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NEW BOUNDS ON CANTOR MAXIMAL OPERATORS

PABLO SHMERKIN AND VILLE SUOMALA

Abstract. We prove Lp bounds for the maximal operators associated to
an Ahlfors-regular variant of fractal percolation. Our bounds improve upon
those obtained by I.  Laba and M. Pramanik and in some cases are sharp up
to the endpoint. A consequence of our main result is that there exist Ahlfors-
regular Salem Cantor sets of any dimension > 1/2 such that the associated
maximal operator is bounded on L2(R). We follow the overall scheme of  Laba–
Pramanik for the analytic part of the argument, while the probabilistic part
is instead inspired by our earlier work on intersection properties of random
measures.

1. Introduction

1.1. Maximal functions associated to singular measures. One of the most
classical results in real analysis is the Lp boundedness of the Hardy–Littlewood
maximal operator, which can be restated as follows: Let ν be Lebesgue measure
on the unit ball of Rd; then the maximal operator

Mνf(x) = sup
r>0

∫
|f(x+ ry)| dν(y)

is bounded on Lp for p > 1. It makes sense to study such operators Mν also
when ν is replaced by other, singular measures; one would expect its boundedness
properties to reflect in some sense the geometry of the measure ν. The case in
which ν is surface area on the (d − 1)-dimensional sphere was addressed in the
celebrated spherical maximal theorems of Stein [10], for d ≥ 3, and Bourgain [1],
for the more challenging case d = 2: they proved that Mν is bounded on Lp if and
only if p > d/(d − 1). A large body of related work exists in which ν is replaced
by Hausdorff measure on more general manifolds under curvature assumptions, or
is assumed to satisfy a power Fourier decay bound; see for example [7].
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Neither of the classical approaches gives information if ν is a singular measure
on the real line, since the concept of submanifold or curvature is not available
and the required Fourier decay cannot possibly hold. Nevertheless, it is natural
to study this problem when ν is, for example, Hausdorff measure on a Cantor set
of dimension < 1. A first breakthrough in this direction was achieved by  Laba
and Pramanik in [6]. In order to state their result, we introduce the restricted (or
single-scale) version of the maximal operator, defined as

Mνf(x) = sup
r∈[1,2]

∫
|f(x+ ry)| dν(y).

The restricted version is easier to handle technically and, in any case, its mapping
properties can often be used to derive bounds also for certain unrestricted operators;
see §1.3 below.
Theorem 1.1 ([6, Theorem 1.3]). For any s ∈ (2/3, 1) there exists a measure ν
supported on a Cantor set of Hausdorff dimension s, such that the associated re-
stricted maximal operator Mνf(x) is bounded from Lp(R) to Lq(R) for p > (2−s)/s
and q ∈ [p, ps/(2− 2s)].

The Cantor set and the measure ν arising in the proof of Theorem 1.1 are
obtained through an ad hoc random iterative process; no almost sure statements
with respect to an underlying distribution on Cantor measures are made.

In subsequent work,  Laba [5] considered maximal operators for certain self-
similar Cantor sets in which the randomization only occurs in the first level pattern
of the construction. While stopping short of proving Lp estimates in this case, her
results cover Cantor sets of arbitrarily small dimension, in addition to providing
the first results in the area for self-similar examples.

In order to discuss the sharpness of Theorem 1.1, let us note the following simple
lemma.
Lemma 1.2. If ν is a finite measure giving positive mass to a set of Hausdorff
dimension < t, then Mν cannot be bounded from L1/t(R) to Lq(R) for any q ∈
[1,+∞].
Proof. If ν(A) > 0 for a set A of Hausdorff dimension < t, then by the mass
distribution principle (see e.g. [2, Proposition 4.9]) there are s < t and a point
x0 6= 0 in the support of ν such that for a sequence δi ↓ 0, we have

ν([x0 − δi, x0 + δi]) > δsi .

Let fi be the indicator of the interval [x0 − 2δi, x0 + 2δi]. If x ∈ [−x0, 0] then
taking r = 1 − x/x0 in the definition of Mν we see that Mνfi(x) > δsi , and hence
‖Mνfi‖Lq(R) > x

1/q
0 δsi . On the other hand, ‖fi‖Lp(R) ≤ (4δi)1/p. Taking δi ↓ 0, we

see that Mν cannot be bounded from Lp(R) to Lq(R) if p ≤ 1/t. �

Note that for all dimension values s ∈ (2/3, 1), there is a gap between the
admissible values p > (2 − s)/s provided by Theorem 1.1 and the barrier p ≥ 1/s
arising from Lemma 1.2. It is natural to ask what is the optimal range of p, given s;
see [6, Remark 3 on p. 350].
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In this article we obtain a version of the theorem of  Laba and Pramanik with
improved exponents and dimension bounds, which in some cases close the gap
indicated above. In particular, we show that there are measures supported on
Ahlfors-regular Salem Cantor sets of any dimension > 1/2 satisfying non-trivial
maximal operator bounds (while we recall that in [6] the Cantor sets must have
dimension > 2/3). Our constructions are still random at all scales, but fall into a
widely studied class of random measures and sets closely related to the well-known
fractal percolation model. The method can be easily extended to other random
models. Moreover, we are able to simplify various aspects of the rather involved
original proof of Theorem 1.1. Before stating our main result, Theorem 1.3, we
introduce the random model it involves.

1.2. Ahlfors regular random sets and measures. Let Dn denote the level n
dyadic intervals of R:

Dn = {[k2−n, (k + 1)2−n] : k ∈ Z}.

