, w) satisfies LB ≤ IRw(G) ≤ UB, then
(G′, w′) satisfies max{LB, w′(u)} ≤ IRw′(G′) ≤ max{UB, w′(u)}, where G′ is the
join between {u} and G, and w′(v) = w(v) for all vertex v of G; indeed, any
irredundant set of G′ is either {u} or an irredundant set of G.

To present the heuristic, let G = (V, E) and w ∈ ZV
+ be the input instance. Start

with δmin ← w(V ) and Dmax ← {u}, where u is a vertex with highest weight. For
each pair of distinct vertices v1 and v2 we compute sD(v1) ← N [v1] − N [v2] and
sD(v2)← N [v2]−N [v1], and if both of these sets are non-empty we also compute
W ← N [v1] ∪N [v2] and its weight, and proceed as follows:

• For each u1 in sD(v1) and u2 in sD(v2), compute δ ← w(W )−w(u1)−w(u2)
and, if δ < δmin, update δmin ← δ.

• Assign D ← {v1, v2} and R← V −D. Then, repeat the following until no
more vertices can be added to D:

– Pick v ∈ R such that N [v] − W ̸= ∅ and sD(u) − N [v] ̸= ∅ for
all u ∈ D. Any v that does not satisfy the previous conditions is
removed from R. In case more than one vertex is eligible, pick one

that maximizes
(

1− |N [v]−W |
|V |

)
w(v).

– Update sD(v) ← N [v] − W , sD(u) ← sD(u) − N [v] for all u ∈ D,
D ← D ∪ {v}, R← R− {v} and W ←W ∪N [v].

Finally, check if w(D) > w(Dmax) and, in that case, update Dmax ← D.
The heuristic returns m2 ← w(V ) − δmin as an upper bound and, since Dmax

is irredundant by construction, w(Dmax) as a lower bound of IRw(G). In fact,
the first item of the procedure above is devoted to compute the minimum in (2.1)
since δmin coincides with δ′

w(G) at the end of the execution of the heuristic. On
the other hand, the second item repeatedly adds vertices to the set D so that it
remains irredundant. There, the procedure keeps track of the vertices dominated
by the vertices in D with the set W , the private vertices of the vertices in D with
the sets sD, and the vertices that could be added to D with the set R. Thus, the
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condition there allowing the addition of some vertex v to D is equivalent to the
fact that D ∪ {v} is irredundant. When there are several options for the vertex to
add, to choose one we apply a criterion aiming at selecting a high-weighted vertex
v while, at the same time, the new vertices dominated by v are few, so D has a
better chance of being large. The heuristic applies the procedure in the second item
starting with D = {v1, v2} for each pair of vertices v1 and v2 such that sD(v1) and
sD(v2) are both non-empty (so {v1, v2} is irredundant), and keeps the one with
highest weight as the output Dmax.

In order to evaluate the quality of the heuristic, we performed an experiment
over some available graphs from the literature used for benchmarking purposes
(DIMACS instances up to 100 vertices) taking w(v) = 1 for each vertex v, and one
instance from a real application (the city of Buenos Aires, in which each vertex
models a district and its weight is the population of that district). A computer
equipped with an Intel i7-7700 3.6 GHz CPU, 16 GB of RAM, and IBM ILOG
CPLEX 12.7 was used. Each run is performed on one thread of the CPU.

For each instance, the heuristic is executed as well as two exact approaches: the
first one is CLIQUER [20] that finds a maximum weighted clique of G′ (and so a
maximum weighted stable set of G′), the second one is CPLEX [14] over the integer
programming formulation presented below. Thus, both return αw(G′) within an
imposed time limit of 1 hour, or fail. In contrast, the heuristic runs in less than
half a second for these instances.

In Table 1 we summarize the experiment. Columns 1–3 show the name of the
instance, its number of vertices and edge density in percentage. Column 4 is the
upper bound m1 provided by Lemma 2.1. Columns 5–6 are the values delivered by
the heuristic. Columns 7–9 display the number of vertices of G′, its edge density
and weighted independence number. Values in column 6 are highlighted when they
are optimal or coincide with the best lower bound available from the exact methods.

As it can be seen in Table 1, the heuristic delivers the optimal solution in almost
all instances (the exceptions are 4-Insertions 3 and mug100 25, where |Dmax| =
IR(G)− 1, and queen9 9, queen8 12 and queen10 10, where no optimal solution is
known although the exact algorithms do not provide a better feasible solution than
the heuristic). Regarding the upper bounds, m2 is a little better than m1, except
for queen graphs where the difference is substantial. Both seem to be far from
the optimum; however, the additional time consumed by the heuristic dedicated
exclusively to obtaining m2 is negligible with respect to the total time (which is
less than half a second).

In order to evaluate the behavior of the heuristic on larger instances (250, 500
and 1000 vertices), we also compared it with a standard mwss greedy heuristic
applied to the transformed graph G′ of Theorem 3.1. We generated weighted
random instances with different edge densities (the procedure starts with an edge-
less graph of n ∈ {250, 500, 1000} vertices and adds edges with a given probability
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}; for computing weights, numbers from {1, 2, 3, 4, 5} are
taken with a uniform distribution). For each instance G, we run the mwis heuristic
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Table 1. The experimental results.

