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EVOLUTION OF FIRST EIGENVALUES OF SOME GEOMETRIC
OPERATORS UNDER THE RESCALED LIST’S EXTENDED
RICCI FLOW

SHAHROUD AZAMI AND ABIMBOLA ABOLARINWA

ABSTRACT. Let (M, g(t), e~ ?dv) be a compact weighted Riemannian manifold
and let (g(t), ¢(t)) evolve by the rescaled List’s extended Ricci flow. In this
paper, we study the evolution equations for first eigenvalues of the geometric
operators, —Ag + ¢S, along the rescaled List’s extended Ricci flow. Here
Ay = A —V¢.V is a symmetric diffusion operator, ¢ € C°(M), S = R —
a|V¢|?, R is the scalar curvature with respect to the metric g(t) and a, ¢ are
some constants. As an application, we obtain some monotonicity results under
the rescaled List’s extended Ricci flow.

1. INTRODUCTION

It is well known that eigenvalues of geometric operators are vital to understand-
ing geometric and topological natures of Riemannian manifolds. In recent years,
there have been several results on evolution and monotonicity of eigenvalues of
geometric operators under various geometric flows, most especially the Ricci flow
and its variants such as Ricci-harmonic flow, Ricci-Bourguignon flow, rescaled Ricci
flow and so on. Perelman’s work [I3] can be considered pioneering in this regard. In
that work, Perelman established that the first eigenvalue of the operator —4A+ R is
monotonically nondecreasing along the Ricci flow and showed that the monotonic-
ity of the first eigenvalue is due to the monotonicity of the energy functional F
defined by F = [’ u(BH[VS |2)e=/ dv. Perelman’s ingenuity led to several ground-
breaking results such as the no breather theorem, the non-collapsing theorem, and
the solution of Poincaré’s problem. Later in 2008, Cao [6] in an attempt to extend
Perelman’s work studied the first eigenvalue of the operator —A + ¢R with ¢ > i
under the Ricci flow and obtained similar monotonicity results. The second au-
thor (Abolarinwa) considered in [I] the eigenvalues of the Witten Laplacian, —Agy,
under the extended Ricci flow and obtained some monotonic quantities involving
the eigenvalue under the flow. The first author (Azami) investigated in [3] the first
eigenvalue of geometric operator —Ag + cR under the Ricci-Bourguignon flow and
in [4] studied the monotonicity of the first eigenvalue of the operator —Ay4 + ¢S
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under the rescaled List’s extended Ricci flow. He got several monotonicity results
in both cases. Other interesting works include (to mention but a few) Fang et al. [§]
on the evolution and monotonicity of eigenvalues of geometric operator —Ag + cR
under the Ricci flow, Huang and Li [I0] on the eigenvalues of geometric operators
—A+bS along the rescaled List’s extended Ricci flow, and Yang and Zhang [14] on
general geometric operators under the Ricci flow. Yang and Zhang [14] considered
the operator —A + ¢R* for some constants ¢,a and derived evolution equations
for the first eigenvalues of these operators under the Ricci flow. As an application
of their evolution equations they prove some monotonicity results. We refer to
[9, [I1 [7] and the references therein for some other related works on monotonicity
formulas of eigenvalues of geometric operators under some geometric flows.

Inspired by the above works, we consider the first nonzero eigenvalues of the
geometric operator —Ag+cS® (S is the generalized scalar curvature, defined below)
under the rescaled List’s extended Ricci flow for some constants a, c. Precisely, we
prove the evolution equation for the first eigenvalue for constants 0 < a < 1, ¢ > %
under some suitable condition on the generalized scalar curvature. We also obtain
some monotonic quantities depending on the first eigenvalue of —A, + ¢S* along
the rescaled List’s extended Ricci flow on closed Riemannian manifolds under some
assumptions.

