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DECIDABLE OBJECTS AND MOLECULAR TOPOSES

MATIAS MENNI

ABSTRACT. We study several sufficient conditions for the molecularity/local-
connectedness of geometric morphisms. In particular, we show that if S is a
Boolean topos, then, for every hyperconnected essential geometric morphism
p : &€ — S such that the leftmost adjoint p, preserves finite products, p is
molecular and p* : § — £ coincides with the full subcategory of decidable
objects in £. We also characterize the reflections between categories with finite
limits that induce molecular maps between the respective presheaf toposes.
As a corollary we establish the molecularity of certain geometric morphisms
between Gaeta toposes.

1. INTRODUCTION

Molecular geometric morphisms were introduced in [2] as a way to define what
it means for an elementary topos to be ‘locally connected’ over another topos. For
instance, for a topological space X, the topos of sheaves on X is molecular if and
only if X is locally connected. On the other hand, non-local examples of molecular
toposes are the typical Grothendieck toposes ‘of spaces’ that arise in algebraic
geometry [I], combinatorial topology [8], synthetic differential geometry [I6], and
other areas including the more recent rig geometry sketched in [19].

It is well known that every essential geometric morphism over Set is molecu-
lar but, apart from the different characterizations of molecular maps [I4, C3.3.1,
C3.3.5], there seem to be no practical elementary sufficient conditions, even over
restricted bases. For example, the classical ‘gros’ Zariski topos for an algebraically
closed field is well known to be molecular (over Set) because every essential geo-
metric morphism over Set is molecular. On the other hand, for a non-algebraically
closed field, the natural base of the corresponding Zariski topos is not Set but a
(Boolean) Galois topos, and so the argument for molecularity must change. Be-
tween presheaf toposes, [I4, C3.3.8] seems to be the main tool to establish molecu-
larity (and it may be combined with pullback stability to derive molecularity over
Grothendieck toposes) but the required hypotheses are far from elementary.
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One of the main purposes of this paper is to prove a sufficient condition for
molecularity (Theorem and discuss some of its implications. The sufficient
condition states that if S is a Boolean topos, then, for every connected essential
geometric morphism p : £ — S such that the leftmost adjoint p; preserves finite
products, p is molecular. To sketch the implications it is convenient to briefly
discuss the motivation.

An axiomatic account of toposes ‘of spaces’ is proposed in [I8] via the notion
of cohesive geometric morphism. It is relevant to stress that molecularity is not
among the axioms. The question of whether every pre-cohesive geometric mor-
phism is molecular was left open in [20]. This question stimulated recent work
([13,@]) devoted to the construction of geometric morphisms that have some of the
properties of pre-cohesive maps but are not molecular. (See also [27, Remark 3.8].)
These constructions might suggest that the question has a negative answer. On
the other hand, our sufficient condition implies that every pre-cohesive map with
Boolean codomain is molecular (Corollary , which gives a partial positive an-
swer to the question in [20]. Moreover, it follows that if S is Boolean and p: £ — S
is pre-cohesive, then the full inclusion p* : § — £ coincides with the subcategory
Dec& — £ of decidable objects in €. This improves one of the main results in [24]
and allows us to characterize the quality types [I8] 22] over Boolean bases as those
pre-cohesive maps whose domain topos is De Morgan (Proposition . It also
allows us to strengthen one of the main results in [20].

The question of what functors between small categories induce molecular maps
between the respective toposes does not have a definitive answer but a second pur-
pose of the paper is to characterize, in Section |5} the reflections (between categories
with finite limits) that do. This result is of independent interest and it is applied
in Section [6] to produce molecular maps between Gaeta toposes. Indeed, decidable
objects also play a role at the level of sites and, in Section [f] we show that, for
certain small extensive categories &, the inclusion Dec & — £ induces a molecular
geometric morphism between the associated Gaeta toposes. As a byproduct we
give a more conceptual account of some constructions in [23].

Remark 1.1. The first results in the present paper were obtained in late 2020
and the first drafts were distributed in 2021. One such draft partially motivated
J. Hemelaer who among other results in [I2] proves (with very different techniques)
an improvement of Theorem [3.3] here. Some of the ideas there are discussed in
Section [1

A pleasing aspect of the proofs of some of the main results here is that they rest
on very basic facts about decidable objects in extensive categories which seem to
have been overlooked until now and that we present in Section [2]

We assume that the reader is familiar with the basic theory of toposes and
geometric morphisms between them (as presented in [I4, Sections A2, A4 and
C3], for example) but we recall a fundamental result about extensive categories.
A category £ with finite coproducts is extensive if the canonical £/X x £/Y —
E(X +Y) is an equivalence for every pair of objects X, Y’; see [10, 4] and references
therein. A map X — Z in an extensive category is a summand if there is a map
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Y — Z such that the cospan X — Z < Y is a coproduct. It follows that summands
are regular monomorphisms. Although the definition of extensivity does not require
any limits, it follows that summands may be pulled back along any map and that
the resulting pulled-back monomorphism is a summand.

Lemma 1.2 ([I0, Lemma 3.7]). For extensive categories £ and S the following
hold:

(1) If @ : £ = S is a finite-coproduct preserving functor, then U preserves
pullbacks of summands.

(2) For finite-coproduct preserving functors V,2 : € — S, and any natural
transformation ¥ — =, the naturality squares at summands are pullbacks.