Name |V (G)| dens G m1 m2 w(Dmax) |V (G′)| dens G′ αw(G′)

myciel3 11 36.36 8 7 5 51 63.53 5
myciel4 23 28.06 19 18 11 165 54.15 11
queen5 5 25 53.33 13 9 5 345 79.00 5
1-FullIns 3 30 22.99 26 24 14 230 44.15 14
queen6 6 36 46.03 21 15 7 616 71.63 7
2-Insertions 3 37 10.81 34 33 18 181 20.88 18
myciel5 47 21.83 42 41 23 519 47.15 23
queen7 7 49 40.48 31 23 9 1001 65.14 9
2-FullIns 3 52 15.16 48 46 25 454 33.33 25
3-Insertions 3 56 7.14 53 52 27 276 14.09 27
queen8 8 64 36.11 43 33 11 1520 59.64 11
1-Insertions 4 67 10.49 63 62 32 531 22.48 32
huck 74 11.14 73 73 27 676 46.47 27
4-Insertions 3 79 5.06 76 75 38 391 10.13 39
3-FullIns 3 80 10.95 76 74 37 772 27.00 37
jean 80 8.04 80 80 38 588 37.12 38
queen9 9 81 32.59 57 45 13 2193 54.88 −
david 87 10.85 86 86 36 899 61.65 36
mug88 1 88 3.81 85 85 33 380 6.71 33
mug88 25 88 3.81 85 85 33 380 6.66 33
1-FullIns 4 93 13.86 87 85 45 1279 30.87 45
myciel6 95 16.91 89 88 47 1605 41.84 47
queen8 12 96 30.00 71 60 16 2832 51.08 −
mug100 1 100 3.35 97 97 36 432 5.86 36
mug100 25 100 3.35 97 97 36 432 5.85 37
queen10 10 100 29.70 73 59 15 3040 50.79 −

buenosaires 48 10.20 2962 2913 1634 278 18.84 1634

and a greedy heuristic that tries to find a stable set of maximum weight of G′. We
also run both heuristics on the real instance.

The greedy heuristic is given as follows.2 Start with W ← V ′ and Smax ← ∅.
Then, repeat the following until W is empty:

• Pick uv ∈ W such that w′(uv) is highest. In case of a tie, among those
vertices uv having the highest weight, pick one that minimizes |N(uv)∩W |.
• Update Smax ← Smax ∪ {uv} and W ←W \N [uv].

After the loop, Smax is the resulting stable set of G′.
Table 2 reports the results. The best values are highlighted in boldface. A mark

“−” means that the algorithm runs out of memory. As one can see from the table,
the mwis heuristic delivers solutions of better quality in all tested instances. The
greedy heuristic is faster for low-density graphs; however, for graphs of higher
densities, it is unable to allocate the adjacency matrix of G′ (in 16 GB of available

2In this heuristic, for any uv ∈ V ′, N(uv) denotes the neighborhood of uv in G′ and N [uv] its
closed neighborhood.
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Table 2. The experimental results on larger instances.

mwis heuristic mwss greedy heuristic
Name |V (G)| dens G w(Dmax) Time (sec.) |V (G′)| w(Smax) Time (sec.)

R250 10 250 10 184 13.00 6590 157 0.28
R250 30 250 30 85 7.18 18988 69 1.73
R250 50 250 50 53 5.37 31520 40 4.99
R250 70 250 70 35 3.63 43840 25 9.45
R250 90 250 90 22 1.93 56242 15 19.22

R500 10 500 10 236 186 25130 188 4.5
R500 30 500 30 102 103 75322 82 61
R500 50 500 50 61 78 126016 49 229
R500 70 500 70 40 57 175202 − −
R500 90 500 90 25 33 225006 − −

R1000 10 1000 10 284 2586 101208 243 136
R1000 30 1000 30 113 1491 300518 − −
R1000 50 1000 50 69 1227 500294 − −
R1000 70 1000 70 45 940 700542 − −
R1000 90 1000 90 27 575 899186 − −

buenosaires 48 10 1634 0.01 278 1340 < 0.01

memory). We expect that, even changing the representation of G′ in memory, the
greedy heuristic will not scale for larger instances.

If the objective is to solve the mwis to optimality, an integer programming
approach seems to be more promising (as suggested by the results reported in
Table 1). An integer programming formulation of the mwss problem on a graph
G = (V, E) is given by

αw(G) = max
{∑

v∈V

w(v)xv : xu + xv ≤ 1 ∀ (u, v) ∈ E, xv ∈ {0, 1} ∀ v ∈ V

}
(note that the solution set of the constraints encodes the stable sets of G). Since
any clique of G can contain at most one vertex of a stable set, if Q is a set of cliques
of G that covers every edge of G, then we also have

αw(G) = max
{∑

v∈V

w(v)xv :
∑
v∈Q

xv ≤ 1 ∀Q ∈ Q, xv ∈ {0, 1} ∀ v ∈ V

}
,

(because the solution set still encodes the stable sets of G) e.g., see [19]. The
advantage of the latter formulation is that it may contain less constraints than
the former, and so it might be easier to solve. Applying this to the transformed
graph G′, we have

