Published online: April 24, 2024 https://doi.org/10.33044/revuma.3364

LIMIT BEHAVIORS FOR A β -MIXING SEQUENCE IN THE ST. PETERSBURG GAME

YU MIAO, QING YIN, AND ZHEN WANG

ABSTRACT. We consider a sequence of non-negative β -mixing random variables $\{X, X_n : n \geq 1\}$ from the classical St. Petersburg game. The accumulated gains $S_n = X_1 + X_2 + \cdots + X_n$ in the St. Petersburg game are studied, and the large deviations and the weak law of large numbers of S_n are obtained.

1. Introduction

The classical St. Petersburg game is defined as follows: A player tosses a fair coin repeatedly. If the coin comes up heads the first time on the kth trial, he will wins 2^k dollars. Let the random variable X denote the gain of the player at a game; then we have

$$\mathbb{P}(X = 2^k) = 2^{-k} \text{ and } \mathbb{P}(X > c) = 2^{-[\log_2 c]}$$
 (1.1)

for any $k = 1, 2, \ldots$ and $c \ge 1$, where \log_2 is the logarithm to the base 2 and [x] is defined as the largest integer not exceeding x. It is easy to see that X has infinite expectation.

Let $\{X, X_n : n \geq 1\}$ be independent identically distributed (i.i.d.) random variables as above, and let $S_n = X_1 + \cdots + X_n$ denote the total winnings in n games. Feller [5] proved that

$$\frac{S_n}{n\log_2 n} \overset{\mathbb{P}}{\to} 1 \quad \text{as } n \to \infty.$$

Chow and Robbins [3] showed that

$$\frac{S_n}{n\log_2 n} \stackrel{a.s.}{\to} 1 \quad \text{as } n \to \infty,$$

and the set of limit points of $S_n/n\log_2 n$ is the interval $[1,\infty)$. Csörgő and Simons [4] proved that, with probability one, S_n is asymptotic to $n\log_2 n$ if the m

²⁰²⁰ Mathematics Subject Classification. 60F10, 60G50.

Key words and phrases. St. Petersburg game, large deviations, weak law of large numbers, β -mixing sequence.

This work is supported by the National Natural Science Foundation of China (NSFC-11971154).

largest gains are ignored, i.e., for every $m \geq 1$,

$$\frac{S_n(m)}{n \log_2 n} \xrightarrow{a.s.} 1$$
 as $n \to \infty$,

where $S_n(m)$ denotes the same sum but with the m largest summands excised, which is defined as

$$S_n(m) := X_{n,1} + X_{n,2} + \cdots + X_{n,n-m}.$$

Here $X_{n,1} \leq X_{n,2} \leq \cdots \leq X_{n,n}$ denote the order statistics for X_1, X_2, \ldots, X_n , so that $S_n(0) = S_n$. Vardi [11] studied that this asymptotic equality is very rarely interrupted by a large gain that puts the player ahead for a relatively short period of time. Stoica [10] obtained the following logarithm tail asymptotic results for the accumulated gains of geometric size in the St. Petersburg game: for $\varepsilon > 0$ and b > 1, we have

$$\lim_{n \to \infty} \frac{\log_2 \mathbb{P}(S_n > \varepsilon b^n)}{n} = -\log_2 b$$

and

$$\lim_{n \to \infty} \frac{\log_2 \mathbb{P}(M_n > \varepsilon b^n)}{n} = -\log_2 b,$$

where $M_n = \max\{X_1, X_2, \dots, X_n\}$ denotes the maximal gain in n St. Petersburg games. Some related results about heavy tailed sequences from generalized St. Petersburg games are studied (see [6, 7, 8]).