Let 0 < s < 1 and let an ∈ {1, 2} such that

2sn−1 < βn ≤ 2sn for all n ∈ N, where βn =
n∏
i=1

an.

Starting with the interval A0 = [1, 2], we inductively construct random sets An as
follows. If an = 2, set An+1 = An. Otherwise, if an = 1, choose, for each I ∈ Dn
such that I ⊂ An, one of the 2 dyadic sub-intervals of I, with all choices being
uniform and independent of each other and the previous steps. Let An+1 be the
union of the chosen I ∈ Dn. Then {An} is a decreasing sequence of nonempty sets
(each An consists of βn pairwise disjoint dyadic intervals of length 2−n), and we
set

A =
∞⋂
n=1

An.

Let us further define
νn = 2n

βn
1[An], (1.1)

and note that
νn ≤ 2 · 2n(1−s) (1.2)

and that νn is zero off a set of Lebesgue measure at most 2n(1−s).
It is easy to check (see e.g. [2, Proposition 1.7]) that νn converges in the weak∗-

sense to a Borel probability measure ν and that spt ν = A. Moreover, ν is Ahlfors
s-regular, that is, there exists a (deterministic) constant C > 0 such that

C−1 · rs ≤ ν(B(x, r)) ≤ C · rs

for all x ∈ A and all r ∈ (0, 1]. In particular, the Hausdorff dimension of A, and
of ν, equal s (deterministically) and

ν(I), νn(I) ≤ 3|I|s for all intervals I ⊂ [0, 1], (1.3)
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where |I| denotes the length of the interval. Note that in the above notation,
and also in what follows, we will often identify the functions νn with the measure
dνn(x) = νndx. This also applies to Cartesian powers of νn.

1.3. Main result. We can now state our main result:

Theorem 1.3. Let s ∈ (1/2, 1) and let d = 2d 1
2−2s − 1e. Further, define

θ0 = ds+ 1− d
2 > 0,

ξ0 = d+ 1− (d+ 2)s ≥ 0.
If ν is the random measure defined above, then almost surely Mν is bounded from
Lp(R) to Lq(R) for all

p > p0 := (2 + d)θ0 + dξ0
(1 + d)θ0 + (d− 1)ξ0

and
p ≤ q ≤ p

p0 − 1 .

See Figure 1 for an illustration. We make some remarks on the statement of the
theorem and its proof.

Figure 1. The solid curve shows the value of p0 = p0(s) provided
by Theorem 1.3 for each s ∈ (1/2, 1), so that Mν is a.s. bounded
on Lp for p > p0. The lower dashed curve is 1/s; by Lemma 1.2,
the maximal operator can’t be bounded on Lp for p < 1/s. The
upper dashed curve is the value p0 = (2− s)/s, s > 2/3, given by
the theorem of  Laba–Pramanik (Theorem 1.1)
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Remark 1.4. As remarked in Lemma 1.2, Mν is not bounded from Lp to any Lq if
p < 1/s. In the special case s = 1− 1

2n , for some integer n ≥ 2, the above theorem
shows that Mν is bounded on Lp for any p > 1/s (we remark that n is different
from the value of d in Theorem 1.3). So Theorem 1.3 provides the first instance
of a sharp bound for maximal operators associated to Cantor sets of fractional
dimension (up to the endpoint). The lower bound p0 provided by Theorem 1.3
is continuous in s, so the theorem also provides nearly sharp bounds for s close
to 1 − 1

2n for n ≥ 2, and also for s slightly larger than 1/2 (but it provides no
information for s ≤ 1/2).

Remark 1.5. Unlike the construction of [6], the measure ν is Ahlfors-regular. This
may be seen as a desirable geometrical property that holds in all classical examples
such as smooth manifolds. Additionally, as a direct consequence of [8, Theorem
14.1], the measure ν is almost surely a Salem measure—again as is the case for
manifolds of non-zero Gaussian curvature.

Remark 1.6. While we have chosen the model described in Section 1.2 for con-
creteness, the argument of the proof extends to a wide class of subdivision fractals;
see [8, §5.2].

Remark 1.7. For proving Theorem 1.3, we follow [6] (with some minor simplifi-
cations) to reduce the claim to a purely geometric fact regarding intersections of
random sets with lines; see Theorem 2.2 below. Our proof differs from that of [6]
in the probabilistic argument to establish the intersection result; it is here that our
argument is more effective, and perhaps also simpler. It is inspired by our earlier
work [8, 9]. A new aspect is that we also need to consider intersections with lines
which are not “transversal” and this requires a more delicate analysis.

We mention some direct applications of Theorem 1.3. For the first two we
follow [6]. We fix s ∈ (1/2, 1) and the threshold p0 provided by the theorem.

(1) Theorem 1.3 implies the boundedness of the unrestricted maximal operator

Mνf(x) = sup
r>0

∫
f(x+ ry) dν(y)

for p = q > p0, by the argument in [6, Section 7] which is very general and
does not rely on the specific random construction in that paper. For q > p
a similar result holds but one needs to weigh the unrestricted operator for
scaling reasons; see [6, Eq. (1.4)].

(2) Maximal operator bounds imply differentiation results. In particular, in
the context of Theorem 1.3, if f ∈ Lp(R) with p > p0, then

f(x) = lim
r→0

∫
f(x+ ry) dν(y)

for a.e. x ∈ R. See [6, §8.1].
(3) Finally, maximal operator bounds also yield information about the Lebesgue

measure of the union of families of Cantor sets. Namely, if the Borel set
E ⊂ R contains a set of the form x + rA (for some r depending on x)
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for each x in a set F of positive Lebesgue measure, then E has positive
Lebesgue measure. Indeed, Mν1E(x) = 1 for all x ∈ F , which immediately
yields |E| > 0 (for this it is enough to have a bound ‖Mνf‖q ≤ C‖f‖p
for any p < ∞). Similar problems for other classes of Cantor sets have
been considered in [3, 5]; the Cantor sets in those papers are (essentially)
deterministic and the conclusions are therefore much weaker.