2. DECIDABLE OBJECTS AND STABLE UNITS

An object X in an extensive category with finite products is decidable if the
diagonal A : X — X x X is a summand [4} [I0]. Initial and terminal objects are
decidable. Despite its simplicity the following result seems to be new.

Proposition 2.1. Let £ and S be extensive categories with finite products, and
let ¥ : & — S be a finite-coproduct preserving functor. Then W preserves finite
products if and only if it preserves pullbacks over decidable objects.

Proof. One direction is trivial because the terminal object is decidable. For the
other assume that the square on the left below

P-"sv P— -8

N
X——SF8 XxY —S5xS8
g9 gxh

is a pullback in €& with decidable S. It follows that the square on the right above
is also a pullback. The diagonal of S is complemented, so as ¥ preserves finite
coproducts, it preserves the pullback on the right above by Lemma Hence, if
¥ also preserves finite products, then the square on the left below

wp vs up 2T gy
(‘Ilrro,\llrrl)l iA \Pwol i‘llh
UvX xvY UsS x Us VY ——=Us
WgxWVh Ug

is a pullback in §. In other words, the square on the right above is a pullback. O

If € is an extensive category with finite products, then we let Dec £ — & be the
full subcategory determined by the decidable objects. This subcategory contains 0,
1 and is closed under finite products, finite coproducts and subobjects. It follows
that Dec& is extensive (and has finite products) [4]. The reader is invited to
picture the objects of £ as ‘spaces’ and those in Dec & — £ as ‘discrete spaces’. If
Dec& — £ has a left adjoint L : £ — Dec& (and especially if L preserves finite
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products), then we picture L as sending a space X to the discrete space LX of
‘connected components’ of X.

Corollary 2.2. Let £ be an extensive category with finite limits and assume that
the full subcategory DecE — £ has a left adjoint L : £ — Dec&. Then L preserves
finite products if and only if L preserves pullbacks over decidable objects.

Proof. Immediate from Proposition applied to L : £ — Decé. O

The condition that appears in Corollary has a wider significance, which we
briefly outline below in terms of a suggestive reformulation of that result. First,
we recall the following concept [0 3.7].

Definition 2.3. The adjunction L 4 R with fully faithful R is said to have stable
units if L preserves pullbacks over objects of the form RB with B in B.

Corollary 2:2] may then be reformulated as follows: assuming that Dec & — & is
reflective, the left adjoint preserves finite products if and only if the adjunction has
stable units.

Example 2.4 (Finite posets). Let fPos be the category of finite posets. It is not
difficult to show that Dec(fPos) — fPos coincides with the inclusion fSet — fPos
of finite discrete posets, and that this inclusion has a left adjoint (sending a poset
to its associated set of ‘connected components’) that preserves finite products.

Example 2.5 (Affine schemes). Let £ be the opposite of the category of finitely
presentable k-algebras for a field k. In this case, Dec& is the opposite of the
category of separable k-algebras. It follows from the results in [7] I, §4, n.6] that
the inclusion Dec & — £ has a left adjoint that preserves finite products.

In an extensive category an object is called connected if it has exactly two
complemented subobjects. In the two examples above, the categories involved are
essentially small and satisfy that every object is a finite coproduct of connected
objects. The following two examples are different.

Example 2.6 (De Morgan toposes). If £ is a De Morgan topos then the subcat-
egory Dec& — & coincides with the subcategory of ——-separated objects by [14,
Proposition D4.6.2 (iv)]. Subcategories of separated objects for a Lawvere-Tierney
topology are well known to be reflective and such that the left adjoint preserves
monomorphisms and finite products [6, Theorem 1.5.1].

Example 2.7 (Non-example: topological spaces). In the extensive category of
topological spaces and continuous functions between them, an object is decidable if
and only if it is discrete. In contrast with the previous examples, the subcategory of
decidable objects is not reflective. Indeed, the inclusion does not preserve (infinite)
products.

The next result seems to be new also. In order to state it we introduce an ad
hoc piece of terminology. If L 41 R: S — £ is an adjunction then we say that the
right adjoint R is closed under subobjects if, for every A in S and monic X — RA,
the unit X — R(LX) is an isomorphism.
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Proposition 2.8. Let £, S be extensive categories with finite products, and let
R: S — & preserve finite coproducts. If R has a finite-product preserving left ad-
joint and is closed under subobjects, then, for every decidable object X in &, the
unit X — R(LX) is an isomorphism.

Proof. Let L :E — S be the finite-product preserving left adjoint of R, and let
o be the unit of L 4 R. Notice that both L and R preserve finite coproducts.
By Lemma [T.2] the unit o is such that the naturality squares at summands are
pullbacks. Let X be a decidable object in £. Then the left inner square below is a
pullback

id

X i R(LX) R(LX)

Al |z |2

X x X —— R(L(X x X)) — R(LX) x R(LX)

w

ogXo

because the diagonal of X is a summand. As L and R also preserve finite prod-
ucts the right inner square above is a pullback. Then the rectangle is a pullback,
which means that the unit o : X — R(LX) is monic. As R: S — £ is closed under
subobjects, ox : X — R(LX) is an isomorphism. O

We are mainly interested in cases where R is fully faithful and, for the sake of
brevity, we introduce another piece of ad hoc terminology.