Based on the above works, we want to consider a β -mixing sequence with the distribution (1.1) in the St. Petersburg game. Let us recall the definition of the β -mixing coefficient, and for the definitions of other mixing coefficients as well as for the relations between them, we refer the reader to Bradley [2]. Let X and Z be two random variables. We denote the distribution of (X, Z) by $\mu_{(X,Z)}$ and the distributions of X and Z by μ_X and μ_Z . The β -mixing coefficient of X and Z is defined as

$$\beta(X, Z) = \frac{1}{2} \|\mu_{(X,Z)} - \mu_X \otimes \mu_Z\|,$$

where $\|\mu - \nu\|$ denotes the (total) variation norm of the signed measure $\mu - \nu$. Now for a sequence of random variables $\{Y_n : n \ge 1\}$, define

$$\beta(n) = \sup_{k \in \mathbb{N}} \beta((Y_1, Y_2, \dots, Y_k), (Y_{k+n}, Y_{k+n+1}, \dots)).$$

The sequence is called absolutely regular if $\beta(n) \to 0$ for $n \to \infty$.

In the rest of the paper, let $\{X, X_n : n \geq 1\}$ be a sequence of non-negative β -mixing random variables, and we shall study the large deviations and the law of large numbers for the accumulated gains S_n with geometric size in the St. Petersburg game.

2. Main results

2.1. The main results. Let $\{X, X_n : n \geq 1\}$ be a sequence of nonnegative stationary β -mixing random variables with the distribution (1.1). It is not difficult to check that

$$\sup\{d > 0 : \mathbb{E}(X^d) < \infty\} = 1. \tag{2.1}$$

In particular, $\mathbb{E}(X^d)$ is finite for any d < 1.

Theorem 2.1. Assume that the mixing coefficient $\beta(n)$ satisfies

$$\frac{\log_2 \beta(n)}{n \log_2 \log_2 n} \to -\infty \quad as \ n \to \infty. \tag{2.2}$$

Then, for any $\varepsilon > 0$ and b > 1, we have

$$\lim_{n \to \infty} \frac{\log_2 \mathbb{P}\left(S_n > \varepsilon b^n\right)}{n} = -\log_2 b. \tag{2.3}$$

Remark 2.2. From the proof of Theorem 2.1, it is not difficult to check that the condition (2.2) can be weakened by the following condition. Assume that there exists a positive sequence g(n) satisfying $g(n) \to \infty$ as $n \to \infty$ and let k(n) be a subsequence from $\{1, 2, \ldots, n\}$ such that $k(n) \to \infty$ as $n \to \infty$. Suppose that there exists a positive constant C such that, for all n large enough,

$$\frac{g(k(n))}{g(n)} \ge C.$$

If the mixing coefficient $\beta(n)$ satisfies

$$\frac{\log_2 \beta(n)}{ng(n)} \to -\infty \quad \text{as } n \to \infty,$$

then (2.3) holds. Hence g(n) can be chosen as $\log_2 \log_2 \log_2 n$.

Corollary 2.3. Under the conditions in Theorem 2.1, we have

$$\lim_{n\to\infty}\frac{\log_2\mathbb{P}\left(M_n>\varepsilon b^n\right)}{n}=-\log_2b,$$

where $M_n = \max\{X_1, X_2, \dots, X_n\}$ denotes the maximal gain in n St. Petersburg games.

Theorem 2.4. Assume that the mixing coefficient $\beta(n)$ satisfies

$$\frac{\log_2 \beta(n)}{n \log_2 n} \to -\infty \quad as \ n \to \infty. \tag{2.4}$$

Then we have

$$\frac{S_n - n\mathbb{E}\left(X1_{\{X < n\log_2 n\}}\right)}{n\log_2 n} \xrightarrow{\mathbb{P}} 0.$$

Remark 2.5. From (2.13), we know that

$$\mathbb{E}\left(X1_{\{X < n\log_2 n\}}\right) = [\log_2(n\log_2 n)],$$

which implies that

$$\frac{S_n}{n\log_2 n} \xrightarrow{\mathbb{P}} 1.$$

Remark 2.6. Based on the proof of Theorem 2.4 (see the inequality (2.15)), the condition (2.4) cannot be weakened by the condition (2.2).