2. Reduction of the main theorem to intersection estimates

2.1. From intersection estimates to maximal operator bounds. We will
derive our main theorem by analyzing the intersections of the self-products of ν
with lines. To reduce the main theorem to such intersection estimates, we will use
the following theorem that can be inferred from the framework of [6].

Theorem 2.1. For n ∈ N, let An ⊂ [1, 2] be a finite union of closed intervals such
that An+1 ⊂ An. Denote νn = |An|−11[An] and σn = νn+1 − νn. Suppose that
νn converges in the weak*-sense to a measure ν. Furthermore assume that d ≥ 2
is an even integer and there are constants θ, ξ,K > 0 such that for all measurable
choices of r : [−4, 0]→ [1, 2] and for all Ω ⊂ [0, 1] it holds that

|Ω|1−d
∫

Ωd

∫ d∏
j=1

σk

(
z − xj
r(xj)

)
dz dx ≤ K exp(−θk), (2.1)

|Ω|−1−d
∫

Ωd+2

∫ d+2∏
j=1

σk

(
z − xj
r(xj)

)
dz dx ≤ K exp(ξk). (2.2)

Then Mν is bounded from Lp(R) to Lq(R), whenever

p > p0 := (2 + d)θ + dξ

(1 + d)θ + (d− 1)ξ
and

p ≤ q ≤ p

p0 − 1 .

Since this is not stated in this form in [6], in the rest of this section we discuss
the main steps of the proof, referring to [6] for most details. We point out two
differences between our approach and that of  Laba and Pramanik that are not
essential but help us simplify parts of the argument. The first is that we don’t
have an explicit split between “internal” and “transverse” intersections. These
concepts from [6] were inspired by Bourgain’s proof of the boundedness of the
circular maximal operator, but such a dichotomy is not needed in our approach.
The second is that they discretize the family of measurable functions r at each
scale at the “deterministic” stage, while we perform a similar discretization in the
probabilistic part of the argument.

Roughly speaking, Theorem 2.1 follows a classical scheme involving discretiza-
tion, linearization, dualization and interpolation arguments, although extra care is
required at some steps. Since ν is fixed, we denote M = Mν for simplicity. Firstly,
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using that q ≥ p it is enough to show that M is bounded from Lp[0, 1] to Lq(R);
this is due to the fact that we are dealing with the restricted operator (r ∈ [1, 2]);
see the proof of [6, Lemma 3.1] for details. Next, for f ∈ C[0, 1] define

Mkf(x) = sup
r∈[1,2]

|f(x+ ry)σk(y) dy| .

It is an easy consequence of the weak∗-convergence of νn to ν that

Mf ≤ Nf +
∞∑
k=1

Mk|f |, where Nf(x) = sup
r∈[1,2]

∫
|f(x+ ry)| dν1(y).

As ν1 is dominated by a bounded multiple of Lebesgue measure, this reduces the
problem to the study of the operators Mk.

Next, we linearize the problem. It is easy to see that for f ∈ C[0, 1],

‖Mkf(x)‖Lq(R) ≤ 4 sup
r : [−4,0]→[1,2]

measurable

‖Mk,rf(x)‖Lq(R),

where Mk,r is the (linear) operator

Mk,rf(x) =
∫
f(z)σk

(
z − x
r(x)

)
dz.

See [6, Proposition 3.2] for details. (It is enough to consider x ∈ [−4, 0] since
r(x) ∈ [1, 2] and σk is supported on [1, 2].) Thus the claim will follow if

‖Mk,r‖Lp[0,1]→Lq [−4,0] ≤ δk (2.3)

for some summable sequence (δk) independent of the choice of r. The adjoint
operator to Mk,r is

M∗k,rg(z) =
∫
g(x)σk

(
z − x
r(x)

)
dx.

Using interpolation and duality, one can see that if q0 ≥ 2 and the restricted bound

‖M∗k,r1[Ω]‖Lq0 [−4,0] ≤ C2−ζk|Ω|
q0−1
q0 (2.4)

holds for all Ω ⊂ [0, 1] and some constants C, ζ > 0, then (2.3) holds for

p >
q0

q0 − 1 , q = (q0 − 1)p,

for an exponentially decaying sequence (δk) (depending on p, q). Then it also holds
for q ∈ [p, (q0 − 1)p]. See [6, Lemma 3.4] for the details of this step, that requires
special care. (This is where we use the hypothesis on q.)

On the other hand, it is easy to check (see [6, Proof of Prop. 4.2]) that if d ≥ 2
is an even integer, then

‖M∗k,r1[Ω]‖dLd[−4,0] =
∫

Ωd

∫ d∏
j=1

σk

(
z − xj
r(xj)

)
dz dx. (2.5)
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Let u ∈ (0, 1] satisfy u > dξ
(d+2)θ+dξ (where θ, ξ are as in Theorem 2.1). Let

qu ∈ (d, d+ 2] satisfy
1
qu

= u

d
+ 1− u
d+ 2

so that qu = d(d+2)
2u+d (and qu

qu−1 = d(d+2)
d(d+1)−2u ). Using Hölder’s inequality,

‖M∗k,r1[Ω]‖qu
≤ ‖M∗k,r1[Ω]‖ud ‖M∗k,r1[Ω]‖1−ud+2 .