Definition 2.9. For an extensive category £ with finite products, a full reflective
subcategory S — £ is detached if it is closed under finite coproducts, closed under
subobjects, and the left adjoint preserves finite products.

For a De Morgan topos € as in Example[2.6] Dec & — £ is detached. On the other
hand, for an arbitrary extensive £ with finite products, Dec & — £ is closed under
finite coproducts, subobjects and finite products, but it may fail to be reflective, as
in Example Anyway, the ad hoc terminology allows us to state the following
corollary of Proposition [2.8| succinctly.

Corollary 2.10. Let £ be an extensive category with finite limits. If the full
subcategory Dec £ — £ is detached, then it is the least detached subcategory of £.

3. A SUFFICIENT CONDITION FOR MOLECULARITY

Let p: £ — S be a geometric morphism. Recall that p is connected if the inverse
image p*: S — &£ of p is fully faithful. Also, p is essential if the inverse image
p* : 8 — & of p has left adjoint (usually denoted by py: € — S).

Any functor L : A — B determines, for each object A in A, the obvious functor
L/A: AJA — B/LA that sends f: X — Ato Lf:LX — LA. If A and B have
finite limits and L has a right adjoint, then L/A also has a right adjoint. In particu-
lar, for every geometric morphism p : £ — S and A in S, we have a ‘sliced’ geometric
morphism p/A : £/p*A — S§/A whose inverse image (p/A)* : S/A — E/p* A is just
p*/A.
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Definition 3.1. A geometric morphism p: £ — S is molecular (or locally con-
nected) if, for each A in S, the inverse image of p/A: £/p*A — S/A is cartesian
closed.

Every molecular geometric morphism is essential but the converse does not hold.

Example 3.2. The essential geometric morphism Set x Set — Set™ whose in-
verse image sends A — B to (A, B) is not molecular [2].

Recall that, for any connected essential geometric morphism p : £ — S, the left-
most adjoint p; : £ — S preserves finite products if and only if the full subcategory
p* : S — £ is an exponential ideal [14, Proposition A4.3.1].

Theorem 3.3. If S is a Boolean topos, then every connected essential geometric
morphism p: € — S such that p) : £ — S preserves finite products is molecular.

Proof. Proposition 2.1] implies that pi : £ — S preserves pullbacks over decidable
objects. As S is Boolean, every object A in S is decidable, so p*A is decidable
too. Then p; : £ — S preserves pullbacks over objects of the form p*A. Hence, p
is molecular by [20, Proposition 10.3]. O

A geometric morphism p: £ — S is hyperconnected if it is connected and the
counit of p* - p, is monic. For such a geometric morphism, the fully faithful p*
is closed under coproducts, subobjects, and finite limits, but it may fail to be
detached (Definition because it need not have a left adjoint. In any case, with
some care, we may also use the intuition that £ is a category ‘of spaces’ and that
p* : S — £ is the full subcategory of ‘discrete spaces’ Notice that this is analogous
to the intuition that we described for Dec £ — €. The next result shows that the
two intuitions are compatible.

Corollary 3.4. Ifp: € — S is a hyperconnected and essential geometric morphism
such that p) : € — S preserves finite products, then the subcategory DecE — & fac-
tors through p* : & — &.

Proof. The hypotheses on p imply that p* : S — & is detached, so Proposition [2.§|
may be applied to the adjunction py H p*. O

Corollary is a strengthening of [24] Proposition 2.3] and naturally leads to
the following strengthening of [24, Corollary 2.4].

Proposition 3.5. If S is a Boolean topos then, for every hyperconnected essential
geometric morphism p: E — S such that py : £ — S preserves finite products, p is
molecular and p* : S — & coincides with Dec& — £.

Proof. Molecularity follows from Theorem [3.3] Also, Corollary [3.4] implies that
Dec& — £ factors through p* : & — £. Finally, since S is Boolean, p*: S — &£
factors through Dec& — £ (as in the proof of Theorem . (]
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4. PRE-COHESIVE TOPOSES OVER BOOLEAN BASES

A geometric morphism p: € — S is local if its direct image has a fully faithful
right adjoint (usually denoted by p' : S — £). Local, (hyper)connected and essen-
tial geometric morphisms are well known and their theory is developed exhaustively
in [I4, C3]. On the other hand, the following is more recent.

Definition 4.1. A geometric morphism p: & — S is pre-cohesive if it is local,
hyperconnected, essential and the leftmost adjoint py preserves finite products.

More explicitly, p : £ — S is pre-cohesive if and only if the adjunction p* - p.
extends to a string p; 4 p* 4 p, 4 p' such that p*,p' : S — £ are fully faithful, the
counit of p* - p, is monic and p, : £ — S preserves finite products. The intuition
suggested in [I8] and related references is that £ is a category ‘of spaces’, S is a
category ‘of sets’, and p* : § — £ is the full subcategory of ‘discrete’ spaces. So
the leftmost adjoint py is thought of as a ‘my’ functor assigning to each space the
associated set of connected components. On the other hand, the right adjoint p, to
p* sends a space to the associated set of points. Finally, the rightmost adjoint may
be pictured as the full subcategory of codiscrete spaces. See [I8] [20] and references
therein.