Before the main results are stated, we present the flow and some important facts
around it so as to fix some notations. Let (M™, gg) be a smooth closed Riemannian
manifold and ¢y : M — R be a smooth function. The couple (g(¢), #(t)), t € [0,T),
is called the extended Ricci flow if it satisfies the following system of quasi-linear
parabolic partial differential equations:

{ %g = —2Ric+ 2aVo @ Vo, ¢(0) = go, (L.1)

0= Ao, $(0) = do.

Here, Ric is the Ricci tensor of M, V is the gradient operator, o > 0 is a coupling
constant depending on n, and A denotes the Laplace—Beltrami operator with re-
spect to the metric g(¢). In local coordinates {z',...,2"} the Laplace-Beltrami
operator is defined by

” 02 0
— 4l _T1k_Z_
A=y <8xj oz’ T oz ) ’

where ¢% is the inverse of metric components gi; and I‘fj are the Christoffel symbols.
For the special cases o = 2 and a = Z—:%, n > 3, the couple flow has been
studied by List in [I2] and he has established its short time existence and uniqueness
on any compact Riemannian manifold. Denote the generalized Ricci curvature, its

components and generalized scalar curvature, respectively by
S = Ric — aV(;S ® V¢7 Sij = Rij - a¢i¢j7 and S = gijSZ'j =R- O[‘Vd)|2
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In this paper, we consider the rescaled List’s extended Ricci flow as follows:

2r
Zg=-25+ 9 9(0) = go,
59 =00, $(0) = o,

where 7(t) is a smooth function depending only on the time variable ¢. The rescaled
List’s extended Ricci flow is a generalization of the extended Ricci flow. When
r = 0, then the couple flow (|1.2)) reduces to the extended Ricci flow (1.2). When

(1.2)

5d
one chooses r = jf y " with dp = e~? dv being the volume form of metric g(t),
L

that is, r is the average of the generalized scalar curvature S, then the couple
flow is the normalized extended Ricci flow and the volume of (M™, g(¢)) is a
constant. Let g(t) be a solution to the extended Ricci flow . For any given
function r(¢), assume

1
1-— %fotr(T) dr

and t = fot y(7) dr; then g(t) = v(t)g(t) solves the rescaled List’s extended Ricci
flow system

v(t) =

8Gii = T _
o = —2(Si = —~gij),
¢ _ AT
5 = Ag.

Thus, there is a one-to-one relation between the extended Ricci flow (1.1)) and the
rescaled List’s extended Ricci flow (1.2)).
We state below the main results of this paper.

Theorem 1.1. Let (M™, g(t),(t),dp = e=%dv), t € [0,T), be a solution to the
rescaled List’s extended Ricci flow on a closed Riemannian manifold M. Sup-
pose that X is the first eigenvalue of the geometric operator —Ay + ¢S, and the
tensors S and Vo @ Vo satisfy

2/
S - ﬁvw

|VV¢| Vip@ V¢ > (Ap)gi; forallt €0,T).
(1.3)
. 2 ft r(r)dr . .
Then the quantity A(t)e™ Jo is nondecreasing along the flow (1.2) for 0 < a <
1 and ¢ > % ifo< S < at. Moreover, if r(t) <0 for all t, then the eigenvalue

A(t) is nondecreasing under the flow (L.2) for0 <a<1landc>1if0 < S< ate .

Corollary 1.2. Let (M™,g(t),¢(t),du = e~%dv), t € [0,T), be a solution to the
flow
24— arict Wy g0) =
atg_ n g9, g = 9o, (14)
5o = A9, $(0) = ¢o
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on a closed Riemannian manifold M. Suppose that A is the first eigenvalue of the
geometric operator —A¢, + cR® and the Ricci tensor satisfies

Ric — VVe| > 2f -[VVg| for all t €[0,T).

de—1
Then the quantity A(t)e gflr(T) ar zs nondecreasing along the flow (1.4) for 0 <
a<landc>1if0<R< atT . Moreover, if r(t) < 0 for all t, then the
eigenvalue A(t) is nondecreasing under the flow (1.4) for 0 < a <1 and ¢ > i if