2.2. **Lemmas.** Before giving the proofs of the main results, we need to mention some lemmas. The following decoupling lemma is obtained by Berbee [1] and Schwarz [9]. It will be used to decouple X_i and X_j when |i-j| is big enough.

Lemma 2.7 (Berbee [1, Lemma 2.1]). Let $\{X, X_n : n \geq 1\}$ be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and, for every $1 \leq k \leq n$, define

$$\beta_k := \beta((X_1, X_2, \dots, X_k), (X_{k+1}, X_{k+2}, \dots, X_n)).$$

Then there exists a sequence of independent random variables $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$ on the same probability space such that \tilde{X}_i and X_i have the same distribution and

$$\|\mu_{(X_1, X_2, \dots, X_n)} - \mu_{(\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n)}\| \le \beta_1 + \beta_2 + \dots + \beta_n.$$
 (2.5)

Lemma 2.8 (Hu and Nyrhinen [6, Lemma 3.2]). Assume that $\{X, X_n : n \geq 1\}$ is a sequence of i.i.d. non-negative random variables with $\mathbb{E}(X^{\alpha}) < \infty$ for $\alpha \in (0, \infty)$. Denote $\theta = \min\{\alpha, 1\}$ and $\mu = \mathbb{E}(X^{\theta})$. Then, for any $\nu > 0$, t > 0 and $n \in \mathbb{N}$, we have

$$\mathbb{P}(S_n > t^{1/\theta}) \le n \mathbb{P}\left(X > \left(\frac{t}{\nu}\right)^{1/\theta}\right) + e^{\nu} \left(\frac{\mu n}{t}\right)^{\nu^{1/\theta}}.$$

Lemma 2.9. Let X obey the distribution (1.1). Then, for every $c \geq 1$, we have

$$\frac{1}{c} \le \mathbb{P}(X > c) < \frac{2}{c}.$$

Proof. By using (1.1), the lemma can be obtained easily.

2.3. **Proof of the main results.** In this subsection, we give the proofs of the main results.

Proof of Theorem 2.1. Decompose the set $\{1, 2, ..., n\}$ into l(n) blocks of length k(n) and a block of length less than k(n), where k(n), l(n) are integers such that

$$\frac{k(n)}{n/\log_2\log_2 n} \to 1 \quad \text{and} \quad \frac{l(n)}{\log_2\log_2 n} \to 1 \qquad \text{as } n \to \infty.$$

Hence for any $0 < \delta < 1/2$, if n is large enough, it follows that

$$(1 - \delta) \log_2 \log_2 n \le l(n) \le (1 + \delta) \log_2 \log_2 n.$$
 (2.6)

From Lemma 2.7, we know that there exists a sequence of independent random variables $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$ such that for every $1 \leq i \leq n$, \tilde{X}_i and X_i have the same distribution.

Step 1. We shall prove the lower bound of the limit (2.3),

$$\liminf_{n \to \infty} \frac{\log_2 \mathbb{P}\left(S_n > \varepsilon b^n\right)}{n} \ge -\log_2 b.$$
(2.7)

From the inequality (2.5), we have

$$\mathbb{P}(S_{n} > \varepsilon b^{n}) \geq \mathbb{P}\left(\sum_{j=1}^{l(n)} X_{(j-1)k(n)+1} > \varepsilon b^{n}\right)$$

$$\geq \mathbb{P}\left(\max_{1 \leq j \leq l(n)} X_{(j-1)k(n)+1} > \varepsilon b^{n}\right)$$

$$\geq \mathbb{P}\left(\max_{1 \leq j \leq n} X_{(j-1)k(n)+1} > \varepsilon b^{n}, \bigcap_{j=1}^{l(n)} \{X_{j} = \tilde{X}_{j}\}\right)$$