Recalling the assumptions (2.1)–(2.2), we arrive at

‖M∗k,r1[Ω]‖qu ≤ K ′|Ω|
u(d−1)

d +
(1−u)(d+1)

(d+2) exp
(
k

(
−uθ
d

+ (1− u)ξ
d+ 2

))
= K ′|Ω|

qu−1
qu exp(−ζk),

for some ζ > 0 provided u > dξ
(d+2)θ+dξ .

After some algebra, letting u ↓ dξ
(d+2)θ+ξ completes the proof of Theorem 2.1.

2.2. Reduction of the main result to probabilistic intersection estimates.
Let us continue to denote

σn = νn+1 − νn, (2.6)
where νn is as in (1.1).

Using Theorem 2.1, the following probabilistic estimate will easily imply our
main result, Theorem 1.3.

Theorem 2.2. Let σk be as in (2.6) and fix d ≥ 2. Let

Φ(d)
k = sup

r : [−4,0]→[1,2],
Ω⊂[0,1]

|Ω|1−d
∫

Ωd

∫ d∏
j=1

σk

(
z − xj
r(xj)

)
dz dx, (2.7)

where the supremum runs over all measurable functions r. Note that Φ(d)
k is a

random variable. Then for all k ∈ N:
(1) If s > 1− 1

d and 0 < θ < (ds+ 1− d)/2, then Φ(d)
k ≤ K exp(−θk);

(2) if s ≤ 1− 1
d and ξ > d− 1− ds ≥ 0, then Φ(d)

k ≤ K exp(ξk),
where K is an almost surely finite random variable (depending on d, s, θ, ξ).

We will prove Theorem 2.2 in Section 3. Theorem 1.3 is a simple consequence
of Theorems 2.1 and 2.2. Indeed, given s > 1/2, then d = 2d 1

2−2s − 1e satisfies
1 − 1

d < s ≤ 1 − 1
d+2 . Theorem 2.2 ensures that if 0 < θ < (ds + 1 − d)/2 and

ξ > d+1− (d+2)s, then the hypotheses of Theorem 2.1 are satisfied. Theorem 1.3
follows by letting θ ↑ θ0 = (ds+ 1− d)/2 and ξ ↓ ξ0 = d+ 1− (d+ 2)s.

Remark 2.3. Theorem 2.2 holds for all integers d ≥ 2, but when we apply it to
prove Theorem 1.3, we restrict to even values of d to be able to use Theorem 2.1.
The assumption that d is even is essential in the proof of Theorem 2.1, since (2.5)
fails for d odd.
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3. Proof of Theorem 2.2

3.1. Outline of proof. In this section we prove Theorem 2.2 which, as explained
above, implies Theorem 1.3. We start by giving an outline of the proof. It is easy
to recast the inner integral in the definition of Φ(d)

k given in (2.7) as an integral of
the d-fold cartesian product λn := σn×· · ·×σn over a line Lx,r determined by the
xj and the choice of the function r. Because the functions σk are highly singular,
the inner integral blows up on the diagonals xi = xj . On the other hand, if the xi
are well separated (essentially what is called a “transverse intersection” in [6]) one
would expect a large amount of cancellation. Indeed, a stochastic induction in n
coupled with Hoeffding-type estimates can be used to show that, for the fixed line
Lx,r, the random variable

Xn(x, r) =
∫
Lx,r

λn dH1

decays exponentially in n, with overwhelming probability. Here the line Lx,r is
fixed, but because the probability that Xn(x, r) does not decay exponentially is
so small (sub-exponential), it follows that Xn(xj , rj) decays exponentially, with a
uniform bound, for any collection Lxj ,rj

of transversal lines of size exponential in n.
By choosing the (xj , rj) densely in the parameter space, a deterministic continuity
bound in x and r can then be used to extend the estimate to all transversal lines.
So far, this scheme is similar to that of [9]. However, we need to deal also with
non-transversal lines, that is, lines for which |xi − xj | is small for some i 6= j
(roughly the “internal tangencies” of [6]). For such lines Xn(x, r) will be much
larger, but on the other hand their weight in the integral in (2.7) is small. If
mini 6=j |xi−xj | ∼ 2−m, then we have essentially no control on Xn for n < m due to
the lack of independence between the coordinates i and j of λn, but a deterministic
bound can easily be given. However, for n > m we regain independence and are
thus able to run the stochastic induction and achieve a bound on Xn(x, r) with
overwhelming probability that, while it increases with m, is still small enough that
the desired bounds on Φ(d)

k can be achieved.

3.2. Notation and setup. We introduce some notation to be used throughout
the proof. We will denote by C, c positive and finite constants whose precise value
is of no importance and may change even inside a given chain of inequalities. When
it is necessary to specify a constant inside a proof, we will use subscripts such as
C1, c2. We also use the notation A . B instead of A ≤ CB.

We denote ∆ = {x ∈ Rd : xi = xj for some i 6= j} and by E(δ), the δ-neighbour-
hood of a set E so that E(δ) = {x ∈ Rd : d(x,E) ≤ δ}. Recall that Dn denotes
the level n dyadic intervals of R, and let Qn be their n-dimensional counterparts:

Qn = {D1 × · · · ×Dd : Di ∈ Dn}.

By | · |, we denote the Lebesgue measure on R and Rd. One-dimensional Hausdorff
measure is denoted by H1. We denote [n] = {1, 2, . . . , n}.
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We work with the random construction specified in Section 1.2. Recall that
σn = νn+1 − νn. Given d ∈ N≥2 (which is from now on fixed), let λn be the d-fold
Cartesian power λn = σn × · · · × σn. Furthermore, let µn = νn × · · · × νn.

