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A REMARK ON UNIFORM EXPANSION

RAFAEL POTRIE

Abstract. For every U ⊂ Diff∞vol(T
2) there is a measure of finite support

contained in U which is uniformly expanding.

0. Introduction

Let µ be a probability measure in Diffr(M) where M is a closed manifold of
dimension d := dim(M). We denote µ(1) = µ and µ(n) = µ∗µ(n−1). Note that µ(n)

is the pushforward by the composition of the product measure µn in (Diffr(M))n.

Definition 0.1 ([8, 4]). A probability measure µ in Diffr(M) is uniformly expand-
ing if there exists N > 0 such that for every (x, v) ∈ T 1M one has that∫

log ‖Dxfv‖ dµ(N)(f) > 2.

This is a robust1 condition on µ. This notion as well as similar ones have
been studied extensively recently, as it allows one to describe quite precisely the
stationary measures for random walks with µ as law (see below for more discussion).

Here we will make a remark (which can be related to some results, e.g. in [3, 6,
14]) that points in the direction of the abundance of uniform expansion.

Theorem 0.2. For every open set U in Diffvol(T2) there is a finitely supported
probability measure µ whose support is contained in U and µ is uniformly expanding.

As a consequence of the results of [5, 13, 6] one deduces that:

Corollary 0.3. For every U ⊂ Diffvol(T2) there is a probability measure µ finitely
supported in U such that the orbit of every point under the random walk on T2

produced by µ equidistributes in T2. Moreover, for every µ′ close to µ in the weak-∗
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1To be precise, if µ has compact support, then there is a neighborhood U of its support such
that any measure µ′ which has support in U and is weak-∗-close to µ, is also uniformly expanding
(see (3.1) below).
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12 RAFAEL POTRIE

topology, every orbit of the random walk is either finite or dense (in particular, the
elements of the support of µ generate a stably ergodic semigroup2).

We discuss some other consequences as well as some possible extensions in Sec-
tion 4.

Before we jump into the mathematical content, let us expand a bit on the con-
text of our results. Given a probability measure in the space of transformations of
a compact space X, we can define a random walk on this space by picking a point
in X and applying transformations to the point with respect to the law given by
the probability measure. This induces a random dynamical system on X whose
understanding became a relevant problem in different areas of mathematics. On
the one hand, in homogeneous dynamics the results of Benoist–Quint [2] and more
recently Eskin–Lindenstrauss [8] have used the study of these random walks to ex-
tend orbit closure results to the setting where no unipotent elements are available.
The results in [8] were in turn motivated by similar questions that came out in Te-
ichmuller dynamics and studied by Eskin–Mirzakhani [9]. Similar problems have
been also considered by Dolgopyat–Krikorian [7] trying to understand the simulta-
neous linearization of diffeomorphisms of the sphere and stable ergodicty of random
walks, and have been extended in other settings [14, 10]. Finally, the notion also
appears when trying to understand the statistical properties of the standard map
or other systems after random noise has been added to them, like it is done for
instance in [3]. The systematic study of random dynamics on compact manifolds
was initiated in [5] for surfaces, and more recently it is being developed in [4] where
the notion of uniform expansion was proposed. We refer the reader to [6, 13] for
other related results.

In principle, it is unclear how abundant the notion of uniform expansion is. This
paper is a contribution in the direction of showing that it should be quite typical.

1. Criteria for uniform expansion

For a probability measure µ in Diffr(M) one can formally define a random walk
on Diffr(M) as follows: consider Ω = (Diffr(M))N with the measure µN which is
invariant under the shift map T : Ω→ Ω sending a sequence ω = (f0, . . . , fn, . . .) to
Tω = (f1, . . . , fn, . . .). We denote fnω = fn−1 ◦ . . . ◦ f0. Notice that fnω distributes
as µ(n) if one chooses ω ∈ Ω with law µN.