αw(G′) = max
{ ∑

uv∈V ′

w(u)xuv :
∑

uv∈Q

xuv ≤ 1 ∀Q ∈ Q, xuv ∈ {0, 1} ∀uv ∈ V ′
}

,
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Figure 4. A co-antenna, C6, K33-e, domino, A, and X45.

for any set Q of cliques of G′ that covers every edge of G′. For such set, we propose
the next one, which is quadratic in the number of vertices of the original graph G:

Q =
{
{uv : v ∈ N [u] ∩N [z]} ∪ {zr : r ∈ N [z]} : u, z ∈ V such that

u ̸= z, N [u] ∩N [z] ̸= ∅
}

.

To see that Q is a set of cliques of G′, let u, z be different vertices such that
N [u]∩N [z] ̸= ∅, and define Q1

uz
.= {uv : v ∈ N [u]∩N [z]} and Q2

z
.= {zr : r ∈ N [z]}.

Clearly, Q1
uz and Q2

z are cliques of G′. Moreover, Q1
uz ∪ Q2

z is also a clique of G′

since any uv ∈ Q1
uz is adjacent to any zr ∈ Q2

z (due to the fact that v ∈ N [z]). To
show that Q covers every edge of G′, let e = (ab, cd) ∈ E′ be an arbitrary edge.
Without loss of generality, assume b ∈ N [c]. Note that, since ab ∈ V ′, we also have
b ∈ N [a]. Then, Q1

ac ∪Q2
c covers e if a ̸= c. Otherwise (i.e., if a = c), let u ∈ N(c)

(note that N(c) ̸= ∅ because otherwise we would have a = b = c = d contradicting
the fact that e ∈ E′, and so that ab ̸= cd). Then, in this case Q1

uc ∪Q2
c covers e.

Finally, let us mention that a line for future research may involve the devel-
opment of cutting-plane algorithms for this formulation, taking advantage of the
aforementioned transformation. For instance, since a cycle with five vertices C5
can contain at most two vertices of a stable set, a family of valid inequalities is∑

uv∈S xuv ≤ 2 for any S ⊂ V ′ that induces a C5 in G′. However, recognizing
structures in G can be cheaper than in G′ and, in this case, it can be proven that
if G has a C5, C6, K3,3-e, domino, co-antenna, A, or X45 (all these graphs are
defined in graphclasses.org and have at most 6 vertices, see Figure 4) as induced
subgraph, then G′ has a C5. Indeed, by Corollary 3.7, it is enough to prove that
C5 ⊂̇ H ′ for any H ∈ {C5, C6, K33-e, domino, co-antenna, A, X45}. By Lemma 3.8,
we have C5 ⊂̇ C ′

5. If G has a C6 as induced subgraph with the vertices labeled as
in Figure 4, then the vertices 11, 25, 42, 66 and 63 induce a C5 in G′. We proceed
as above with the remaining graphs by exhibiting those vertices that induce a C5
in G′:
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• K33-e: 22, 51, 31, 63, 64.
• domino: 11, 51, 22, 64, 63.
• co-antenna: 11, 25, 42, 66, 63.
• A: 11, 14, 63, 36, 52.
• X45: 33, 41, 52, 25, 63.
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Departamento de Matemática, FCEIA, Universidad Nacional de Rosario, Argentina
CONICET, Argentina
daniel@fceia.unr.edu.ar

Received: May 18, 2022
Accepted: July 18, 2023
Early view: August 24, 2024

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)

https://coq-workshop.gitlab.io/2021/abstracts/Coq2021-04-02-graph-theory-proofs.pdf
https://coq-workshop.gitlab.io/2021/abstracts/Coq2021-04-02-graph-theory-proofs.pdf
https://doi.org/10.1016/j.dam.2004.07.006
http://www.ams.org/mathscinet-getitem?mr=2112237
https://zbmath.org/?q=an:1087.90080
https://open.clemson.edu/arv_dissertations/1682
https://open.clemson.edu/arv_dissertations/1682
https://doi.org/10.1016/0095-8956(80)90074-X
http://www.ams.org/mathscinet-getitem?mr=579076
https://zbmath.org/?q=an:0434.05043
https://doi.org/10.1057/jors.1992.71
https://zbmath.org/?q=an:0756.90067
http://www.ams.org/mathscinet-getitem?mr=1892778
https://zbmath.org/?q=an:1003.68117
https://doi.org/10.1016/j.ejor.2017.08.044
http://www.ams.org/mathscinet-getitem?mr=3722789
https://zbmath.org/?q=an:1374.90296
https://doi.org/10.4230/LIPIcs.ITP.2019.36
http://www.ams.org/mathscinet-getitem?mr=4008955
https://zbmath.org/?q=an:07649985

	1. Introduction
	2. Basic properties of the MWIS problem
	3. A polynomial-time reduction to the MWSS problem
	4. A heuristic for the MWIS problem
	Acknowledgement
	References

