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CLUSTER ALGEBRAS OF TYPE An−1

THROUGH THE PERMUTATION GROUPS Sn

KODJO ESSONANA MAGNANI

Abstract. Flips of triangulations appear in the definition of cluster algebras
by Fomin and Zelevinsky. In this article we give an interpretation of mutation
in the sense of permutation using triangulations of a convex polygon. We thus
establish a link between cluster variables and permutation mutations in the
case of cluster algebras of type A.

1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [8, 9]. They
are a class of commutative algebras which was shown to be connected to various
areas of mathematics like combinatorics, Lie theory, Poisson geometry, Teichmüller
theory, mathematical physics, and representation theory of algebras. A cluster al-
gebra is generated by a set of variables, called cluster variables, obtained recursively
by a combinatorial process known as mutation starting from a set of initial cluster
variables.

Triangulating a convex polygon plays a central role in the theory of cluster alge-
bras. Consider a triangulation T of a convex polygon which is the partition of its
interior into triangles by non-intersecting diagonals [2, 3, 10]. Each diagonal d in
the triangulation T is the diagonal of some quadrilateral. A new triangulation T ′ is
obtained by replacing the diagonal d with the other diagonal of that quadrilateral.
This well-known process is called a flip. The cluster variables are in natural bijec-
tion with the diagonals of a convex polygon [1] and the flip of diagonals corresponds
to a mutation of cluster variables [6].

The present work is motivated by the correspondence between triangulations
and permutations in [4]. Our objective here is to show how one can mutate a
permutation in the permutation groups Sn. We establish a link between the mu-
tation of cluster variables and the mutation of a permutation in the permutation
groups Sn. For this, taking a permutation, we show how to enumerate all diago-
nals composing the corresponding triangulation. This correspondence allows us to
prove that the cluster algebra associated with a permutation in Sn is of type An−1.
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The article is organized as follows. In Section 2, we recall some basic notions on
triangulations and permutations, and set some results. In Section 3, we establish
a link between cluster algebras of type An−1 and the permutation groups Sn.

2. Triangulations and permutations

Let n ≥ 1 be an integer. Let Pn+2 be a convex polygon with n + 2 vertices
labelled 0, 1, . . . , n+1 in clockwise order. The partition of the interior of Pn+2 into
triangles by non-crossing diagonals is called a triangulation of Pn+2. The partition
uses n− 1 diagonals. The set of triangulations of Pn+2 will be denoted by Tn, and
its cardinality by tn. It is well known that tn is the Catalan number Cn = 1

n+1
(2n

n

)
,

n ≥ 1 (see [10]).

Example 2.1. Let n = 6, and let P8 be a convex octagon with vertices labelled
0, 1, 2, 3, 4, 5, 6, 7. We can have the following triangulation:

0

1
2

3

4

5
6

7

We denote by Sn the group of permutations of {1, 2, . . . , n} and write the ele-
mentary transpositions as (i, i + 1) for 1 ⩽ i ⩽ n− 1. Let w be the set of words on
{1, 2, . . . , n}. A word in w is said to be standard if its letters are pairwise distinct.
The set of standard words of length n in w will be identified with Sn. In this way a
permutation σ in Sn will be represented by the word such that σ = a1a2 . . . an ∈ w,
where ai = σ(i) for all 1 ⩽ i ⩽ n. Note that the left multiplication of the word
σ by the elementary transposition τ = (i, i + 1) results in the word where the
i-th and (i + 1)-th letters of σ are permuted. Indeed, if σ = uaiai+1v, where
u = a1a2 . . . ai−1 and v = ai+2 . . . an (with the convention that u or v is empty if
i = 1 or i = n− 1, respectively), then τσ = uai+1aiv.

Example 2.2. Let σ be in S6 such that σ =
(

1 2 3 4 5 6
3 1 4 2 6 5

)
. The word associated

with the permutation σ is σ = 314265.

The triangulations of a fixed convex plane (n+2)-gon Pn+2 will be now associated
with permutations in Sn. The way to associate a permutation with a triangulation
is described in the following example.

Example 2.3. Let n = 6 and let P8 be a convex octagon with vertices labelled in
clockwise order from 0 to 7.
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Let σ = 314265 ∈ S6. We associate with σ the triangulation T of P8 constructed
by the following procedure. We read the word σ from left to right.