Recall that a probability measure ν in M is called µ-stationary if µ ∗ ν = ν;
equivalently, the measure µN × ν is invariant under the skew-product dynam-
ics (ω, x) 7→ (Tω, f0(x)). It is ergodic if every measurable set A ⊂ M which is
f -invariant for µ-a.e. f satisfies that ν(A) is either 0 or 1.

2A semigroup generated by diffeomorphisms f1, . . . , fk is stably ergodic if there are neighbor-
hoods Ui of fi such that for every family {gi}i with gi ∈ Ui we have that the semigroup generated
by {g1, . . . , gk} satisfies that every set which is invariant under all the gi has full or zero mea-
sure. The argument also gives robust transitivity, which also follows by a stronger result [12];
however, our argument provides robust transitivity even outside the set of volume preserving
diffeomorphisms (see Remark 4.2).
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A REMARK ON UNIFORM EXPANSION 13

For an ergodic µ-stationary measure ν (under some integrability conditions3

on µ) there are numbers λ1(ν) ≥ . . . ≥ λd(ν), called the Lyapunov exponents,
characterized by the fact that for ν-a.e. x ∈M and µN-a.e. ω ∈ Ω there exists some
basis {vi}i of TxM such that

lim
n

1
n

log ‖Dxf
n
ω vi‖ = λi(ν).

We say that an ergodic µ-stationary measure ν is expanding if λ1(ν) > 0.
Given an expanding µ-stationary measure ν, we say that it has a non-random

weak stable direction if there exists a measurable subbundle E ⊂ TM defined for
ν-a.e. x ∈M such that

• Dxf(E(x)) = E(f(x)) for µ-a.e. f and ν-a.e. x.
• If v ∈ E(x) \ {0} then for µN-a.e. ω one has that limn

1
n log ‖Dxf

n
ω v‖ ≤ 0.

The following result is proven in [6, Theorem C] (see also [13]).
Theorem 1.1. The measure µ is uniformly expanding if and only if every ergodic
µ-stationary measure ν is expanding and does not admit a non-random weak stable
direction.

Notice that in the case where µ is supported in the space of volume preserving
diffeomorphisms of surfaces, every expanding µ-stationary measure must be hyper-
bolic with one positive and one negative exponent. The only possible non-random
weak stable direction is the stable one which is one-dimensional. We refer the
reader to [11] for more information on stationary measures.

We state the following criteria, sometimes called the invariance principle (see
e.g. [1, Theorem B]), that we will use to ensure that the measure we are considering
is expanding.
Theorem 1.2. Let ν be an ergodic µ-stationary measure which is not expanding.
Then, ν is f -invariant for µ-a.e. f . Moreover, if ν is f -invariant for µ-a.e. f
and all exponents equal 0, then there is an invariant ν-measurable distribution or
conformal structure.

Here, an invariant ν-measurable distribution means a measurable section E :
M → Gri(TM) (where Gri(TM) denotes the Grasmannian bundle of i-planes of
M) which is well defined modulo sets of ν-measure zero and such that Dxf(E(x)) =
E(f(x)) for µ-almost every f and ν-almost every x. Similarly, an invariant ν-
measurable conformal structure means a measurable section E : M → CS(TM)
(where CS(TM) denotes the bundle of conformal structures over M , that is, at
each x ∈M the fiber CS(TxM) corresponds to the space of inner products in TxM
up to homothety4). We refer the reader to [5, §13.2.2] for a detailed explanation
of how Theorem 1.2 follows from the results of [1] in the case of surfaces (which is
the one we will use here).

3For simplicity we will assume that every µ is boundedly supported.
4Or equivalently, if one fixes a Riemannian metric on M , we can identify CS(TxM) with

the space (SL(TxM)/SO(TxM))/R where SO(TxM) are the linear transformations that are an
isometry with respect to the Riemannian inner product on TxM .
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2. Diffusion of a diffeomorphism

Consider a smooth function ϕ : S1 → [0, 1] with the property that ϕ′(t) > 0 for
t ∈ (0, 1

2 ) and ϕ′(t) < 0 for t ∈ ( 1
2 , 1), where we identify S1 = [0, 1]/1∼0.