1
O0<R<aT=.

Corollary 1.3. Let (M?%,g(t),¢(t),du = e=®dv), t € [0,T), be a solution to the
flow
519 = —2Ric+7r(t)g. g(0) = go, (15)
%0 = Ad, $(0) = o
on a closed two-dimensional Riemannian manifold M. Suppose that X\ is the first
eigenvalue of the geometric operator —Agy + cR® and the scalar curvature satisfies

R> V2 |VV¢| for allt €10,7). (1.6)

T 2y/e—1
Then the quantity )\(t)efo r(m)dr nondecreasing along the flow (1.5) for 0 < a <1
andc> 1 if0< R < aT% . Moreover, if r(t) <0 forallt, then the eigenvalue A(t)
18 nondecreasmg under the flow (1.5) for0 <a <1 andc> 7 sz <R<aTs.

Remark 1.4. Note that the first equation in ([1.6)) can be read as

0= (1~ r)g

since in Ric = %Rg in dimension 2. We know that the Ricci flow and the Yamabe
flow are equivalent in dimension 2 but differ in higher dimensions. This is clearly
a coupled rescaled Yamabe flow. There is hope that this result can be extended to
the Yamabe flow. Some new results have been obtained in this direction [2].

2. PRELIMINARIES

Let ¢ = ¢(t) : M — R be a family of smooth functions, ¢t € [0,T), and
let the closed Riemannian manifold (M, g(t), ¢(t),du = e~ dv) be a solution to
. Suppose that A(t) is the first nonzero eigenvalue of the geometric operator
—Ag +¢S® for some constants a, ¢, where A is the Laplace-Beltrami operator and
dp = e~% dv is the weighted volume measure on (M, g). Then the Witten-Laplace
operator A, = A — V¢.V is a symmetric operator on L?(M, du) and satisfies the
following integration by parts formula:

/ Vu.Vudy = —/ (Agu)vdy = —/ (Agpv)udp  for all u,v € C*(M).
M M M
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When ¢ is a constant function, the Witten Laplacian is just the Laplace-Beltrami
operator. We say that A is an eigenvalue of —Ay + ¢S* with associated eigenfunc-
tion f whenever

—Auf +cSf =Af. (2.1)
Now, multiplying both sides of (2.1]) by f and using integration by parts, we obtain

2 _ 2 a £2
A Pdu= [ (97P+es

The first nonzero eigenvalue of the operator —Ag + ¢S is defined by

s =t { [ (vrP+estaus s ec=on, [ Pa=1f.

The function f is called a normalized eigenfunction corresponding to the eigen-
value A\ whenever

A(t) = /M<|Vf|2 oS ) dp, /M Pdi—1.

We do not know whether the eigenvalue A(t) and its corresponding eigenfunction
f(t) are C'-differentiable with respect to  or not along the rescaled List’s extended
Ricci flow . Then by a similar method as in [5], we give a general smooth
function along the couple flow in the following. At time ¢y € [0,T"), we first
assume that f(to) is the normalized eigenfunction corresponding to the eigenvalue
A(to) of —Ay + ¢S*. We consider the smooth function

1
det(gi;(t)) } :
det(gi;(to))

with respect to time ¢ along the flow (1.2). Let a smooth function
u(t)

\Jag v dpe

satisfy the normalization condition [,, f?du = 1 under the flow (L.2)), and at
time to, f is an eigenfunction for A of —Ag4 + ¢S® Now, we define a smooth
eigenfunction

ult) = ) |

ft) =

(1)) = /M (—fAsf +cSF?) dp= /M<|Vf|2+csaf2>du,

where A(f(to),t0) = A(to), f is a smooth function and satisfies [, f2 du = 1.