Pre-cohesive geometric morphisms were introduced in [23] as a weakening of
the notion of cohesive geometric morphism stemming from [I8]. We stress again,
a pre-cohesive geometric morphism is not required to be molecular by definition.
(It is relevant to mention that a hyperconnected p : £ — § is pre-cohesive if and
only if p*: & — £ is cartesian closed and p. : € — S preserves coequalizers [26],
Corollary 6.2].)

The following is, at the same time, a partial positive answer to the question about
molecularity of pre-cohesive maps, and a strengthening of [24, Corollary 2.6].

Corollary 4.2. If S is Boolean, then every pre-cohesive p:E — S is molecu-
lar. Moreover, p* : S — & coincides with DecE — € and p' : S — & coincides with
E—E.

Proof. Most of the statement follows from Proposition Also, by [20, Proposi-
tion 4.4], the subtopos p. 4 p' coincides with &-_ — &. O

In other words, relying on the terminology used in [24]: if S is Boolean and
p: € — § is pre-cohesive, then p is molecular and p, : £ — S is a unity and identity
for the subcategories Dec & — £ and €. — &, making them adjointly opposite.

The axioms for cohesion are positive and so it is not surprising that any equiv-
alence between toposes is a pre-cohesive geometric morphism. Still extreme, but
more interesting in general, are the pre-cohesive geometric morphisms p such that
1 = ps; equivalently, such that p. 4 p*. These are called quality types, see [18] and
also [22]. Over a Boolean base S, Corollary leads to the following characteri-
zation of quality types p: &€ — S in terms of the internal logic of &£.

Proposition 4.3. If S is a Boolean topos and p : £ — S is a pre-cohesive geometric
morphism, then p is a quality type if and only if € is De Morgan.
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Proof. If p is a quality type, then £ is De Morgan by [22] Lemma 5.3 (3)]. For
the converse, first recall that, as observed in [I8] (see also [I5]), there is, for any
pre-cohesive geometric morphism p, a canonical monic comparison ¢ : p* — p'
defined as follows:

R e B N
where € is the (necessarily iso) counit of p, - p' and 8 is the (monic) counit of
p* - p,. Notice that p is a quality type if and only if ¢ is an isomorphism.

To complete the proof assume that p : £ — S is pre-cohesive with £ De Morgan
and S Boolean. Corollary implies that p* : § — £ coincides with the inclusion
Dec& — € and p' : S — & coincides with the full subcategory of ~—-sheaves. Since
£ is De Morgan, Dec& — £ coincides with the full subcategory of ——-separated
objects (Example and, therefore, p' factors through p*. In other words,
By p*psp' — p' is an isomorphism and hence ¢ is an isomorphism. (]

Some of the main results in [20] may also be improved in several ways using the
sufficient condition for molecularity proved here. We do not discuss those in detail
but we just sketch one such result to illustrate the idea. We assume familiarity
with that paper but we recall some of the terminology and results there.

If p: &€ — S is pre-cohesive, then an object X in £ is connected if p X = 1.
Intuitively, X is connected if its discrete space of connected components is terminal.
For example, [I8, Proposition 4] implies that the subobject classifier Q of & is
connected if and only if all injective objects in £ are connected. If the base topos &
is De Morgan, then connectedness of 2 has an alternative formulation that we
discuss next.

In any topos we let 2 denote the coproduct 1 + 1 of the terminal object with
itself. If p : € — S is pre-cohesive, then intuition about p' suggests that we may
picture p'2 as the codiscrete interval determined by two points. We say that p has
the connected interval (CI) property if p'2 is connected. For instance, the corollary
in [I8] Section VI] implies that if S is De Morgan, then Q in £ is connected if and
only if p has CI. Hence, combining Proposition and [I8, Proposition 4] we may
conclude that if S is Boolean, £ is De Morgan and p has CI, then S is inconsistent.

Notice that the CI property makes sense for any local and essential geometric
morphism. For instance, we reiterate that, for pre-cohesive p: £ — S, we still don’t
know if the sliced p/B is pre-cohesive for each B in S, but we do know that p/B is
local, hyperconnected and essential (see the discussion before [20, Definition 5.7]).

Lemma 4.4. Ifp: & — S is pre-cohesive, then p has CI if and only if, for each B
inS, p/B has CL

Proof. This is analogous to [I8, Lemma 5.8] but apparently stronger in view of [I8]
Corollary 6.5]. Anyway, one direction is immediate. For the other, assume that p
has CI.

As we have already recalled, p/B is essential and local. Indeed, for each B
in S, the rightmost adjoint (p/B)':S/B — £/p*B may be described as follows
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[20, Lemma 5.4]. For every f: A — B in S, if we let the square on the left below

df —>f1 p*B p!A X p*B LG p*B

J e e S

p'A *>'f p'B p'Axp'B — p'B
2

be a pullback, then (p/B)'f = f1. In particular, for f = 7, : A x B — B, we obtain
the pullback on the right above. Hence,

(p/B)!(ﬂ'l :AXxB— B)=(m :p'Ax p*B — p*B)

in £/p*B for any A, B in S.