We can choose families of diffeomorphisms gt1, gt2, gt3, gt4 ∈ Diff∞vol(T2) as follows:
• gt1(x, y) = (x+ t, y),
• gt2(x, y) = (x, y + t),
• gt3(x, y) = (x+ tϕ(y), y), and
• gt4(x, y) = (x, y + tϕ(x)).

Note that for t = 0 all diffeomorphisms are the identity and that the families
are continuous in Diff∞vol(T2). Here we are considering coordinates (x, y) ∈ T2 ∼=
R2/Z2 ∼= S1 × S1.

The following will be used to show that a certain random walk has nonzero
Lyapunov exponents and later to show that it is uniformly expanding.

Proposition 2.1. Let ν be a measure which is not mutually singular with respect
to vol. Then, there are no ν-measurable line bundles or conformal structures in T2

invariant under ĝ1 = gα1 , ĝ2 = gβ2 , ĝ3 = ga3 , ĝ4 = gb4 if α, β ∈ R \Q and a, b > 0.

Proof. First suppose that there is a measurable line bundle, i.e. (x, y) 7→ Φ((x, y)) ∈
P(T(x,y)T2) a ν-measurable function that we assume satisfies Dĝi(Φ((x, y))) =
Φ(ĝi((x, y))) for ν-almost every (x, y) ∈ T2. Take ν0 to be the absolutely con-
tinuous part of ν (that is, (ν − ν0) ⊥ vol). We will show that ν0 = 0.

Let us first show that if Φ is invariant under ĝ1 and ĝ3 then Φ must be the line
field (x, y) 7→ R

(
1
0
)

up to ν0-measure 0. A symmetric argument using ĝ2 and ĝ4
says that Φ must be (x, y) 7→ R

(
0
1
)

up to ν0-measure 0, which implies that ν0 = 0.
Here we are using coordinates v = (x, y) on T2 seen as R2/Z2 and identifying TvT2

with R2 via the coordinates (x, y) (e.g.
(

1
0
)

is the vector tangent to the curve
(x+ t, y)).

Note that if x 6= {0, 1/2} then we have that for every y ∈ S1 and direction
ξ ∈ P(T(x,y)T2) ∼= P(R2) we have that D(x,y)ĝ

n
3 ξ → R

(
1
0
)
.

For every ε > 0, let K ⊂ T2 be a compact set with ν0(K) ≥ (1−ε)ν0(T2), where
Φ is continuous. It follows from Poincaré recurrence that for almost every (x, y) ∈
K we have that there is nj → ∞ such that ĝnj

3 (x, y) → (x, y) and ĝ
nj

3 (x, y) ∈ K.
By continuity and since K ∩ {0, 1/2} × S1 has measure zero, this implies that
Φ((x, y)) = R

(
1
0
)

for every (x, y) ∈ K. Since ε was arbitrary we deduce that
Φ(x, y) is ν0-almost everywhere equal to R

(
1
0
)
. The same argument applied to ĝ2

and ĝ4 gives that Φ must be ν0-almost everywhere equal to R
(

0
1
)
. Since these two

full ν0-measure sets are disjoint, this implies that ν0 = 0.
To conclude it is enough to show that there are no ν-measurable conformal

invariant structures. But this also follows from the fact that almost everywhere
the norm ofD(x,y)ĝ

n
3 is unbounded and if we pick a compact set where the conformal

structure is continuous, the same argument as above implies that this set must have
zero measure under vol. �
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A REMARK ON UNIFORM EXPANSION 15

The fact that vol plays a special role has to do with the kind of random walk
we will chose.

Fix U an open set in Diff∞vol(T2). For small ε > 0 and f0 ∈ U such that gti ◦f0 ∈ U
for all |t| ≤ ε and positive numbers pi such that

∑4
i=0 pi = 1, we will consider µ̂ to

be the following measure on Diff∞vol(T2) (supported on U):

µ̂ = p0δf0 +
4∑
i=1

pi

∫ ε

−ε
δgt

i
◦f0 dt. (2.1)

We call µ̂ a diffusion of f0. Note that µ̂ is very close to δf0 both in support and
in the weak-∗ topology as we take ε→ 0 (and independently of the values of pi).