• The first letter being 3 gives rise to the diagonal joining its two neighbors
in P8, namely 2 and 4. Cutting vertex 3 from P8, the newly added diagonal
{2, 4} gives rise to a 7-gon P ′

8 on the vertices 0, 1, 2, 4, 5, 6, 7.
• The next letter in σ is 1 and gives rise to the diagonal {0, 2} joining its

two neighbours in P ′
8. Now we cut vertex 1 from P ′

8 and denote by P ′′
8 the

resulting hexagon on vertices 0, 2, 4, 5, 6, 7.

0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

7

• The third letter of σ is 4 and gives rise to the diagonal {2, 5} between its
neighbours in P ′′

8 .

0

1 2

3

4

56

7

• The fourth letter of σ is 2 and gives rise to the diagonal {0, 5} between its
two neighbours in the vertex sequence 0, 2, 5, 6, 7.
• Finally, the fifth letter of σ is 6 and gives rise to the diagonal {5, 7} joining

its neighbours in the square on 0, 5, 6, 7.

The resulting triangulation T of P8 has inner diagonals {2, 4}, {0, 2}, {2, 5}, {0, 5},
{5, 7}.
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0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

7

The degree of a vertex i in Pn+2 is the number of edges of T which are incident
to i. A vertex of degree exactly 2 is called an ear in T .

The words in Sn obtained with the cutting procedure will be called the readings
of the triangulation T .

According to [4, Lemma 13], the map t : Sn → Tn is surjective. Then each word
will be associated with a triangulation. The following example gives the readings
of such triangulation T in Tn.
Example 2.4. The readings of the triangulation T = t(σ = 314265) obtained in
Example 2.3 are

σ = 314265 σ5 = 134265 σ10 = 613425
σ1 = 341625 σ6 = 136425 σ11 = 341265
σ2 = 346125 σ7 = 163425 σ12 = 134625
σ3 = 316425 σ8 = 634125
σ4 = 314625 σ9 = 631425,

all in S6.
Definition 2.5. Let T ∈ Tn, and let t : Sn → Tn be the surjective map. The
canonical reading of T is the lexicographically smallest word in the fiber t−1(T ).
Example 2.6. In Example 2.4 the canonical reading of T is σ5 = 134265.
Remark 2.7. It was shown in [4, Lemma 15] that the set of readings of T is
exactly the fiber t−1(T ). It is clear that the canonical reading is unique in t−1(T ).

Now we are going to define the separation of a permutation, as in [4].
Definition 2.8. Let σ = a1a2 . . . an ∈ Sn. A separation of σ is a factorization
σ = σ1σ2an where the subwords σ1 and σ2 have the property that ai < an for
every letter ai in σ1, and aj > an for every letter aj in σ2.
Example 2.9. Let σ = 134265 ∈ S6. Then σ has a separation given by σ1 = 1342,
σ2 = 6, and an = a6 = 5.
Remark 2.10. The separation of a permutation is unique if it exists. Let σ =
σ1σ2an be a separation; the triangulation T = t(σ) associated with σ is of the form
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n + 1 0

an

t (σ2) −→ ←− t (σ1)

Note that a canonical reading is a separation.

We know that an ∈ {1, . . . , n}; then we can rewrite a separation as follows:
σ = σ1σ2i with i ∈ {1, . . . , n}.

For a fixed i in {1, . . . , n}, the following theorem gives the number of canonical
readings ended by i.

Theorem 2.11. Let n ⩾ 1 be an integer, i ∈ {1, . . . , n}, and Sn the permutation
group. Let σ = σ1σ2i be a canonical reading.

(1) The number of canonical readings in Sn ended by i is ∆i such that we have

∆i = 1
i

1
n− i + 1

(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)
.

(2)
n∑

i=1
∆i = 1

n + 1

(
2n

n

)
.

Before giving the proof of the above theorem, let us state the following lemma.

Lemma 2.12. Let n ⩾ 1 be an integer. We have
n∑

i=1

1
i

(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)
= 1

2

(
2n

n

)
.