Given x, z ∈ R and r ∈ [1, 2], write

φ(x, r, z) = z − x
r

.

For each x ∈ [−4, 0]d, r ∈ [1, 2]d, let Lx,r denote the line
Lx,r = {(φ(x1, r1, z), . . . , φ(xd, rd, z)) : z ∈ R} ⊂ Rd,

and note that (since ri ≥ 1)∫ d∏
i=1

σn(φ(xi, ri, z)) dz ≤
∫
Lx,r

λn dH1. (3.1)

We define the random variables

Xn(x, r) = Xn(x1, . . . , xd, r1, . . . , rd) =
∫
Lx,r

λn dH1, (3.2)

for x = (x1, . . . , xd) ∈ [−4, 0]d and r = (r1, . . . , rd) ∈ [1, 2]d.

3.3. The key lemmas. We denote
Γm = {x ∈ [−4, 0]d : 4 · 2−m < min |xi − xj | ≤ 4 · 21−m},

Γ̃m = {x ∈ [−4, 0]d : min |xi − xj | ≤ 4 · 2−m}.
The core of the proof lies in the following (closely related) probabilistic lemmas:

Lemma 3.1. Fix m ∈ N, 1 − 1
d < s < 1, 0 < θ < (ds + 1 − d)/2 and 0 < δ <

1 − d + ds − 2θ. Then there are deterministic constants C1, c2 > 0 (depending on
θ, δ and s) such that the following holds.

Given n ≥ m, consider the event Em,n defined as

sup
x∈Γm, r∈[1,2]d

Xn(x, r) > C1

(
2ms+n(d−1−ds) + 2m(d−1)(1−s)/22−θn

)
.

Then

P

( ∞⋃
n=m

Em,n

)
≤ C1 exp(−c22δm).

Lemma 3.2. Fix m ∈ N and s ≤ 1 − 1
d . Then for any ξ > d − 1 − ds ≥ 0 there

are C1, c2 > 0 such that
P
(
Xn(x, r) > C12ms2nξ for some n ≥ m, x ∈ Γm, r ∈ [1, 2]d

)
≤ C1 exp(−c22δm),

where δ = ξ − (d− 1− ds) > 0.

We recall that although in Theorem 2.2 the parameter r ∈ [1, 2]d is a function
of x of the form r = (r̃(x1), . . . , r̃(xd)) for some measurable r̃ : [−4, 0] → [1, 2], in
Lemmas 3.1 and 3.2 there is absolutely no relation between x and r. In fact, this
is the reason why they are useful for obtaining a bound for Φ(d)

k (defined in (2.7))
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that holds irrespective of the choice of r̃. Before proving the lemmas, let us show
how they imply Theorem 2.2.

Proof of Theorem 2.2 (assuming Lemmas 3.1 and 3.2). Since the values of s and d
are fixed throughout the proof, all implicit constants are allowed to depend on them.

Consider first the case 1 − 1/d < s < 1, so that 1 − d + ds > 0 by assumption,
and fix

0 < θ < (1− d+ ds)/2. (3.3)
Fix Ω ⊂ [0, 1] and a measurable function r : [−4, 0]d → [1, 2]d. Recalling (3.1)

and (3.2), we have∫
Ωd

∫ d∏
i=1

σn(φ(xi, ri(x), z)) dz dx

≤
∫

Ωd∩Γ̃n

Xn(x, r(x)) dx+
n∑

m=1

∫
Ωd∩Γm

Xn(x, r(x)) dx.
(3.4)

To analyze the first integral, fix x ∈ Γ̃n and r ∈ [1, 2]d. From the estimate
|An| ≤ 2−nβn ≤ 2(s−1)n, we observe that (νn)d (and thus also λn) vanishes off a
set of H1 measure . 2(s−1)n on the line Lx,r. Making use of the trivial bound
λn . 2(1−s)dn (recall (1.2)), we thus have the deterministic estimate

Xn(x, r) . 2(1−s)(d−1)n for all x ∈ Γ̃n, r ∈ [1, 2]d.

Using Fubini’s theorem,
|Ωd ∩ Γ̃n| . |Ω|d−12−n.

Combining the last two estimates, we get∫
Ωd∩Γ̃n

Xn(x, r(x)) dx . |Ω|d−12n(d−2+(1−d)s) ≤ |Ω|d−12−θn, (3.5)

using that d− 2 + (1− d)s < d− 1− ds < −θ, where the second inequality follows
from (3.3).

To estimate Xn(x, r) on Γm, m ≤ n, we apply Lemma 3.1. Summing over all
m ∈ N in the lemma and using the Borel–Cantelli lemma, we see that almost surely
there exists K <∞ such that

Xn(x, r) ≤ K
(

2ms+n(d−1−ds) + 2m(d−1)(1−s)/22−θn
)

for all n ≥ m ≥ 1, x ∈ Γm and r ∈ [1, 2]d (we absorb the deterministic constant C1
into K for convenience). On the other hand, Fubini’s theorem gives

|Ωd ∩ Γm| . |Ω|d−12−m.

We thus have∫
Ωd∩Γm

Xn(x, r(x)) dx . K|Ω|d−1
(

2m(s−1)+n(d−1−ds) + 2m(−1+(d−1)(1−s)/2)−θn
)
.
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Using s > 1− 1/d and (3.3), we see that
n∑

m=1
2m(s−1)+n(d−1−ds) . 2n(d−1−ds) ≤ 2−θn,

n∑
m=1

2m(−1+(d−1)(1−s)/2)−θn . 2−θn.