Proposition 2.2. If ν is a µ̂-stationary measure then it is not mutually singular
with respect to vol.

Proof. Since µ̂(k) ∗ ν = ν, it is enough to show that for every probability measure
η in T2 we have that µ̂(2) ∗ η has an absolutely continuous part with respect to vol.
We can write

η(E) =
∫
E

δv(E) dη(v).

We define η̂ = µ̂(2) ∗ η and we get that

η̂(E) = µ̂(2) ∗ η(E) =
∫
U

∫
E

δf(v)(E) dη(v) dµ̂(2)(f).

Changing the order of integration we can compute, for some v ∈ T2, the value of
the measure in T2 defined by

η̂v :=
∫
U
δf(v) dµ̂

(2)(f),

and we get that η̂(E) =
∫
η̂v(E) dη(v) for every measurable E ⊂ T2.

Write dη̂v = ρv dvol + η̂⊥v , where ρv is a L1 density and η̂⊥v is mutually singular
with respect to vol. We claim that there is c0 > 0 independent of η such that∫
ρv dvol > c0 for every v ∈ T2. This is because there is c0 > 0 such that

µ̂(2) = c0

∫ ε

−ε

∫ ε

−ε
δR(t,s)◦f0 dtds+ µ̃,

where R(t,s)(x, y) = (x + t, y + s) mod Z2 and µ̃ is a positive measure in T2. In
particular, this implies that for every v ∈ T2 we have that

η̂v = c0

∫ ε

−ε

∫ ε

−ε
δR(t,s)◦f0(v) dtds+

∫
U
δf(v) dµ̃(v).

This implies that η̂ also has an absolutely continuous part obtained by integrating
ρv against η. �

Remark 2.3. In fact, one can use this argument to show that ν has to be absolutely
continuous with respect to vol, since it can be seen that each successive convolution
with µ̂ gives more regularity. With some more work, one may show that it is in
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16 RAFAEL POTRIE

fact vol; however, we will not pursue this line since we will get it a posteriori by
appealing to [6, Theorem C and D]. See also [3, Lemma 5] for a similar argument.

3. Discretizing the diffusion and proof of Theorem 0.2

We first show that the measure defined in (2.1) is uniformly expanding.

Proposition 3.1. The measure µ̂ is uniformly expanding.

Proof. Let us first show that if ν is an ergodic stationary measure then it has to
be hyperbolic. If it is not, then we can apply Theorem 1.2 and deduce that ν is
f ti -invariant for all i, where f ti = gti ◦ f0. But this means that ν = (gti)∗(f0)∗ν =
(gti)∗ν for almost every5 t ∈ (−ε, ε), where the last equality follows from the fact
that ν is f0-invariant. Since gα2 ◦ g

β
1 is uniquely ergodic for some small irrational

α, β, we deduce that ν = vol.
We first show that vol is a hyperbolic measure for the random walk. Using

Theorem 1.2 it is enough to show that there are no vol-measurable invariant line
fields or conformal structures. But this follows from Proposition 2.1 because if
E is (say) an invariant line field by µ̂-a.e. f it follows that it is Df0-invariant as
well as invariant under some D(gti ◦ f0) for almost all t ∈ (−ε, ε). In particular,
we deduce that there are irrational numbers α, β ∈ (−ε, ε) and positive numbers
a, b ∈ (0, ε) such that E is invariant under D(gα1 ◦ f0), D(gβ2 ◦ f0), D(ga3 ◦ f0) and
D(gb4 ◦ f0). Using that the line field is Df0-invariant we deduce that it has to
be Dgα1 , Dg