For B in S, the object 2 in §/B is, as a map in S, the projection 71 : 2 x B — B,
so the previous paragraph implies that (p/B)'2 = (m : p'2 x p*B — B). By [20,
Lemma 5.2], the leftmost adjoint (p/B); : £/p*B — S/B sends (p/B)'2 to the
composite on the left below

» (p!2 > p*B) P pg(p*B) counit B p!(p!2) « B T B 7

but as py preserves finite products, this is isomorphic to the composite on the right
above, as objects in §/B. In turn, as p has CI, the right map above is isomorphic
(over B) to the identity on B. Altogether, (p/B)i((p/B)'2) =1 in S/B. O

If p: £ - S is an essential geometric morphism such that p, preserves finite
products, then, for each X in £ and S in S, the composite

idxr ! prev

p(XP %) x S p(XP%) x pi(p*S) i>p!(Xp*S x p*S) ——=p X
(where 7 is the counit of py 4 p*) transposes to a map pi(X? %) = (pX)°. The
map p: £ — S is said to satisfy continuity if the canonical p;(X? %) — (pX)% is
an isomorphism for every X in £ and S in §. A geometric morphism is cohesive if
it is pre-cohesive and satisfies continuity.

Proposition 4.5. For any cohesive p : € — S satisfying CI, p is molecular if and
only if S is Boolean.

Proof. If S is Boolean, then p is molecular by Corollary [£.2} Conversely, if p is
molecular, then it is stably pre-cohesive by [20, Corollary 10.4] in the sense that
p/B: E/p*B — S/B is pre-cohesive for every B in S. For each such B, £/p*B
satisfies CI by Lemmaand, since (p/B) preserves finite products, p/B satisfies
connected codiscreteness (CC) by [20, Lemma 6.2]. In other words, p satisfies
stable connected codiscreteness (SCC); so S satisfies the internal axiom of choice
by [20, Corollary 9.4], and hence § is Boolean [14, Remark D4.5.8]. O

Notice that the proof also shows that if the equivalent conditions of Proposi-
tion hold then the internal axiom of choice holds in S.
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5. MOLECULARITY AND SEMI-LEFT-EXACTNESS

In this section we prove a characterization of reflections (between small cate-
gories with finite limits) that induce molecular maps between the respective presheaf
toposes. This result will be applied later to prove molecularity of morphisms be-
tween Gaeta toposes. We assume that the reader is familiar with ‘Street fibrations’;
in particular, with the fact that any such fibration is isomorphic to a composite of
an equivalence and a ‘Grothendieck’ fibration |28, (5.1)].

Let X and B be categories with finite limits. Let L : X — B be a functor with
fully faithful right adjoint R, and let o be the unit of the adjunction.

Definition 5.1. The adjunction L 4 R is said to be semi-left-exact if, for every
pullback

T
X —— R(LX)

with X in X and B in B, Lu is an isomorphism.

It is well known that stability of units implies semi-left-exactness [5l (3.7)].
The following result is folklore and I learned the proof below from G. Janelidze.

Lemma 5.2. With L 4 R as above, L is a Street fibration if and only if the ad-
junction L 4 R is semi-left-ezact.

Proof. For each A in A, the functor L/A : A/A — B/LA that sends f : X — A to
Lf : LX — LA has a right adjoint that we denote by R4. The straightforward
(folk?) variant of the equivalence between the first two items of [11, Theorem 2.10]
says that L is a Street fibration if and only if R4 : B/LA — A/A is fully faithful
for every A in A. The second paragraph of [5], 3.6] shows that fully faithfulness of
the R 4’s is equivalent to semi-left-exactness. O

The adjunction L 4 R : B — X determines an essential and local geometric mor-
phism L : X — B with L, : X — B the left Kan extension of L.

Theorem 5.3. With L A R: B — X as above, the following are equivalent:

(1) The geometric morphism L : X — B is molecular.
(2) The adjunction LA R: B — X is semi-left-exact.

Proof. The first item implies the second by [9, Lemma 3.1 (iii)]. The converse
follows from [I4] Proposition C3.3.12]. We give some of the details, trying to be
consistent with the notation in that result. By Lemma we may assume that L
is a fibration and so (L, R) : (X, Mx) — (B, Mp) is a fibration of sites [14, Defini-
tion C2.5.6], where My and Mp are the respective minimal Grothendieck coverages
(i-e., only maximal sieves cover). So, in order to apply [I4, Proposition C3.3.12],
we need only check that maximal sieves in X are Mp-locally connected in the sense
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of that result. To do this let V' be an object of X', let by : V1 = V and by : Vo — V
be two maps (i.e., two maps in the maximal sieve on V'), and let the square

U—251V,

l lm

LVl — LV
Lbl

commute in B. Trivially, we can connect b; and bs by a zigzag of morphisms in the
maximal sieve on V' as on the left below

v, ey <y, U
N VRN
by ba

\% LV, ——= LV =<—— LV,
Lbq Lbs

and we can find a cone over the image of this zigzag under L with vertex U, as
on the right above, connecting a; and as. So it easily follows that if we take the
maximal sieve on U, then, for every map in it, that is, for every U’ — U in B, we
can find a cone over the image of the zigzag connecting b; and by, connecting the
morphisms U’ — U — LV; and U’ — U — LV5. O

Theorem deserves a direct proof not involving Grothendieck topologies.
Corollary 5.4. With L4 R: B — X as above, the following are equivalent:

(1) The geometric morphism L : X — B is molecular and L, preserves finite
products.

(2) The adjunction Ly 4 L* has stable units.

(3) The adjunction L 4 R is semi-left-exact and L preserves finite products.