3. THE PROOF OF THE RESULTS

We first derive the evolution equation of A(f(t),¢) under the general geometric

8;;”' = h;j, where h;; is a symmetric (0, 2)-tensor.

flow
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Proposition 3.1. Let A be an eigenvalue of the geometric operator —Ayg + ¢S®,
let f be the eigenfunction of \(t) at time ty, and assume the metric g(t) evolves by
%gij = h;j, where h;; is a symmetric (0,2)-tensor. Then, we get

d a5
ﬁ)\(f» t)t=t, = /M <hijfij —hijpif; + CaSa_laf + (¢t)ifi> fdp

1
+/ <h1_71 - 2Hj> fifdp. (3.1)
M
Here H = tr(h), fij = ViV;f, fi=V.f, and ¢ = %'

Proof. By direct computation, we obtain

0 -
EAMC = Ay fr — hijfij — %9” (2(divh); — H;) fj + hijdif; — (ée)ifie

Therefore, we get

%)‘(fa t)‘t:to
— [ (-auf+estn fau
M

L oS
= / (hijfij + %g” (2(div h); — H;) f; — hijdif; + CaSa_laf + (¢t)ifi> fdup
M

d
| i St fant [ (-0 + a5 L) (32)

Integration by parts yields

/ (Ao fo b S f) fdyt = / (=Agf +cS°F) fo dp.
M M

From the normalization condition | ut 2du = 1, we infer

0= 4 (/M I du) - /Mf(ft dit+ (f dp)).

Hence, we conclude that
/ (A fi +cSf) fdp + / (—Ayf +cS°f) %(f dp)
M M
= [ har st (dnt (1))

=Xt0) [ F(fedn+ (Fdu)) = (3.3)
Plugging into , we arrive at . U

Now, we obtain the evolution equation of the first eigenvalue of —A4+c¢S® under
the rescaled List’s extended Ricci flow.
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Proposition 3.2. Suppose that (M",g(t),¢(t),du = e~ ?dv), t € [0,T) is a solu-
tion of the rescaled List’s extended Ricci flow on a closed Riemannian man-
ifold M. Let X\ be an eigenvalue of the geometric operator —Ay + cS® and f be
the eigenfunction of A(t) at time tg. Then under the rescaled List’s extended Ricci
flow, we get

d QT(to) A

TN Ory = =2 0) =2 [ Sfufdne2 [ Spordu

—|—2ac/M Se S5 12 2 du—!—/M fi(de)if dp
+2aac/ Saﬁl(Aqﬁ)QfQ d,u+206/ (A@)pi fif dp
M M

— ca(a — 1)/ S 2|V S22 du + c/ SCA(f?e?) dv
M M

+ 2T(to)c(l —a) / Sef2du. (3.4)
n M
Proof. Under the rescaled List’s extended Ricci flow, we have
hij = =254 (3.5)
and
% = AS +2|8;]* — %’"swa(m)?. (3.6)
Applying and into the evolution formula , we deduce

d 2
%A(fa le=to = /M [_2Sijfijf+25ij¢ifjf+ %f&;sf‘F (¢t)ifif:| dp

2
+ ca/ ga—1 |:AS + 2|S¢j|2 - %S + 2OZ(A¢)2:| f2 du
M

+2a /M<A¢>¢ifif . (3.7)

Using integration by parts, we get

/ 5 AS dp = —(a 1) / 25V S P dy — / "IV, V(e 7)) dv.
M M M

Note that

_ a—1 2 —¢ V:—l a 2 _—¢ 1/21 a 2 —¢ v
/Ms VS, V(f2e?))d a/MVS,V(fe ) d a/MSA(fe ) dv.