β
2 , Dg

a
3 , Dg

b
4-invariant, which is impossible due to Proposition 2.1. The

same argument applies for measurable conformal structures.
This implies that every µ̂-ergodic stationary measure ν is hyperbolic.
Now we want to show that the stable direction of ν is not non-random. But this

follows using the same argument, applying Proposition 2.2 which shows that ν has
an absolutely continuous part, and so one can apply Proposition 2.1 to show that
the stable direction cannot be non-random. �

We can now show:

Proof of Theorem 0.2. We have established that µ̂ is uniformly expanding. That
is, there is N > 0 such that for every v ∈ T2 and w ∈ TvT2 unit vector we have
that ∫

log ‖Dvfw‖ dµ̂(N)(f) > 4.

Consider a sequence µn of finitely supported measures whose support is con-
tained in the support of µ̂ such that µn → µ̂ in the weak-∗ topology. It follows that
for every v ∈ T2, w ∈ TvT2 there is n0 = n0(v, w) such that for n > n0 we have∫

log ‖Dvfw‖ dµ(N)
n (f) > 3.

5Since preserving a measure is a closed condition, we can actually say that f t
i and gt

i preserve
ν for every t ∈ (−ε, ε), but this is not necessary.
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A REMARK ON UNIFORM EXPANSION 17

Using the fact that the support of µn is contained in U we know that there is δ > 0
such that if d(v, v′) < δ and d(w,w′) < δ then n > n0(v, w) implies∫

log ‖Dv′fw
′‖ dµ(N)

n (f) > 2. (3.1)

This implies that one can choose a uniform n1 such that if n > n1 then (3.1) holds
for every v, w, which is what we want to prove. �

4. Some comments and possible extensions

4.1. Equidistribution. Here we prove Corollary 0.3 and make some additional
comments.

Proof of Corollary 0.3. Using [6, Theorem D] we know that for a uniformly ex-
panding measure, every orbit is either finite or dense, and moreover, dense orbits
equidistribute. Since in Theorem 0.2 we have constructed a uniformly expanding
measure with finite support in every open set of Diff∞vol(T2), we deduce that for
every µ′ in a neighborhood of µ in the weak-∗ topology such that the support6 of µ′
is contained in a neighborhood of the one of µ, we have that every orbit by the
random walk generated by µ′ is either finite or equidistributed with respect to vol
(thus dense).

A finite orbit must be invariant under µ′-a.e. diffeomorphism of the support.
Recall that, without loss of generality, we can assume that µ, the measure con-
structed in Theorem 0.2, is supported on finitely many diffeomorphisms including
f0 (a certain diffeomorphism chosen somewhere) and gα1 ◦ f0 with some α /∈ Q.
This implies that if there is a finite orbit then it must be invariant under both
diffeomorphisms, but this would imply that it is invariant under gα1 which does not
have finite orbits. This shows that every orbit of the random walk generated by µ
equidistributes towards vol.

To get the stable ergodicity of the semigroup generated by the elements of the
support of µ we just need to notice that after perturbation it is not possible that
every point has finite orbit because every stationary measure is hyperbolic and
therefore there must be infinite orbits7. �

In fact, one can easily show that in a neighborhood of µ there is a residual subset
of measures that generate a minimal semigroup:

Proposition 4.1. Given open sets U1, . . . ,Uk ∈ Diff∞vol(T2) there is a residual
subset R of the product U1 × . . .× Uk such that if (f1, . . . , fk) ∈ R then the diffeo-
morphisms f1, . . . , fk do not have a common invariant finite set.