Proof. The assertion holds for n = 1 and n = 2, as shown by
1
1

(
0
0

)(
0
0

)
= 1 = 1

2C1
2

and
2∑

i=1

1
i

(
2 (i− 1)

i− 1

)(
2 (2− i)

2− i

)
= 1

1

(
0
0

)(
2
1

)
+ 1

2

(
2
1

)(
0
0

)
= 2 + 1 = 3

= 1
2

(
4
2

)
= 1

2
4 · 3
2 · 1 = 3.
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We state a pair of identities that will be used below:(
n

p

)
= n

p

(
n− 1
p− 1

)
, (2.1)(

n

p

)
=

(
n

n− p

)
. (2.2)

Now fix n ∈ N, and assume that the assertion is valid for every i ∈ {1, . . . , n}.
Then
n+1∑
i=1

1
i

(
2(i− 1)

i− 1

)(
2(n + 1− i)

n + 1− i

)

=
n∑

i=1

[
1
i

(
2(i− 1)

i− 1

)(
2(n− i + 1)

n− i + 1

)]
+ 1

n + 1

(
2n

n

)

=
n∑

i=1

[
2
i

(
2(i− 1)

i− 1

)(
2(n− i) + 1

n− i

)]
+ 1

n + 1

(
2n

n

)
by (2.1)=

n∑
i=1

[
2
i

(
2(i− 1)

i− 1

)(
2(n− i) + 1

n− i + 1

)]
+ 1

n + 1

(
2n

n

)
by (2.2)=

n∑
i=1

[
2
i

(
2(i− 1)

i− 1

)
2(n− i) + 1

n− i + 1

(
2(n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)
by (2.1)=

n∑
i=1

[
2
i

(
2− 1

n− i + 1

)(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)

=
n∑

i=1

[(
4
i
− 2

i(n− i + 1)

)(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)

=
n∑

i=1

[(
4
i
− 2

n + 1

(
1
i

+ 1
n− i + 1

) )(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)
.

Due to the fact that
n∑

i=1

1
i

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
=

n∑
i=1

1
n− i + 1

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
,

we obtain
n+1∑
i=1

1
i

(
2 (i− 1)

i− 1

)(
2 (n + 1− i)

n + 1− i

)

=
n∑

i=1

[[
4
i
− 2

n + 1
2
i

] (
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)

=
n∑

i=1

[(
2n

n + 1
2
i

) (
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)]
+ 1

n + 1

(
2n

n

)

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



CLUSTER ALGEBRAS OF TYPE An−1 THROUGH PERMUTATION GROUPS 61

= 2n

n + 1

(
2n

n

)
+ 1

n + 1

(
2n

n

)
= 2n + 1

n + 1

(
2n

n

)
by (2.1)=

(
2n + 1
n + 1

)
by (2.2)=

(
2n + 1

n

)
by (2.1)= n + 1

2(n + 1)

(
2 (n + 1)

n + 1

)
= 1

2

(
2 (n + 1)

n + 1

)
. □

Proof of Theorem 2.11. (1) Let σ = σ1σ2i be a separation, i ∈ {2, . . . , (n− 1)}.
The triangulation T = t (σ) associated with σ is of the form

n + 1 0

i

t (σ1) −→ ←− t (σ2)

Note that t (σ1) is a triangulation of a (i+1)-gon. The number of triangulations
of a (i + 1)-gon is the Catalan number ti−1 = 1

i

(2(i−1)
i−1

)
.

Considering t(σ2), we will see that it is a triangulation of a (n− i + 2)-gon,
whose number of triangulations is

tn−i = 1
n− i + 1

(
2 (n− i)

n− i

)
.

Due to the fact that the triangle with vertices 0, i, n + 1 is fixed in T = t(σ),
all other separations ended by i are obtained by making flips in t(σ1) and t (σ2).
Then, combining this, we obtain that the number ∆i of separations in Sn ended
by i is ∆i = ti−1tn−i. Thus

∆i = 1
i

1
n− i + 1

(
2(i− 1)

i− 1

)(
2(n− i)

n− i

)
.
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In the cases i = 1 and i = n, the triangulation is associated with an (n + 1)-gon.
In these cases the number of triangulations is the same and coincides with tn−1.
Therefore, the formula of ∆i above can apply for i = 1 and i = n. Indeed, i running
through {1, 2, . . . , n}.