Proof. The first and second items are equivalent by [20, Proposition 10.3]. The
first and third items are equivalent by Theorem together with the well-known
fact that a functor preserves finite products if and only if its left Kan extension
does [3]. O

6. MOLECULAR MAPS BETWEEN GAETA TOPOSES

The role of Gaeta toposes as paradigmatic examples of toposes ‘of spaces’ is
discussed in [I7]; see also [19, Section 5]. In this section we combine the results
in previous sections to give a sufficient condition for an inclusion Dec& — &, for
small extensive £ with finite limits, to induce a molecular (essential and local) map
between the associated Gaeta toposes. We also explain how to restrict these to
(molecular and) pre-cohesive geometric morphisms. As usual, we denote the topos
of presheaves on C by C.

Corollary 6.1. If € is a small extensive category with finite limits, then restriction

along Dec& — & is the direct image of a local geometric morphism £ - Decé.
If, moreover, the inclusion DecE — £ has a finite-product preserving left adjoint,
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then the local € — Dec& is also molecular and the leftmost adjoint preserves finite
products.

Proof. The first part follows as in the comment before Proposition [2.I] In more
detail, as Dec & — & preserves finite limits, restriction along it determines the di-
rect image of a geometric morphism £ = Decé by [14, A4.1.10]. The direct image
has a right adjoint (by the existence of right Kan extensions) which is fully faith-
ful because Dec& — & is (see, e.g., 21, VIL.4]). In other words, the geometric
f: £ = Dec € is local.

Let L : £ — Dec& be the left adjoint to the inclusion in the opposite direction.
The functor L preserves pullbacks over decidable objects by Corollary [2.2] so L and
its right adjoint form an adjunction with stable units (and hence, semi-left-exact).
Corollary completes the proof. O

Let C be an extensive category. For each object C' in C, we let KoC = KC
be the collection of finite families (C; — C | ¢ € I) such that the induced map
> ic1 Ci = C is an isomorphism. It is easy to check that K satisfies axioms for
bases of Grothendieck topologies, so, if C is small, we obtain a Grothendieck topos
&C = Sh(C, K), sometimes called the Gaeta topos (of C). See, for example, [I7] or
[19, Section 2].

Let D be another extensive category, and let F :C — D be a functor. If F
preserves finite coproducts, then it is clear that, for any (C; — C' | i € I) in KcC,
the induced family (FC; — FC |i € I) is in Kp(F D).

So, if C and D are also small and have finite limits and moreover F preserves
finite limits, then F' is a morphism of sites (C,K¢) — (D, Kp) in the sense of
[14, Definition C2.3.1], and so, by [I4], Corollary C2.3.4], the functor F* : D—C
restricts to a functor 8D — &C which is the direct image of a geometric morphism.

Lemma 6.2. Let C and D be small extensive categories with finite limits. For
any functor F : C — D preserving finite limits and finite coproducts, the following
diagram is a pullback in the category of toposes

&D ——=1D

|

€ —>C

where the horizontal maps are the obvious subtoposes and the vertical maps are the
geometric morphisms whose direct image is F'*.

Proof. Any finite family (D; — D | i € I) in KpD is the obvious pullback of the
family (in; : 1 —=T-1|i € I)in Kp(I-1) which is, in turn, the image under F of
the family (in; : 1 - I-1|i€I)in Kc(I-1). Tt follows that Kp is the smallest
basis for a Grothendieck topology containing the families (FC; — FC | i € I)
induced by the families (C; — C | i € I) in K¢C. The result then follows from [14],
Lemma C2.3.12]. O
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In particular, for a small extensive category with finite limits, Lemma [6.2applies
to the full subcategory of decidable objects.

Lemma 6.3. If £ is a small extensive category with finite products, then pre-
composition with Dec & — & restricts to the direct image of a local geometric mor-
phism BE — &(Dec&).

Proof. Combine Lemma[6.2] with the fact that local maps are stable under pullback
[14, C3.6.7 (iv)], so k is local. O

Example 6.4. If we let £ be the category of finite posets as in Example then
the resulting geometric morphism && — &(Dec &) = Set is not only local but it is
well known to be molecular and pre-cohesive (and it classifies distributive lattices
with exactly two complemented elements).

Example 6.5. If we let £ be the opposite of the category of finitely presentable
k-algebras as in Example then & — &(Dec &) = S is local, molecular, and the
leftmost adjoint preserves finite products by Theorem but it is not pre-cohesive
if k is not algebraically closed.

Remark 6.6. To understand what fails for non-algebraically-closed fields it is
convenient to argue in more generality. Let A be an essentially small category,
and let L 4 R: B — A be a reflective subcategory with unit denoted by v. Let
f A — B be the induced essential and local geometric morphism, and let o be the
unit of fi 4 f*. For representable X = A(—, A) in .,17 we have

ox=A(—,va)

X = A(—, A)

fr(1iX) =B(L—,LA) = A(—, R(LA))

because the left Kan extension f; of L preserves representables. So, if v4 does
not have a section, then ox is not epic and, hence, o is not epic. In other words,
the Nullstellensatz condition in the definition of pre-cohesive map does not hold;
equivalently, f is not hyperconnected. In the case of affine k-schemes, this is
about the existence of one such scheme A whose decidable reflection A — mg A does
not have a section; dually, a finitely generated k-algebra whose largest separable
k-subalgebra does not have a retraction.