Summing over all m = 1, . . . , n, we get
n∑

m=1

∫
Ωd∩Γm

Xn(x, r(x)) dx . K|Ω|d−12−θn. (3.6)

Combining (3.4), (3.5) and (3.6) yields the claim in the case s > 1− 1/d.
Consider now the case s ≤ 1 − 1/d; the proof is very similar (in fact, simpler),

except that we rely on Lemma 3.2 instead. By Lemma 3.2 and Borel–Cantelli,
there is a finite random variable K such that

Xn(x, r) ≤ K 2ms2nξ

for all x ∈ Γm, r ∈ [1, 2]d and n ≥ m. Combining this with Lemma 3.4 and Fubini’s
theorem as in the previous part, we conclude that∫

Ωd

∫ d∏
i=1

σn(φ(xi, r(xi), z)) dz dx

≤
∫

Ωd∩Γ̃n

. . .+
n∑

m=1

∫
Ωd∩Γm

. . .

. |Ω|d−12n(d−2+(1−d)s) +K|Ω|d−1
n∑

m=1
2m(s−1)2nξ

. K|Ω|d−12nξ.

�

3.4. Proof of Lemmas 3.1 and 3.2. It remains to prove Lemmas 3.1 and 3.2. We
continue to think of s, d as constants and hence all implicit constants are allowed
to depend on them (but not on m, k, r, x!) In addition to Xn(x, r), we will consider
the random variables

Yn(x, r) =
∫
Lx,r

µn dH1 (3.7)

and
Zn(x, r) =

∫
Lx,r

(µn+1 − µn) dH1 = Yn+1(x, r)− Yn(x, r).

We begin by stating some deterministic elementary bounds, i.e. they hold for all
possible choices of the sets An.
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Lemma 3.3. For all x ∈ [−4, 0]d, r ∈ [1, 2]d,

Ym(x, r) . 2m(d−1)(1−s).

Proof. The claim follows directly from the bounds
H1(Lx,r ∩ (Am)d) . H1(Am) ≤ 2−mβm ≤ 2m(s−1)

and µm . 2md(1−s). �

Recall that ∆ stands for the union of the diagonals ∪i 6=j{(x1, . . . , xd) : xi = xj},
and ∆(r) is the r-neighbourhood of ∆.

Lemma 3.4. For all x ∈ Γm, r ∈ [1, 2]d and k ≥ m,∫
Lx,r∩∆(2−k)

µk dH1 . 2ms+k(d−1−ds),∫
Lx,r∩∆(2−k)

λk dH1 . 2ms+k(d−1−ds).

Proof. To start, we claim that for all x ∈ Γm, r ∈ [1, 2]d and each k ≥ m, we can
cover Lx,r∩∆(2−k) by the union of . 1 intervals each of length . 2m−k. To verify
this, let i, j ∈ [d], i 6= j. Since there are d(d− 1)/2 such pairs, it sufffices to show
that

|∆i,j,k| . 2m−k,
where ∆i,j,k = {z ∈ [−3, 4] : |(z − xi)/ri − (z − xj)/rj | < 2−k}. Recall that [−3, 4]
is the relevant range for z since φ(x, r, z) /∈ [1, 2] outside this interval. Without
loss of generality, consider the case i = 1, j = 2. If |r1 − r2| < 1

162−m, then for all
z ∈ [−3, 4],∣∣∣∣z − x1

r1
− z − x2

r2

∣∣∣∣ ≥ ∣∣∣∣x1 − x2

r1

∣∣∣∣− ∣∣∣∣ (r1 − r2)x2

r1r2

∣∣∣∣− |z| ∣∣∣∣r2 − r1

r1r2

∣∣∣∣
≥ |x1 − x2|

2 − 8|r2 − r1| > 21−m − 2−m−1 > 2−m,

and so ∆1,2,k is empty for all k ≥ m. If |r1 − r2| ≥ 1
162−m, the line Lx,r makes an

angle & 2−m with the plane {x1 = x2}, implying that |∆1,2,k| . 2m−k.
Now, if J ⊂ [1, 2] is an interval of length |J | . 2m−k, we conclude from (1.3)

that
|Ak ∩ J | = βk2−kνk(Ak ∩ J) . 2sm−k

and thus also |(Ak)d ∩ Lx,r ∩ J | . 2sm−k, whenever J is such an interval on Lx,r.
Recalling (1.2), this yields the claim. �

We will also make use of the following Hoeffding–Janson inequality (see [4, The-
orem 2.1]). We recall some terminology. Consider a family of random variables,
{Xi}i∈I, indexed by I. A graph with vertex set I is called a dependency graph for
{Xi}i∈I if the random variable Xi is independent from {Xj : j ∈ J} whenever
there is no edge connecting i to J (here i ∈ I and J ⊂ I). In our context, a natural
dependency graph for the random variables µn+1|Q, Q ∈ Qn, conditional on An,
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is obtained by connecting Q = D1 × · · · ×Dd and Q′ = D′1 × · · · ×D′d via an edge
whenever Di = D′j for some pair i, j ∈ [d].
Lemma 3.5. Let {Xi : i ∈ I} be zero mean random variables uniformly bounded
by R > 0, and with a dependency graph whose vertices have degree bounded by D.
Then

P

(∣∣∣∣∑
i∈I

Xi

∣∣∣∣ > a

)
≤ 2 exp

(
−2a2

(D + 1)(#I)R2

)
.