(2) Now let us compute
∑n

i=1 ∆i:
n∑

i=1
∆i =

n∑
i=1

1
i

1
n− i + 1

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)

=
n∑

i=1

1
n + 1

[
1
i

+ 1
n− i + 1

] (
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
.

Due to the fact that
n∑

i=1

1
n− i + 1

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
=

n∑
i=1

1
i

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
,

we get
n∑

i=1
∆i = 1

n + 1

n∑
i=1

2
i

(
2 (i− 1)

i− 1

)(
2 (n− i)

n− i

)
,

and by Lemma 2.12, we have
n∑

i=1
∆i = 1

n + 1

(
2n

n

)
. □

3. Cluster algebras and permutations

In this section we establish the connection between cluster algebras of type An−1
and the permutation groups Sn.

3.1. Mutations in the permutation group Sn. Consider a diagonal d in a
triangulation T . This diagonal is the diagonal of some quadrilateral. Then there
is a new triangulation T ′, which is obtained by replacing the diagonal d with the
other diagonal of that quadrilateral. This process is called a flip. It is well known
that flips are the mutations in triangulations [1, 6]. According to [2, Theorem 2.11],
there exists a bijection between the set of triangulations and the set of canonical
readings which are separations. Before stating how to mutate separations, we will
define passivity classes.

Definition 3.1. Let σ = uaiai+1v and γ = uai+1aiv be two permutations of Sn.
The word σ and γ are in the same passivity class if and only if the factor v contains
a letter p in w which is between the letters ai and ai+1, that is, ai < p < ai+1 or
ai+1 < p < ai.

Example 3.2. Considering the readings of T in Example 2.4, we can say that
σ3 = 316425 and σ4 = 314625 are in the same passivity class by taking u = 31,
v = 25 and p = 5.
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It results from [4, Proposition 16] that two permutations being in the same
passivity class represent the same triangulation T in Tn. Then by Remark 2.7, the
fiber t−1 (T ) represents a passivity class. It is now clear to see that each canonical
reading represents a passivity class.

Now we are ready to define how to mutate a word σ in the permutation group Sn.
Definition 3.3. Let σ = uxyv and γ = uyxv be two permutations of Sn. The
permutation γ will be called a mutation of σ, µxy (σ) = γ, if and only if there is
no letter p in v which is between the letters x and y.

Overall, to mutate a permutation is to exchange two of its consecutive letters
under the above condition.
Example 3.4. Let σ = 1234 in S4. We have µ23 (σ) = 1324 and µ13 (µ23 (σ)) =
µ13 (1324) = 3124.

• µ13 ◦ µ23 (σ) is not defined because µ13 ◦ µ23 (σ) and µ23 (σ) are in the
same passivity class. Then the words 1324 and 3124 represent the same
triangulation.

• µ24 (1324) = 1342 is defined but µ13 (1342) is not, because it stays in the
same passivity class.

3.2. Permutations and diagonals. It is clear that each permutation corresponds
to a triangulation. Then, taking a permutation, we need to recognize the diagonals
composing the triangulation.

Let σ = a1a2 · · · an be a permutation of Sn. We know that σ corresponds to a
triangulation, so we need to enumerate all diagonals composing this triangulation
through the permutation σ. To this end, we go step by step from left to right in
reading σ. Recall that a diagonal joins two vertices of the convex polygon Pn+2.
Then we denote a diagonal joining the vertices i and j by {i, j}. Each ak in σ is
an element of the set {1, 2, . . . , n}. The vertices of the convex polygon Pn+2 are
labelled 0, 1, . . . , n + 1 in clockwise order.

Now take ak in σ and rewrite σ as σ = UakV , where U = {a1, a2, . . . , ak−1}
and V = {ak+1, ak+2, . . . , an}. Considering ak as an element of the ordered set
L = {0, 1, . . . , n + 1}, we construct two subsets of L as follows: W1 is the subset of
L such that, for all p ∈ W1, we have p < ak; and W2 is the subset of L such that,
for all q ∈W2, we have q > ak.

For a fixed ak in σ, we can construct the vertices of the corresponding diagonal
as follows: The label of the first vertex is equal to{

max (W1 ∩ V ) if W1 ∩ V is not empty;
0 if W1 ∩ V is empty.