$$\geq \mathbb{P}\left(\max_{1 \leq j \leq n} \tilde{X}_{(j-1)k(n)+1} > \varepsilon b^{n}\right) - \mathbb{P}\left(\bigcup_{j=1}^{l(n)} \{X_{j} \neq \tilde{X}_{j}\}\right)$$

$$\geq \mathbb{P}\left(\max_{1 \leq j \leq n} \tilde{X}_{(j-1)k(n)+1} > \varepsilon b^{n}\right) - \left(\beta_{1} + \beta_{2} + \dots + \beta_{l(n)}\right)$$

$$\geq \mathbb{P}\left(\max_{1 \leq j \leq l(n)} \tilde{X}_{(j-1)k(n)+1} > \varepsilon b^{n}\right) - l(n)\beta(k(n))$$

$$= 1 - (1 - \mathbb{P}(X > \varepsilon b^{n}))^{l(n)} - l(n)\beta(k(n))$$

$$\geq 1 - (1 - \mathbb{P}(X > \varepsilon b^{n}))^{(1-\delta)\log_{2}\log_{2} n} - (1 + \delta)(\log_{2}\log_{2} n)\beta(k(n)).$$

$$(2.8)$$

Furthermore, by using Lemma 2.9, for $\varepsilon > 0$ and b > 1, we have

$$\mathbb{P}(X > \varepsilon b^n) > \frac{1}{\varepsilon b^n},$$

which, together with (2.8), implies that

$$\mathbb{P}(S_n > \varepsilon b^n) \ge 1 - \left(1 - (\varepsilon b^n)^{-1}\right)^{(1-\delta)\log_2\log_2 n} - (1+\delta)(\log_2\log_2 n)\beta(k(n)). \tag{2.9}$$

For b > 1, we have

$$(\varepsilon b^n)^{-1}\log_2\log_2 n \to 0$$
 as $n \to \infty$.

Therefore, by using the elementary inequalities

$$1 - y \le e^{-y}$$
 for $y \ge 0$

and

$$e^y \le 1 + y + y^2$$
 for $|y| \le 1$,

we get

$$(1 - (\varepsilon b^{n})^{-1})^{(1-\delta)\log_{2}\log_{2}n}$$

$$\leq e^{-(\varepsilon b^{n})^{-1}(1-\delta)\log_{2}\log_{2}n}$$

$$\leq 1 - (\varepsilon b^{n})^{-1}(1-\delta)\log_{2}\log_{2}n + ((\varepsilon b^{n})^{-1}(1-\delta)\log_{2}\log_{2}n)^{2}$$

$$\leq 1 - (1-2\delta)(\varepsilon b^{n})^{-1}\log_{2}\log_{2}n$$
(2.10)

for all n large enough. From (2.9) and (2.10), for all n large enough, we obtain

$$\mathbb{P}(S_n > \varepsilon b^n) \ge (1 - 2\delta) (\varepsilon b^n)^{-1} \log_2 \log_2 n - (1 + \delta) (\log_2 \log_2 n) \beta(k(n))$$
$$= (1 - 2\delta) (\varepsilon b^n)^{-1} \log_2 \log_2 n \left(1 - \frac{(1 + \delta)}{1 - 2\delta} \beta(k(n)) (\varepsilon b^n) \right).$$

From the condition $(\log_2 \beta(n))/(n\log_2 \log_2 n) \to -\infty$, it follows that for any M > 1 and for all n large enough, we have

$$\beta(k(n)) \le 2^{-2Mk(n)\log_2\log_2 k(n)} \le 2^{-Mn},$$
(2.11)

which implies

$$\beta(k(n))(\varepsilon b^n) \to 0$$
 as $n \to \infty$.