Proof. We can assume that f1 is Kupka–Smale, so in particular, it has finitely
many orbits of period ≤ N for every N > 0. We claim that for every N , the set

6This is to guarantee that µ′ is also uniformly expanding.
7In fact, the argument gives stable ergodicity of the random walk, a concept we have not

defined; see [7, 14].
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18 RAFAEL POTRIE

AN of U2× . . .×Uk consisting of diffeomorphisms (f2, . . . , fk) that do not preserve
the set

PN = {x ∈ T2 : the orbit of x under f1 has less than N points}

is open and dense in U2 × . . .×Uk. It is clear that AcN is closed, and since PN is a
finite set for every N , a small perturbation of some of the diffeomorphisms allows
one to remove the family from AcN , so we complete the proof. �

Remark 4.2. We point out that the condition of being uniformly expanding is
open among measures supported in Diff∞(T2) and not just those preserving vol-
ume. The results of [5] hold in this more general setting, but instead of equidis-
tribution to vol those results prove equidistribution to some SRB-measure (this
is enough to get robust transitivity of the semigroup, for instance). We refer the
reader to that paper for more discussion. We also point out the recent preprint [10]
where a notion of stable ergodicity outside volume preserving semigroups is pro-
posed.

4.2. Bound on the cardinality of the support. Theorem 0.2 can be compared
with [6, Theorem A]. On the one hand, here we obtain perturbations of any map
and show that they are uniformly expanding, but on the other hand the results
in [6] are quite deeper as they allow one to control the number of diffeomorphisms
in the support (the results are more effective). In particular, the way that uniform
expansion is checked in [6] (see [6, Proposition 5.4]) allows one to check it for a given
family of diffeomorphisms, while here we use some abstract criteria that produces
uniform expansion for a continuous measure, and then gives the finite support by
a discretisation argument that does not control the number of diffeomorphisms in
the support.

A particularly puzzling question that one can pose in the direction of trying
to control the number of diffeomorphisms in the support of a measure which is
uniformly expanding close to a given diffeomorphism is the following:

Question 1. Is it possible to show that for α, β ∈ R\Q and small a, b > 0 we have
that the diffeomorphisms gα1 , gβ2 , ga3 , gb4 do not leave any ν-measurable line field,
where ν is any measure quasi-invariant under all the diffeomorphisms? (Compare
with Proposition 2.1.)

We can show the following. Denote ĝ1 = gα1 , ĝ2 = gβ2 , ĝ3 = ga3 , ĝ4 = gb4 for small
α, β ∈ R \Q and a, b > 0.

Proposition 4.3. Let µ̂ be a (symmetric) probability measure in Diff∞vol(T2) such
that µ̂({ĝ±1

i }i=1,2,3,4) = 1 and µ̂({ĝi}) = µ̂({ĝ−1
i }) > 0 for i = 1, 2, 3, 4. Then µ̂ is

uniformly expanding.

Proof. Using Proposition 2.1 we know that every stationary measure is hyperbolic
(note that if ν is a stationary measure that is not hyperbolic, it must be ĝi-invariant
for all i by Theorem 1.2 and thus has to be vol and preserve a measurable line field
or conformal structure, and then one can apply Proposition 2.1).
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A REMARK ON UNIFORM EXPANSION 19

So, we only need to check that if ν is a µ̂-stationary measure, then the stable
Oseledets direction Es (measurable and defined (µ̂Z≥0 × ν)-a.e.) is not invariant
under all gi.

Assume by contradiction that Es is invariant. Consider the skew-product dy-
namics F : Σ+ × T2 → Σ+ × T2 where

Σ+ = {ĝ1, ĝ
−1
1 , ĝ2, ĝ

−1
2 , ĝ3, ĝ

−1
3 , ĝ4, ĝ

−1
4 }Z≥0 ,

which we know leaves invariant the measure ν̂ = µ̂Z≥0×ν. Denote by ω = (ωi)i≥0 a
generic word in Σ+. By assumption, the bundle (ω, (x, y)) 7→ Es(ω, (x, y)) associ-
ated with the stable Oseledets bundle of the hyperbolic measure ν̂ does not depend
on ω. Since µ̂ is symmetric, if we define S : Σ+×T2 → Σ+×T2 as S(ω, v) = (ω̂, v),
where ω̂ = (ω−1

0 , ω−1
1 , . . .), we get that S∗ν̂ = ν̂.