Thus, we have

ca/ 28 tASdy = —ca(a — 1)/ S 2|VSP2f2 du + c/ SCA(f2e?) dv.
M M M

(3.8)
Hence, inserting (3.8)) into (3.7)) we obtain (3.4)). O
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Proposition 3.3. Let (M™, g(t),¢(t),dp = e~ @) dv), t € [0,T) be a solution of
the rescaled List’s extended Ricci flow on a closed Riemannian manifold M.
Suppose that X is an eigenvalue of the geometric operator —Agy + cS* and f is
the corresponding eigenfunction of \(t) at time to. Then along the rescaled List’s
extended Ricci flow, we have

d 2r(t 1 _
— A )=t = — (O)A(to)Jr*/ |Sij + ij + ¢ijlPe ™ du
dt 2
de—1 1 2 de A
L g ¥4
L /M<S” o170 (40—1)2|¢”)6 g

+a [ (V08 V006 + guoe du
M

- a/ (A@)pirpie™ du + 2aozc/ S (Ap) e du
M M

+ / (2acS*! — 2¢)[8;i;2e ™V dp — ca(a — 1)/ Se2|\VS|2e Y dp
M M

QT(to)

+

c(l—a) /M S du (3.9)

for c #£ %, where 1 satisfies e ¥ = f2.

Proof. Let ¢ be a smooth function satisfying e=% = f2; replacing it into (3.4)), we
obtain

d 2r(t
I it = =2 N1 +20c [ 5y d
n M

+ 2aac/ S (Ap) e du — ca(a — 1)/ SV S e du
M M

1
- a/ (Ad))(biwieiw dp+ / Sijwije_w dp — 5/ S¢j¢i¢j€7w du
M M M

1
- [ SusieVau— g [ w@oneVdure [ stacvtan
M 2 M M

27“(t0)

+ ce(l—a) /M S du. (3.10)

By the definition of S;; and the contracted second Bianchi identity, we arrive at
1
Sijj = 55 — a(Ag)di. (3.11)
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Then, integration by parts yields
/ Sitie" dp :/ Sijivie™? dﬂ+/ Sijtibie”" dp
M M M

- / <1S,i - Q(A@@) i du
M\ 2
:/ Sijwiwjeiw dﬂ+/ Siji/}i¢j67w du
M M

1

— o~ Y—=9). e~V
+ 2/M S (e )1dz/+a/M(A¢)¢zwle dp. (3.12)

Since
(ie™¥7 %) = —Ae™V 70 p eV AT 4 eV, (3.13)
we can rewrite (3.12)) as follows:
/ Sijtize” " dp Z/ Sijtihje? dﬂ+/ Sijthidje? du
M M M
1 1
— f/ SAe V=% dv + f/ Se YAe~?dv
2 /M 2/ m

1 g "
+ 2/M Sipidie du—i—a/M(A(b)(blwle du. (3.14)

On a closed Riemannian manifold M™, for any smooth function 1, we have the
Bochner—Weizenbock formula as follows:

1
VYV = SAIVY® — V9.V (M) — Ric(Ve), V). (3.15)
Multiplying both sides of (3.15) with e~ and integrating on M, we conclude that
1
/ [ij|*e™ dp = f/ AlV|2e™=? dv —/ VY.V (Ap)e ¥ dy
M 2 Ju o
- / Rijwi¢j€7w7¢ dv
M
= 7/ Sﬁd)ﬂﬁj@id}*d’ dv — O[/ (quﬁ ® vjd))d}id}jeiwi(ﬁ dv
M M

+1/ A|Vq/)\26*w*¢duf/ V. V(A)e V= ?d v.
2 M M
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Using integration by parts we get
/ |’(/Jij|2€_w d/L = —/ Sij,jl/)ie_w_¢du —/ Sij’(/)ije_w_qb dv
M M M
+ /M Sijigje "0 dv — a /M(via; ® V) bipe V¢ dv

1
+7/ Vo [2AcY=% dy
2 u

- /M(AT/))(ATﬁ —ipi — |VY*)e V% dv. (3.16)
Substituting (3.11)) and (3.13]) into (3.16]), we infer
/ [ij2e™ dp = f%/ S ihie V¢ dv + a/ (Ap)ipie V= dv
M M M