Proof of Lemma 3.1. Fix m ∈ N for the rest of the proof. Given k ≥ m, let us
define an event Gk as

sup
m≤n≤k,

x∈Γm, r∈[1,2]d

{Xn(x, r), Zn(x, r)} ≤ C1

(
2ms+n(d−1−ds) + 2m(d−1)(1−s)/22−θn

)
,

where C1 is chosen so that 2C1 is the implicit constant from Lemma 3.4. Note that
Gk is determined by Ak. Our goal is to show that

1− P(Gk) . exp(−c22δm), (3.8)
where δ is as in the statement of the lemma. This implies the lemma since
∪kn=mEm,n is contained in the complement of Gk.

Let Gm−1 be the sure event (so that it holds deterministically). To prove (3.8),
we will estimate P(Gk | Gk−1) for k ≥ m.

Recall that Xn is defined by integrating λn, Yn is defined by integrating µn and
Zn is defined by integrating µn+1 − µn (each over the line Lx,r). Telescoping, we
see that Yk(x, r) = Ym(x, r) +

∑k−1
n=m Zn(x, r). We deduce from Lemma 3.3 that,

conditional on Gk−1,

Yk(x, r) . 2m(d−1)(1−s) +
k−1∑
n=m

(
2ms+n(d−1−ds) + 2m(d−1)(1−s)/22−θn

)
. 2m(d−1)(1−s).

(3.9)

For the time being, let us consider a fixed (x, r) ∈ Γm× [1, 2]d. We next proceed
to estimate Xk(x, r). We split the line Lx,r into two parts, Lx,r ∩ ∆(2−k) and
Lx,r \∆(2−k), and write

Xk(x, r) =
∫
Lx,r∩∆(2−k)

λk dH1 +
∫
Lx,r\∆(2−k)

λk dH1.

The first integral will be bounded deterministically using Lemma 3.4. To bound
the remaining term,

∫
Lx,r∩∆(2−k) λk, we borrow an argument from [9, Lemma 4.7].

Given Q ∈ Qk, denote

XQ =
∫
Q∩Lx,r\∆(2−k)

λk dH1.

Note that XQ depends on x, r and k. We condition on a fixed realization of Ak−1
such that Gk−1 holds. Let

I = {Q ∈ Qk : Q ∩ Lx,r 6= ∅ and Q ∩Ak−1 6= ∅} .
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For j > k, set

Ij =
{
Q ∈ I :

√
d · 2−j < |Q ∩ Lx,r \∆(2−k)| ≤

√
d · 21−j

}
.

We will bound the random sum
∑
Q∈Ij

XQ for each j > k through Lemma 3.5. We
claim:

(a) E(XQ) = 0 and |XQ| . 2kd(1−s)−j for each Q ∈ Ij .
(b) There is a dependency graph for {XQ : Q ∈ Ij}, whose vertices have a degree

bounded by a constant C = C(d).
(c) #Ij . 2(m(d−1)−kd)(1−s)+j .

To verify the first item, note that since we are conditioning on a realization of Ak−1,
for y ∈ [1, 2]d \ ∆(2−k) the events that yj ∈ Ak are independent. By definition
of νk we have

E(νk+1(yj)|Ak) = νk(yj), (3.10)

so by independence and linearity we see that E(XQ) = 0. Since

|λk| = | (νn+1 − νn)d | . 2dk(1−s),

and |Q ∩ Lx,r \∆(2−k)| . 2−j , the claim (a) holds. The second claim, concerning
the bound on the dependency degrees, follows since for any Q = D1×· · ·×Dd ∈ Qk,
there can be at most C(d) cubes Q′ = D′1 × · · · ×D′d ∈ Qk such that Di = D′j for
some pair i, j ∈ [d]. Finally, recalling (3.9), we have

#Ij · 2−j · 2k(1−s)d . Yk(x, r) . 2m(d−1)(1−s),

from which (c) follows.
Plugging in (a)–(c) into Lemma 3.5, we obtain

P

(∣∣∣∣∣ ∑
Q∈Ij

XQ

∣∣∣∣∣ > 1
2(j−k)2C12m(d−1)(1−s)/2−θk

)
. exp

(
−c 2j−k

(j−k)4 2k(1−d+ds−2θ)
)
.

(3.11)
Next we observe that (a)–(c) are valid also for

ZQ =
∫
Q∩Lx,r\∆(2−k)

(µk+1 − µk) dH1.

Indeed, for (a) it is enough to observe that (3.10) implies E(µk+1(y) |Ak) = µk(y)
for y ∈ [1, 2]d \∆(2−k) and that µk+1, µk . 2dk(1−s). Moreover, the bound on the
dependency degree for ZQ holds for the same reason as for the XQ, and (c) does
not involve XQ nor ZQ, but it is due to (3.9). Whence Lemma 3.5 implies that we
may replace XQ by ZQ in (3.11).
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Summing over all j > k in (3.11) yields

P

(∫
Lx,r\∆((2−k))

λk dH1 > C12m(d−1)(1−s)/22−θk | Gk−1

)

≤
∑
j>k

P

(∑
Ij

XQ > 1
2(j−k)2C12m(d−1)(1−s)/2−θk | Gk−1

)
. exp(−c2k(1−d+ds−2θ)),

(3.12)

and similarly

P

(∫
Lx,r\∆((2−k))

(µk+1 − µk) dH1 > C12m(d−1)(1−s)/22−θk | Gk−1

)
. exp(−c2k(1−d+ds−2θ)).

(3.13)

More precisely, the above holds uniformly for any realization of Ak−1 such that
Gk−1 holds, and in particular simply conditioning on Gk−1. Combining (3.12) and
(3.13) with Lemma 3.4, we thus have for each fixed (x, r) ∈ Γm × [1, 2]d,

P
(

max{Xk(x, r), Zk(x, r)} > C12ms+k(d−1+ds) + C12m(d−1)(1−s)/22−θk | Gk−1

)
. exp(−c2k(1−d+ds−2θ)).