Hence we have

$$\liminf_{n \to \infty} \frac{\log_2 \mathbb{P}(S_n > \varepsilon b^n)}{n} \ge -\log_2 b.$$

Step 2. We shall prove the upper bound of the limit (2.3),

$$\limsup_{n \to \infty} \frac{\log_2 \mathbb{P}\left(S_n > \varepsilon b^n\right)}{n} \le -\log_2 b. \tag{2.12}$$

From Lemma 2.7 and the inequalities in (2.6), for all n large enough, we have

$$\mathbb{P}(S_n > \varepsilon b^n) = \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i > \frac{\varepsilon b^n}{n}\right) \le \mathbb{P}\left(\frac{1}{k(n)l(n)}\sum_{i=1}^n X_i > \frac{\varepsilon b^n}{n}\right)$$

$$\le \mathbb{P}\left(\frac{1}{k(n)}\sum_{j=1}^{k(n)} \frac{1}{l(n)}\sum_{i=1}^{l(n)+1} X_{(i-1)k(n)+j} > \frac{\varepsilon b^n}{n}\right)$$

$$= \mathbb{P}\left(\sum_{j=1}^{k(n)} \frac{1}{l(n)}\sum_{i=1}^{l(n)+1} X_{(i-1)k(n)+j} > k(n)\frac{\varepsilon b^n}{n}\right)$$

$$\le k(n)\mathbb{P}\left(\frac{1}{l(n)}\sum_{i=1}^{l(n)+1} X_{(i-1)k(n)+1} > \frac{\varepsilon b^n}{n}\right)$$

$$\le k(n)\mathbb{P}\left(\sum_{i=1}^{l(n)+1} X_{(i-1)k(n)+1} > (1-\delta)\frac{\log_2\log_2n}{n}\varepsilon b^n\right)$$

$$\le k(n)\mathbb{P}\left(\sum_{i=1}^{l(n)+1} \tilde{X}_{(i-1)k(n)+1} > (1-\delta)\frac{\log_2\log_2n}{n}\varepsilon b^n\right)$$

$$+ k(n)[l(n)+1]\beta(k(n))$$

$$\le k(n)\mathbb{P}\left(\tilde{S}_{l(n)+1} > (1-\delta)\frac{\log_2\log_2n}{n}\varepsilon b^n\right) + 2n\beta(k(n)),$$

where

$$\tilde{S}_{l(n)+1} := \sum_{i=1}^{l(n)+1} \tilde{X}_{(i-1)k(n)+1}.$$

From (2.1), let us take $\theta < 1$,

$$t = \left((1 - \delta) \frac{\log_2 \log_2 n}{n} \varepsilon b^n \right)^{\theta}$$

and $\mu = \mathbb{E}(X^{\theta})$ in Lemma 2.8. Then, for any $\nu > 0$, we obtain

$$k(n)\mathbb{P}\left(\tilde{S}_{l(n)+1} > (1-\delta)\frac{\log_2\log_2 n}{n}\varepsilon b^n\right)$$

$$\leq k(n)(l(n)+1)\mathbb{P}\left(X > \frac{(1-\delta)\frac{\log_2\log_2 n}{n}\varepsilon b^n}{\nu^{\frac{1}{\theta}}}\right)$$

$$+ k(n)e^{\nu}\mu^{\nu^{\frac{1}{\theta}}}\left(\frac{l(n)+1}{\left((1-\delta)\frac{\log_2\log_2 n}{n}\varepsilon b^n\right)^{\theta}}\right)^{\nu^{\frac{1}{\theta}}}.$$