*/ Sijwijeiw7¢ dl/+/ Sijwi(ﬁjeiwiqs dl/
M M
1
— a/M(Vm ® Vjaﬁ)zﬁﬂ/zje*w*‘z’ dv + 5 /M |V1/)\2Ae*¢*¢ dv
- [ (@08 = o = [ToR)
_ g -, 1o Lig,e
_ /M&ﬂ/&ae dy /MAe <A¢+25 5179l ) dv
+ [ oot as [ oo dn
M M
R 1 A"
+/MS”1/J1¢J6 du+2/MS(Ae Je ¥ dv
1 e g
s /M Sthidie™ du + o /M<A¢)¢z¢ze dy

—a /M(w) ® Vo) itbe du. (3.17)
Since 2A = Agtp — 3|VY|? + 257, we can write (3.17) as follows:
1
/ [ Pe™" dp = —/ Siize™? du +/ (2¢S* — =S)Ae V¢ dv
M M M 2
— / Vi Ae V"% dv + / (A)(Ae=®)e ¥ dv
M M
+/ (A)pigie" dp +/ Sijtipie” " du
M M
1

1
Jr*/ S(Ae ?)e™¥ d1/+f/ Sipipie™" dp (3.18)
2 Jm 2 Jm

Ta /M(A(b)wi‘f’ieiw dp —« /M(Vz'¢ ® V;o)iabje ¥ dp.
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Inserting (3.14) into (3.18), we get

/|1/)ij|2e_¢d,u:—/ Sijwiwje_wdp—i—%/ SeAe™ Y% du
M M M
—/ wi¢iAe_¢_¢dz/+/ (AY)(Ae™?)e Y dv
M M

+ / (AY)pigie™" dp — a/ (Vip @ Vio)pipje du,
M M
and

20/ SaAe_‘/’_“ﬁdV:/ |wij|2e_wd,u+/ Sijhipje™" du
M M M
—I—/ wid)iAe_“/’_¢dV—/ (AY)(Ae™ e ™V dr  (3.19)
M M

- / (AY)ipie dp+ a/ (Vi ® V)bpje” ¥ du.
M M

Applying (3.19) into (3.10), we conclude that

%)\(f, t)|i=t, = —MA(to) + 2ac/ S48 Pe ™V dp
n M
+ 2aac/ S Ag)2e ™ dy — ca(a — 1) / S 2|V S|2e Y dp
M M

1 1
— 5/ Vi (Ag)ie”? du+ 5/ |vhij|Pe™ " dp
M M

+1/ Vi Ae V"% dy — 1/ (AY)(Ae=?)e Y dv

1 1
~3 /M(A¢)wi¢ie_w dp + 5 /M(Wb ® Vip)ihje ¥ du

2
+ @e(l —a) /M S%~Y du. (3.20)
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Notice that, integrating by parts again, we have the following formulas:

[ 804 190P + 00V du= [ vy dn
M M
== /M wijﬁbije_w dp — /M Rij(biwje_w du
+ /M ¢i7/)ij¢je_¢ dp + /M Qbiwijﬁbje_w du,
/ (A¢ — |Vo|> — dihi)pipie™ dp = —/ bijdivje”? du — / Vijbidie”V dp,
M M M

/ (A¢ - |V¢|2 - 7/’“/’1’)1/)1'(151‘671/) dp = _/ (Zsijwﬂ/fjeiw dp — / 1/}7;]‘(,257;1/}3‘671# du,
M M M

and

/ bi(Ad)ie™" dp = */ Yijpige” ¥ dp — / Rijpipje™ " dp
M M M

+ / Vigiibie” Y du+ / Vidije Y du.
M M
Combining the last four formulas, we obtain

= /M Vigdige” " dpu =2 /M Rijbigie" dp
- / A (Ae™ + gitpie™") ™V dpu — / b Ae™ % dy
M M
+ /M M(Aqﬁ)ie‘w du.