Then we can define the measurable function ψ : Σ+ × T2 → R as (ω, (x, y)) 7→
log ‖D(x,y)ω0|Es((x,y))‖. Using that S∗ν̂ = ν̂ and that ψ ◦ S = −ψ we get∫

Σ+×T2
ψ dν̂ =

∫
Σ+×T2

ψ dS∗ν̂ =
∫

Σ+×T2
ψ ◦ S dν̂

= −
∫

Σ+×T2
ψ dν̂ ⇒

∫
Σ+×T2

ψ dν̂ = 0.

Therefore, the Birkhoff ergodic theorem implies that ν̂ has a zero Lyapunov expo-
nent, a contradiction. (Compare with [5, Lemma 13.2].) �

Using the same argument as in Proposition 3.1 to show that we can have uni-
formly expanding measures in any open set with support in a uniformly bounded
number of diffeomorphisms, one could use the diffeomorphisms of the previous
proposition if one can answer the following, which may have interest by itself (com-
pare with [6, §2], [13, §4.3]):
Question 2. Assume that a finitely supported probability measure µ̂ on Diff∞vol(T2)
is uniformly expanding. Is it true that if ν is a measure quasi-invariant under every
f in supp(µ̂) it follows that there are no ν-measurable line fields (defined ν-a.e.)
which are invariant under every f ∈ supp(µ̂)?
4.3. Higher dimensions. We comment now on the extensions to higher dimen-
sions (or other surfaces). First of all, we note that in [4] uniform expansion will
be used to obtain rigidity statements about stationary measures, so the notion is
still relevant in higher dimensions. Here we must remark that uniform expansion
in higher dimensions admits different formulations. One could keep the exact Def-
inition 0.1, which also makes sense in higher dimensions, but one could also ask
for something stronger, in particular asking that the condition hold not only for
vectors but also for exterior products up to codimension one. For such condition,
one can also obtain a result analogous to Theorem 1.1.

About the proofs, we only used T2 to have specific coordinates and have a simple
proof of Proposition 2.1. Let us sketch a way to obtain a similar result for general
closed manifolds.

Fix any closed manifold M . For every x ∈ M we can find a continuous finite
parameter familly gax ∈ Diff∞vol(M) with a ∈ (−1, 1)` such that:
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20 RAFAEL POTRIE

• There is a neighbourhood Ux of x such that for every y ∈ U we have that
the map a 7→ gax(y) is a smooth map from (−1, 1)` to M and the derivative
at 0 is surjective.
• For every 1 ≤ i ≤ d − 1 and w ∈ Gri(TxM) the map a 7→ Dxg

a
x(w) is a

smooth map from (−1, 1)` to Gri(TM) whose derivative is surjective at 0.
Note that such a family of maps can be constructed first in Rd with respect to

the origin8 and then send them to M via coordinate charts. We can find a finite
set x1, . . . , xn of M such that the neighborhoods Uxi of the first item cover M .

By considering any diffeomorphism f0 ∈ Diff∞vol(M) we can construct a dif-
fusion µ̂ by considering a small delta at f0 together with measures that charge
uniformly the submanifolds a 7→ gaxi

for a ∈ (−ε, ε)` in such a way that µ̂ is sup-
ported in a given neighborhood U of f0 in Diff∞vol(M). Proposition 2.2 will work
exactly the same in this context to give that any stationary measure will have some
absolutely continuous part. It is not hard to see that for such a family of diffeomor-
phisms, the unique common invariant measure has to be vol, so we deduce that if
there is a stationary measure which is not expanding, then it must be vol. Finally,
using the second property and Theorem 1.2 we can see that vol is also expanding.

Using the fact that stationary measures have an absolutely continuous part, and
that we can take points everywhere using the diffeomorphisms that we chose, we can
argue as in Proposition 3.1 (changing Proposition 2.1 by a finer use of the second
property defining the parametric families of diffeomorphisms) to deduce that µ̂
cannot leave invariant any bundle and therefore it is uniformly expanding. Finally,
a discretization using the openness of the uniform expansion property allows one
to make the support finite and show the analogous result as Theorem 0.2 for any
closed manifold.
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