From Lemma 2.9, for all n large enough, we have

$$\mathbb{P}\left(X > \frac{(1-\delta)\frac{\log_2\log_2 n}{n}\varepsilon b^n}{\nu^{\frac{1}{\theta}}}\right) < \frac{2\nu^{\frac{1}{\theta}}}{(1-\delta)\frac{\log_2\log_2 n}{n}\varepsilon b^n},$$

which implies that

$$\mathbb{P}(S_n > \varepsilon b^n) \le \frac{4n\nu^{\frac{1}{\theta}}}{(1-\delta)^{\frac{\log_2\log_2 n}{n}}\varepsilon b^n} + k(n)e^{\nu}\mu^{\nu^{\frac{1}{\theta}}} \left(\frac{l(n)+1}{\left((1-\delta)^{\frac{\log_2\log_2 n}{n}}\varepsilon b^n\right)^{\theta}}\right)^{\nu^{\frac{2}{\theta}}} + 2n\beta(k(n)).$$

Now it is not difficult to prove that

$$\lim_{n\to\infty}\frac{1}{n}\log_2\frac{4n\nu^{\frac{1}{\theta}}}{(1-\delta)^{\frac{\log_2\log_2n}{2}}\varepsilon b^n}=-\log_2b$$

and

$$\lim_{n \to \infty} \frac{1}{n} \log_2 \left(k(n) e^{\nu} \mu^{\nu^{\frac{1}{\theta}}} \left(\frac{l(n) + 1}{\left((1 - \delta) \frac{\log_2 \log_2 n}{n} \varepsilon b^n \right)^{\theta}} \right)^{\nu^{\frac{1}{\theta}}} \right) = -\theta \nu^{\frac{1}{\theta}} \log_2 b.$$

Moreover, from (2.11) and the arbitrariness of M, we have

$$\lim_{M \to \infty} \lim_{n \to \infty} \frac{1}{n} \log_2 \left(2n\beta(k(n)) \right) \le \lim_{M \to \infty} (-M) = -\infty.$$

Therefore, by taking $\nu > 0$ such that $\theta \nu^{\frac{1}{\theta}} > 1$, we have

$$\limsup_{n \to \infty} \frac{\log_2 \mathbb{P}(S_n > \varepsilon b^n)}{n} \le -\log_2 b.$$

From (2.7) and (2.12), the desired result can be obtained.

Proof of Corollary 2.3. From the proof of the lower bound and the inequality (2.8), we have

$$\liminf_{n \to \infty} \frac{\log_2 \mathbb{P}(M_n > \varepsilon b^n)}{n} \ge -\log_2 b.$$

From (2.12) and $M_n \leq S_n$, we get

$$\limsup_{n \to \infty} \frac{\log_2 \mathbb{P}(M_n > \varepsilon b^n)}{n} \le -\log_2 b.$$

Proof of Theorem 2.4. For all n and $1 \le k \le n$, define

$$Y_{n,k} = X_k 1_{\{X_k \le n \log_2 n\}}, \quad S'_n = \sum_{k=1}^n Y_{n,k},$$

and, for any $r \geq 1$, it is easy to see that

$$\mathbb{E}Y_{n,k}^{r} = \sum_{k=1}^{[\log_{2}(n\log_{2}n)]} 2^{rk} \frac{1}{2^{k}} = \begin{cases} [\log_{2}(n\log_{2}n)], & r = 1, \\ \frac{2^{r-1}(1-2^{(r-1)[\log_{2}(n\log_{2}n)]})}{1-2^{r-1}}, & r > 1. \end{cases}$$
(2.13)

For any $\varepsilon > 0$, we have

$$\begin{split} & \mathbb{P}\left(\left|S_{n}-n\mathbb{E}\left(X1_{\{X< n\log_{2}n\}}\right)\right|>\varepsilon n\log_{2}n\right) \\ & = \mathbb{P}\left(\left|S_{n}-n\mathbb{E}\left(X1_{\{X< n\log_{2}n\}}\right)\right|>\varepsilon n\log_{2}n, \bigcap_{k=1}^{n}\{X_{k}< n\log_{2}n\}\right) \\ & + \mathbb{P}\left(\left|S_{n}-n\mathbb{E}\left(X1_{\{X< n\log_{2}n\}}\right)\right|>\varepsilon n\log_{2}n, \bigcup_{k=1}^{n}\{X_{k}\geq n\log_{2}n\}\right) \\ & \leq \mathbb{P}\left(\left|S_{n}'-n\mathbb{E}\left(X1_{\{X< n\log_{2}n\}}\right)\right|>\varepsilon n\log_{2}n\right) + n\mathbb{P}\left(X\geq n\log_{2}n\right). \end{split}$$