Therefore, we get

/ Vijpize” Y du+ Ol/ (Vio @ V@) pibje™ ¥ du
M M
= 7/ Sijthipie™ du — %/ AY (Ae™? + pppie=?) eV dp
M M

1 1
3 /M pithiNe™ V"¢ dy — 3 /M Vi(Ag)ie™¥ dp. (3.21)
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Inserting (3.21)) into (3.20)), we have
d 2r(t
d—A(f, )=ty = —ﬁA(tO) + Qac/ S S Pe ™ du
t n M
+ 2aac/ S (Ap) e du — ca(a — 1)/ S 2|V S|2e Y dp
M M
—a/ (Ag)gitpie™” du+/ Sitpie" d/i+/ vijpize” " du
M M M
_ 1 _
o [ (Voo Viesme Vdut s [ ugPe
M 2 M

1 2r(t
+ fa/ (Vi @ Vd)hipje " du + rl O)c(l —a)/ S du.
2 Ju n M
(3.22)
We can write (3.22)) as follows:
d 2r(t 1 _
G Dlimss = =000 5 [ 1845405+ e
n 2 Jur

4c—1 _ _
+ 5 / |Ss; +¢1‘j|2€ wd,u—2c/ |<;5Z-j|2e Y du
M M

- 4c/ Siibize”? du + a/ (Vip @ V;0)pitbje™" du
M M
+5 [ (Voo Ve di—a [ (o) du
+ 2aac/ S (AG) e du + / (2acS*™t —2¢)[S;*e ™Y du
M M

—ca(a — 1)/ Se2|\VS|2e Y du
M

2r(t,
+ r( 0)0(1 - a)/ S dy. (3.23)
n M
Finally, it is easy to see that (3.9)) follows from the formula ([3.23). O

Now, using Propositions and we prove our main results.

Proof of Theorem [I1] Since a [,,(Vi¢®@V;¢)tithje™¥ dp > 0, replacing (1.3) into
(13.9) we conclude that

N Dl > —

2r(to)
dt n

Ato) + Qaac/ S Ap) e du
M

+ / (2acS*t —2¢)[8i;2e ™V dp — ca(a — 1)/ S 2|V S|2e Y dp
M M

2 (t
T(O)c
n

+ (1- a)/ S du.
M
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Using the conditions ¢ > %, 0<a<l,and0< S < aﬁ7 we obtain

d QT(to)
el o> VY
dt/\(f7t)‘t—t0 = n

Since A(f, t) is smooth with respect to time ¢, in any sufficiently small neighborhood
of ty we get

Alto).

A1) > A(f(#),1). (3.24)

Since tg is arbitrary, for any ¢ € [0,7T) the inequality (3.24) holds and it implies

d - t"’T T
- (A(t)eifo (m)d ) > 0.

d 0

. 2 ft r(r)dr . .
Therefore the quantity A(t)e™ Jo is nondecreasing along the flow (|1.2)). More-

t
over, if r(t) <0 for all ¢ € [0,T), then the function en Jormar is decreasing along
the flow (1.2). Therefore A\(t) is increasing under the flow. O

Remark 3.4. In Theorem if we consider ¢ = 0 then our theorem reduces to
[14, Theorems 1.1 and 1.2]. Also, in Theorem if we assume that a = 1 then
our theorem reduces to [4, Theorem 1.1].

Proof of Corollary [I.2] Similarly to the proof of Theorem if in (3.9)), we set
a =0, then for any ¢ € [0,T) we get

d 2r(t)
SN0 2

A(f (), 1)

n

r(r)dr

2 [t
This implies that the quantity A(t)e™ Ja is nondecreasing along the flow (1.4)).

O

Remark 3.5. In Corollary [[.2] if we let 7 = 0 and a = 1, our corollary reduces to
[8, Theorem 1.1]. So our result is an extension version of [§].

Proof of Corollary [I.3] In a two-dimensional Riemannian manifold we have R;;
3Rgij. Since V2|VV¢| > |A¢|, the condition (1.6) implies that |R;; — 5 ¢i;]
42 ‘151 |¢i;]. Therefore the result of Corollary follows from Corollary

O v

C
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