Theorem 6.7. Let £ be a small extensive category with finite limits. If the in-
clusion DecE — &€ has a finite-product preserving left adjoint then the local map
&E — B(Decf) (Lemma is molecular and the leftmost adjoint preserves finite
products.

Proof. Lemma implies that the following diagram is a pullback:

6 —" ¢

i |

—

&(Dec&) —= Dec&
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where g and h are the evident subtoposes and f is the local geometric morphism
induced by Dec & — £. If the inclusion Dec & — £ has a finite-product preserving
left adjoint, then, by Corollary f is molecular and f; preserves finite products.
By [14, Theorem C3.3.15], k is molecular and also the Beck—Chevalley natural
transformation f*g, — h.k* is an isomorphism. It follows that £* has a left adjoint
of ki : & — &(Dec &) which may be identified with the composite

6 o8 T Dece L > &(Dec&)
and, since f preserves finite products, so does k. O

If k is a perfect field, not necessarily algebraically closed, [23] Proposition 4.3]
shows that, pulling the above geometric morphism &£ — &(Dec&) = S along the
subtopos S—-—, — S results in a pre-cohesive (and molecular) geometric morphism
F — S_—.. Part of the argument may be generalized as follows.

First recall that, for a small category B equipped with a Grothendieck topol-
ogy J,amap A: F — G in B is locally surjective (with respect to J) [21], Corol-
lary I11.7.5] if, for each object B of B and each element y € GB, there is a J-cover
S of B such that, for all f:C — B in S, the element y- f is in the image of
Ao FC = GC.

Let L4 R: B — A be an adjunction between small categories, and let v be its
unit. If B is equipped with a Grothendieck topology J then, for each C in A, we
may ask if the natural transformation A(R—,v¢) : A(R—,C) - A(R—, R(LC)) in
B is locally surjective; that is, if for every D in B and every d: RD — R(LC)
in A, there exists a covering sieve S € JD such that, for every e: E — D in 5,
d(Re) : RE — R(LC) factors through v : C' — R(LC).

Lemma 6.8. With L 4R, v and J as above, let R be fully faithful and f : A= B
be the local and essential geometric morphism induced by the adjunction L 4 R.
The canonical transformation fo X — fiX is locally surjective for every X in A if
and only if A(R—,v¢c) : A(R—,C) — A(R—, R(LC)) is locally surjective for every
C in A.

Proof. This is a variant of [23, Lemma 1.15] but we sketch some of the details. By
the results in [I5], the canonical fx : f, X — fiX is locally surjective if and only if
feox : fu X = fo(f*(fiX)) is locally surjective, where o is the unit of f; - f*.

If fiox is locally surjective for every X, then taking X = A(—,C), we may con-
clude that f.ox = A(R—,vc) : A(R—,C) - A(R—, R(LC)) is locally surjective.
(Bear in mind Remark [6.6| for the relation between o and v.)

For the converse, let X € A and B € B. Recall that there is a quotient

Yo XC x B(B,LC) — (i X)B

and that, for x € XC and b : B — LC in B, the image of (C, x,b) under the quotient
above is denoted by z ® b € (f;X)B. The quotient ensures that

(z-u)®@v=2 ((Lu)v)
for every map v : D — C' in A and every map v: B — LD in B.
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If we let & be the (iso) counit of the adjunction L - R, then the canonical
Oxp : (f«X)B — (fiX)B sends z € (f*X)B = X(RB) to z ® 5" € (iX)B;
notice that g : L(RB) — B.

We must show that 0x : f,.X — fiX is locally surjective. For z ® b € (/i.X)B,
consider Rb € A(RB, R(LC)) = (A(R—, R(LC)))B. By hypothesis, there exists
a J-cover S € JB such that, for every e: E — B in S, (Rb) - e = (Rb)(Re) is in
the image of f*o; in other words, there exists an €’ : RE — C in A such that
(fro)e' =vee' = (Rb)(Re) = R(be).

We prove that the same S witnesses that z ® b € (fiX)B is locally in the image
of Ox : fuX — fiX. Foreache: E — Bin S,

be€p = £ L((Rb)(Re)) = Epe(Lve)(Le') = Le',
so be = (Le')¢5", and then
o) = (o )0 =2 (L)) =2 (be) = (10 D) e,
showing that (z ® b) - e € (fiX)E is in the image of fx. O

The intuition is that local surjectivity of A(R—,v¢) for every C is a form of
‘Nullstellensatz’ for the adjunction L - R together with the topology J on B.

Example 6.9. Let A have a terminal object, and let R : B — A be the full (reflec-
tive) degenerate subcategory consisting only of the terminal object. If we endow
B with the extreme topology J such that only the maximal sieve covers, then, for
Cin A, A(R—,vc): A(R—,C) = A(R—, R(LC)) is locally surjective if and only
if the object C has a point. (The coincidence with the condition appearing in [15]
is, of course, no accident.)

Example 6.10. Let A be the category of finite partially ordered sets. Equip
B = Dec A = fSet with the Gaeta topology, and consider the reflective subcate-
gory fSet = Dec A — A. Then A(R—,v¢) : A(R—,C) — A(R—, R(LC)) is locally
surjective for every C in A because every non-initial poset has a point and the
initial set is covered by the empty family.

See also [25] for other examples, similar to Example and to complex affine
schemes, but arising from categories of rigs with idempotent addition.