We split up S'_n in blocks as follows:

$$S'_n - n\mathbb{E}\left(X1_{\{X < n\log_2 n\}}\right) = S_n^{(o)} + S_n^{(e)} + V_n,$$

where

$$S_n^{(o)} = \sum_{j=1}^{[l(n)/2]} \sum_{i=(2j-2)k(n)+1}^{(2j-1)k(n)} (Y_{n,i} - \mathbb{E}Y_{n,i}),$$

$$S_n^{(e)} = \sum_{j=1}^{[l(n)/2]} \sum_{i=(2j-1)k(n)+1}^{2jk(n)} (Y_{n,i} - \mathbb{E}Y_{n,i}),$$

$$V_n = \sum_{i=2[l(n)/2]k(n)+1}^{n} (Y_{n,i} - \mathbb{E}Y_{n,i})$$

and

$$k(n) = \left\lceil \frac{\log_2 n}{\log_2 \log_2 n} \right\rceil, \quad l(n) = [n/k(n)].$$

Firstly, we consider the term $S_n^{(o)}$. Let

$$\sigma_j = \sum_{i=(2j-2)k(n)+1}^{(2j-1)k(n)} (Y_{n,i} - \mathbb{E}Y_{n,i})$$

and observe that

$$S_n^{(o)} = \sum_{j=1}^{[l(n)/2]} \sigma_j.$$

By using Lemma 2.7, there are independent random variables $\tilde{\sigma}_j$, distributed as σ_i , $1 \le j \le [l(n)/2]$. Hence for any $\varepsilon > 0$, we have

$$\mathbb{P}\left(|S_n^{(o)}| > \varepsilon n \log_2 n\right) = \mathbb{P}\left(\left|\sum_{j=1}^{\lfloor l(n)/2\rfloor} \sigma_j\right| > \varepsilon n \log_2 n\right)$$

$$\leq \mathbb{P}\left(\left|\sum_{j=1}^{\lfloor l(n)/2\rfloor} \tilde{\sigma}_j\right| > \varepsilon n \log_2 n\right) + l(n)\beta(k(n)).$$

From (2.13), we have

$$\mathbb{P}\left(\left|\sum_{j=1}^{\lfloor l(n)/2\rfloor} \tilde{\sigma}_{j}\right| > \varepsilon n \log_{2} n\right) \leq \frac{\lfloor l(n)/2\rfloor}{\varepsilon^{2} n^{2} \log_{2}^{2} n} \mathbb{E}|\tilde{\sigma}_{1}|^{2}$$

$$\leq \frac{\lfloor l(n)/2\rfloor}{\varepsilon^{2} n^{2} \log_{2}^{2} n} k^{2}(n) \mathbb{E}Y_{n,1}^{2}$$

$$\leq \frac{C_{1} \lfloor l(n)/2 \rfloor}{\varepsilon^{2} n^{2} \log_{2}^{2} n} k^{2}(n) n \log_{2} n \leq C_{2} \frac{k(n)}{\log_{2} n} \to 0,$$
(2.14)

where C_1 and C_2 are two positive constants. Furthermore, by using the condition $(\log_2 \beta(n))/(n\log_2 n) \to -\infty$, it follows that for any M>1 and for all n large enough, we have

$$\beta(k(n)) \le 2^{-2Mk(n)\log_2 k(n)} \le 2^{-M\log_2 n} = \frac{1}{n^M}.$$
 (2.15)