The label of the second vertex is equal to{
min (W2 ∩ V ) if W2 ∩ V is not empty;
n + 1 if W2 ∩ V is empty.

Then we get the two vertices ending the diagonal. Indeed, taking the permuta-
tion σ = a1a2 · · · an and starting the procedure with a1 and ending with an−1, we

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



64 K. E. MAGNANI

obtain all diagonals composing the triangulation T associated with the permuta-
tion σ.

Example 3.5. Let σ1 and σ2 be in S4 such that σ1 = 1234 and σ2 = 4231. First
let us give all diagonals composing the triangulation T1 associated with σ1. Here
the set L = {0, 1, 2, 3, 4, 5} and a1 = 1, a2 = 2, a3 = 3. For a1 = 1, we have U = ∅,
V = {2, 3, 4}, W1 = {0}, W2 = {2, 3, 4, 5}. Since W1 ∩ V = {0} ∩ {2, 3, 4} = ∅, the
first vertex of the diagonal is 0.

Next, we compute W2 ∩ V = {2, 3, 4, 5} ∩ {2, 3, 4} = {2, 3, 4}.
Since min (W2 ∩ V ) = min {2, 3, 4} = 2, the second vertex of the diagonal is 2.

Thus the diagonal obtained is {0, 2}.
For a2 = 2, we get the diagonal {0, 3}. For a3 = 3, we get the diagonal {0, 4}.

Then the diagonals composing the triangulation T1 are {0, 2}, {0, 3}, {0, 4}.

T1:
5

0
1

2

3
4

Now we give the diagonals composing the triangulation T2 associated with σ2.
Here we have L = {0, 1, 2, 3, 4, 5}, a1 = 4, a2 = 2, a3 = 3.

Starting with a1 = 4, we have V = {1, 2, 3}, W1 = {0, 1, 2, 3}, W2 = {5}.
Since W1 ∩V = {1, 2, 3} ≠ ∅, max (W1 ∩ V ) = 3, the first vertex of the diagonal

is 3. Since W2 ∩ V = ∅, the second vertex of the diagonal is 5. Therefore, the
diagonal obtained is {3, 5}.

For a2 = 2, we get the diagonal {1, 3}. For a3 = 3, we get the diagonal {1, 5}.
Then the diagonals composing the triangulation T2 are {1, 3}, {1, 5} and {3, 5}.

T2: 5

0
1

2

3
4
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Let σ = uxyv be a canonical reading in Sn. It is well known that (according to
Definition 3.3) µxy(σ) = uyxv. This action corresponds to a flip of a diagonal. To
see this, we need some statements.

Note that a diagonal {i, j} in a triangulation is a diagonal of some quadrilateral
such that i and j are two of its four vertices. Assume that the diagonal {i, j} is
the corresponding diagonal of x in the word σ = uxyv. To get the other vertices
we need the following definition.

Definition 3.6. Let α, β be two vertices of a polygon Pn+2. The vertices are said
to be adjacent if they are related by a diagonal or a side of Pn+2.

Denote by Eα the set of the vertices that are adjacent to vertex α:
Eα = {k | 0 ⩽ k ⩽ n + 1, {α, k} ∈ T} .

It is clear that the remaining vertices of the quadrilateral that has {i, j} as
one of its diagonals compose the second diagonal and are obtained as Ei ∩ Ej .
The intersection Ei ∩ Ej gives two vertices because the triangulation T is of non-
intersecting diagonals:

Ei ∩ Ej = {α, β} , α, β ∈ {0, 1, . . . , n + 1} .

Then the flip of the diagonal {i, j} in the triangulation T gives the diagonal {α, β}
with a new triangulation T ′:

i β

jα

i β

jα

flip

Remark 3.7. According to the cutting procedure in Section 2, letter x in the
word σ = uxyv is a vertex of the quadrilateral having {i, j} as one of its diagonals.
Thus, x is one of the vertices of Ei ∩ Ej .

This allows us to give the following theorem.