If every object in A is a finite coproduct of connected objects, then it is natural to
concentrate on the latter. Notice that, in this case, the comparison lemma implies
that &4 is equivalent to the topos of presheaves on the category of connected
objects in A. This comment applies to the example above and also to the case
where A is the category of ‘affine schemes’ for a field &, as in the next example.

Example 6.11. Let k be a perfect field, and let 4 be the opposite of the category of
finitely presentable k-algebras without idempotents. Let R : B — A be the full (re-
flective) subcategory determined by the separable k-algebras without idempotents.
If we equip B with the atomic topology, then Hilbert’s Nullstellensatz implies that
the transformation A(R—,v¢) : A(R—,C) — A(R—, R(LC)) is locally surjective
for every C in A. This is just a reformulation of the main examples in [23].
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We next state an analogue of [23] Proposition 1.16], with essentially the same
proof.

Proposition 6.12. Let £ be a small extensive category with finite limits and
such that the inclusion R : Dec& — £ has a finite-product preserving left adjoint
L:& — Dec&. Letk:B(E) = &(Dec&) be the geometric morphism induced as in
Theorem [6.7] Let J be a topology on Dec& finer than the Gaeta topology, and let
the square

Fe 5

| ]
Sh(Decé&, J) — &(Dec &)

be a pullback. If A(R—,vc): A(R—,C) — A(R—, R(LC)) is J-locally surjective
for every C in € (where v is the unit of L 4 R), then p is pre-cohesive and molec-
ular.

Proof. The geometric morphism k : &(£) — &(Dec) is local, molecular and the
leftmost adjoint preserves finite products by Theorem Then p is molecular and
local because these properties are stable under (bounded) pullback [14], C3.3.15 and
C3.6.7], and the leftmost adjoint preserves finite products by the same argument in
Theorem Finally, as the canonical f, — fi is locally surjective by Lemma
the canonical p, — py is epic by [23] Lemma 1.10]. O

The consideration of topologies other than the atomic one on the category of
connected decidable objects is motivated by recent work with V. Marra to be
discussed elsewhere.

7. EILC TOPOSES

Why are the best known examples of pre-cohesive toposes molecular? There is
a deceptively simple answer: they are essential toposes over Set and, as already
observed in [2], every essential geometric morphism over Set is molecular. In more
detail, the authors of [2] say that their results become simpler over Set because:
first, all functors into Set are indexed, and second, Set is Boolean.

This cannot be the end of the story. One the one hand, it leads to the idea of
sufficient conditions for molecularity based on the nature of the codomain (such as
Theorem and, on the other, it points to the following class of toposes.

Definition 7.1. A topos S is called EILC (or basic) if every essential geometric
morphism with codomain S is molecular.

The term basic is not proposed as a serious alternative to FILC’; it will be used in
this section to emphasize the idea that an EILC topos S has some features of a topos
of ‘discrete sets’ that simplify the study of toposes over the base S, in comparison
to toposes over an arbitrary topos. Trivially, over a basic topos, you need not
worry about the distinction between essential and molecular, but there is further
evidence to support the intuition that the objects of a basic topos are ‘discrete’.
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For instance, consider the following result which assumes some basic knowledge of
Lawvere’s dimension theory [I7] in terms of levels (i.e., essential subtoposes) and
SDG, where an object T is called tiny if (—)7 has a right adjoint [29].

Proposition 7.2. If S is a basic topos then the following hold:

(1) (Poor dimension theory) Every level of S is an open subtopos.
(2) (Lack of infinitesimals) Fvery pointed tiny object in S is terminal.

Proof. The first item follows because every level of S must be open by [14], A4.5.1].
To prove the second item let z:1 — T be a tiny pointed object so that there
is an essential geometric morphism ¢ : S — S whose inverse image is (—)7. Let
i: 1 — TT be the transposition of the identity, and let the square on the left below
be a pullback.

p_" . T PxT 2 qm v g
Wol J(ZT woxTi \LZT lz
1— 77 IxT -2 T p

\_/

T

Then, the square on the right above is a pullback because t is molecular. As the
bottom map is an isomorphism, so is the top map. That is, P x T is terminal. So
T is terminal too. O

It is also possible to lift Example to the ‘elementary’ level by proving, for
any topos S, that if S is basic, then S is degenerate.

As far as T know, the first explicit mention of EILC/basic toposes is in a May
2017 public message to the categories mailing list which prompted no discussion
S0 it is not unfair to infer that little was known on the subject. I tried to prove
that basic toposes are Boolean, without success. It was only recently that the first
important step to understanding this class of toposes was taken in [12]. It turns out
that a presheaf topos is basic if and only if it is Boolean [12] Proposition 4.4]; but,
to my surprise, there are many non-Boolean toposes that are basic. For instance,
the topos of sheaves on a Hausdorff topological space is basic, but there are more.
See [12, Theorem 3.3].

Also, among the many possible variants in the definition of basic topos, Hemelaer
identifies one that is also relevant to recall here. A topos S is called CILC if, for
every geometric morphism f: £ — S such that f* is cartesian closed, f is locally
connected. Every Boolean topos is CILC [12, Theorem 5.10], and so, as explained
in [I2, Remark 5.11], Theorem follows.

Which are the toposes S such that every pre-cohesive £ — S is molecular?
Maybe every topos has this property.
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