So we get

$$l(n)\beta(k(n)) = O\left(\frac{n\log_2\log_2 n}{\log_2 n}\frac{1}{n^M}\right) \to 0 \quad \text{as } n \to \infty,$$

which, together with (2.14), implies that

$$\frac{S_n^{(o)}}{n\log_2 n} \xrightarrow{\mathbb{P}} 0.$$

With the same proof used for $S_n^{(o)}$, we have

$$\frac{S_n^{(e)}}{n\log_2 n} \xrightarrow{\mathbb{P}} 0.$$

Now we consider the term V_n . By Markov's inequality and (2.13), we have

$$\mathbb{P}(|V_n| > \varepsilon n \log_2 n) \le \mathbb{P}\left(\sum_{i=1}^{2k(n)} |Y_{n,i} - \mathbb{E}Y_{n,i}| > \varepsilon n \log_2 n\right)$$
$$\le \frac{4k(n)}{\varepsilon n \log_2 n} \mathbb{E}Y_{n,1} \to 0,$$

which yields

$$\frac{V_n}{n\log_2 n} \xrightarrow{\mathbb{P}} 0.$$

At last, from Lemma 2.9, we get

$$n\mathbb{P}\left(X \ge n\log_2 n\right) \le \frac{2n}{n\log_2 n} \to 0.$$

Based on the above discussion, the desired result can be obtained.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to the anonymous referee for helpful comments which led to an improved presentation of this paper.

References

- [1] H. Berbee, Convergence rates in the strong law for bounded mixing sequences, *Probab. Theory Related Fields* **74** no. 2 (1987), 255–270. DOI MR Zbl
- [2] R. C. Bradley, Basic properties of strong mixing conditions, in *Dependence in probability and statistics (Oberwolfach, 1985)*, Progr. Probab. Statist. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 165–192. MR Zbl
- [3] Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and "fair" games, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 330–335. DOI MR Zbl
- [4] S. Csörgő and G. Simons, A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games, Statist. Probab. Lett. 26 no. 1 (1996), 65–73. DOI MR Zbl
- [5] W. Feller, Note on the law of large numbers and "fair" games, Ann. Math. Statistics 16 (1945), 301–304. DOI MR Zbl
- [6] Y. Hu and H. Nyrhinen, Large deviations view points for heavy-tailed random walks, J. Theoret. Probab. 17 no. 3 (2004), 761–768. DOI MR Zbl
- [7] D. Li and Y. Miao, A supplement to the laws of large numbers and the large deviations, Stochastics 93 no. 8 (2021), 1261–1280. DOI MR Zbl
- [8] Y. Miao, T. Xue, K. Wang, and F. Zhao, Large deviations for dependent heavy tailed random variables, J. Korean Statist. Soc. 41 no. 2 (2012), 235–245. DOI MR Zbl
- [9] G. SCHWARZ, Finitely determined processes—an indiscrete approach, J. Math. Anal. Appl. 76 no. 1 (1980), 146–158. DOI MR Zbl

- [10] G. STOICA, Large gains in the St. Petersburg game, C. R. Math. Acad. Sci. Paris 346 no. 9-10 (2008), 563–566. DOI MR Zbl
- [11] I. VARDI, The St. Petersburg game and continued fractions, C. R. Acad. Sci. Paris Sér. I Math. 324 no. 8 (1997), 913–918. DOI MR Zbl

Yu Miao™

College of Mathematics and Information Science, Henan Normal University, Henan Province, 453007, China; Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Henan Province, 453007, China yumiao728@gmail.com, yumiao728@126.com

 $Qing\ Yin$

College of Mathematics and Information Science, Henan Normal University, Henan Province, 453007, China qingyin1282@163.com

Zhen Wang

College of Mathematics and Information Science, Henan Normal University, Henan Province, $453007,\,\mathrm{China}$

wang zhen 881025@163.com

Received: May 20, 2022 Accepted: October 3, 2022