(3.14)
To complete the proof, we still need to show that this estimate holds simultane-

ously for all (x, r) ∈ Γm × [1, 2]d. The reason for this is that while (3.14) gives an
estimate that is superexponentially small in k, we may approximate supx,rXk(x, r)
and supx,r Zk(x, r) with discrete families whose size grows only exponentially in k.
To this end, we will first derive a deterministic continuity modulus for the maps
(x, r) 7→ Xk(x, r), (x, r) 7→ Zk(x, r). Note that since ri ∈ [1, 2], all the lines Lx,r
form an angle & 1 with the coordinate hyperplanes {x ∈ Rd : xi = 0}. From this,
it easily follows that for all Q ∈ Qk, the map (x, r) 7→ H1(Q ∩ Lx,r) defined on
[−4, 0]d × [1, 2]d, is Lipschitz with a Lipschitz constant independent of Q (and k).
Furthermore, each Lx,r intersects . 2ks such cubes. Taking once more into account
the bound (1.2), we deduce that

|Xk(x, r)−Xk(x′, r′)| . 2k(d+s−ds)(|x− x′|+ |r − r′|),
|Zk(x, r)− Zk(x′, r′)| . 2k(d+s−ds)(|x− x′|+ |r − r′|).

Thus, if Λk ⊂ Γm × [1, 2]d is 2−Ck-dense, for some sufficiently large constant C,
then

sup
x∈Γm, r∈[1,2]d

Xk(x, r) ≤ sup
(x,r)∈Λk

Xk(x, r) + 1
2C12ms+k(d−1+ds),

and similarly for Zk(x, r). As Λk may be chosen to have at most 2Ck elements,
recalling (3.14) gives

1− P(Gk | Gk−1) . 2Ck exp(−c2k(1−d+ds−2θ)) ≤ 2Ck exp(−c2δk),
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using that δ < 1− d+ ds− 2θ. We conclude that, for each n ≥ m− 1,

1− P(Gn) ≤
n∑

k=m
1− P(Gk|Gk−1) . exp(−c2δm).

This shows that (3.8) holds and completes the proof. �

Proof of Lemma 3.2. The proof is a small modification of that of Lemma 3.1. Fix
K ≥ 1 and m ∈ N. For all k ≥ m, let Gk now denote the event that

Xn(x, r), Zn(x, r) ≤ K2ms2nξ for all m ≤ n ≤ k, x ∈ Γm, r ∈ [1, 2]d,
and, as before, let Gm−1 be the sure event. We shall estimate P(Gk | Gk−1) for
k ≥ m. Fix (x, r) ∈ Γm × [1, 2]d. As before, we write

Xk(x, r) =
∫
Lx,r∩∆(2−k)

λk dH1 +
∫
Lx,r\∆(2−k)

λk dH1,

Zk(x, r) =
∫
Lx,r∩∆(2−k)

(µk+1 − µk) dH1 +
∫
Lx,r\∆(2−k)

(µk+1 − µk) dH1,

and observe that, by Lemma 3.4, it is enough to bound the second term in both
decompositions. Fix (x, r) ∈ Γm × [1, 2] and a realization of Ak−1 such that Gk−1
holds. Recall the definition of the random variables Yn from (3.7). Using Lemma 3.3
and telescoping as in the proof of Lemma 3.1,

Yk(x, r) = Ym(x, r) +
k−1∑
n=m

Zn(x, r) .ξ 2ms2kξ.

We now define the random variables XQ and ZQ and the families I, Ij as in the
proof of Lemma 3.1. Then (a)–(b) continue to hold for the same reasons, while (c)
now becomes

(c’) #Ij .ξ 2ms+k(ξ−(1−s)d)+j .
Indeed, we have

#Ij · 2−j · 2k(1−s)d . Yk(x, r) .ξ 2ms2kξ.
Applying Lemma 3.5 as in the proof of Lemma 3.1, we get

P

(∫
Lx,r\∆(2−k)

λk > 2ms/22ξk | Gk−1

)
.ξ exp(−c2k(ξ+1−d+ds)),

P

(∫
Lx,r\∆(2−k)

(µk+1 − µk) > 2ms/22ξk | Gk−1

)
.ξ exp(−c2k(ξ+1−d+ds)),

uniformly (over all the realizations of Gk−1). While this estimate holds for a fixed
(x, r), we can extend it to all (x, r) ∈ Γm × [1, 2]d simultaneously using the same
argument from Lemma 3.1 (in fact because we only seek an exponential upper
bound, the argument is easier in the current setting). The proof is now concluded
in exactly the same way as the proof of Lemma 3.1: for n ≥ m− 1,

1− P(Gn) ≤
n∑

k=m
1− P(Gk|Gk−1) .ξ exp(−c2δm). �
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Remark 3.6. Since for “most” lines L the intersections L ∩ Adn are empty, one
could hope to improve the exponent ξ in Lemma 3.2 to some value < d − 1 − ds.
However, at least when |Ω| ≈ 1, this is not possible: Given an interval D ⊂ An (an
element of Dn), we can select r(t) for all t ∈ I ⊂ [0, 1] with |I| & 1 in such a way
that Lx,r(x) passes through the center of Dd. Indeed, for a suitable z = zD, define
r(t) such that (z − t)/r(t) equals the center point of D. Then,∫

[0,1]d

∫ d∏
i=1

σn(φ(xi, r(xi), z)) dz dx & 2n(d−1−ds).
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