Theorem 3.8. The mutation of permutations as defined in Definition 3.3 corre-
sponds to the flip of diagonals in a triangulation of a polygon. □

Example 3.9. (1) Let σ1 = 1234 be a word in S4 and µ23 (σ1) = 1324 (see Ta-
ble 1). The diagonal corresponding to 2 in σ1 is {0, 3}, E0 = {1, 2, 3, 4, 5},
E3 = {2, 4, 0}, and E3 ∩ E0 = {2, 4} Then the diagonal {2, 4} replaces the
diagonal {3, 0} in the new triangulation T ′

1.
(2) Let σ2 = 4231 be a word in S4. The corresponding diagonals are {3, 5},
{1, 3}, {1, 5}. The diagonal corresponding to 3 in σ2 is {1, 5}, E1 =
{3, 5, 0, 2}, E5 = {3, 1, 0, 4}, and E3 ∩ E5 = {3, 0}.

In the triangulation T2 associated with σ2, we make a flip on the diagonal
{1, 5} and we get the new diagonal {0, 3} in the new triangulation T ′

2.
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Permutations σ1 = 1234 µ23 (σ1) = 1324

Corresponding
diagonals {0, 2}, {0, 3}, {0, 4} {0, 2}, {2, 4}, {0, 4}

Triangulations T1:
5

0
1

2

3
4

T ′
1:

5

0
1

2

3
4

Table 1. Illustration of Theorem 3.8.

T2:
5

0

1

2

3
4

T ′
2:

5

0

1

2

3
4

Let T ′′
2 be the corresponding triangulation of µ31 (σ2) = 4213. According

to the cutting procedure in Section 2 we have the following triangulation:

T ′′
2 :

5

0

1

2

3
4

It is clear that T ′′
2 = T ′

2.

3.3. Cluster algebras and permutations. A cluster algebra is generated by a
set of variables, called cluster variables, obtained recursively by a combinatorial
process known as mutation starting from a set of initial cluster variables [8, 9].

Let T be any triangulation of polygon Pn+2. According to [5, Sections 3.4 and
4.1], the cluster algebra A (T ) associated with the triangulation T of the polygon
Pn+2 is constructed as follows.

Start with the convex polygon Pn+2 and choose a triangulation T by non-
intersecting diagonals. Label these diagonals xi,j , i, j ∈ {0, 1, . . . , n + 1}, i /∈
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{j − 1, j, j + 1}; label the sides yi,i+1 and the vertices of Pn+2 as 0, 1, . . . , n + 1.
The labels for the remaining diagonals are obtained by flipping diagonals. The
cluster algebra A (T ) is the subalgebra of the field of rational functions in xi,j and
yi,i+1 generated by all the labels in Pn+2. The cluster algebra associated with a
triangulation of a polygon Pn+2 depends only on n+2 and is of type An−1 because
this cluster algebra has rank n− 1.

In this text the variables yi,i+1 are taken to be equal to 1.
The cluster algebra associated with a polygon Pn+2 can be identified with the

coordinate ring C[Gr2,(n+2)], where Gr2,(n+2) is the Grassmannian of 2-planes in an
(n + 2)-dimensional vector space [7]. The coordinate ring C[Gr2,(n+2)] is generated
by the three-term Plücker coordinates pi,j for 0 ⩽ i < j ⩽ n + 1. The relations
among the Plücker coordinates are generated by the three-term Plücker relations:
for any 0 ⩽ i < j < k < l ⩽ n + 1, one has

PikPjl = PijPkl + PilPjk.

By assigning the value of Pij to the variable xi,j associated with the diagonal
{i, j} of the triangulation T of the polygon Pn+2, the three-term Plücker relations
correspond to the exchange relation in A (T ). We state the following.

Theorem 3.10. Let n ⩾ 1 be an integer, σ a canonical reading in the permutation
group Sn, and T the triangulation associated with σ. The cluster algebras A(T ) of
type An−1 and A(σ) coincide.

Before giving the proof of Theorem 3.10, let us give the analogous of [7, Corol-
lary 5.3.6].

Proposition 3.11. Cluster variables in a seed pattern of type An−1 can be labelled
by diagonals of a convex (n + 2)-gon Pn+2 so that

• clusters correspond to canonical readings;
• flips correspond to mutations of permutations.

Cluster variables labelled by diagonals are distinct, so there are altogether (n−1)(n+2)
2

cluster variables and 1
n+1

(2n
n

)
seeds. □

Proof of Theorem 3.10. Each canonical reading produces n − 1 diagonals which
correspond to a seed. According to Theorem 2.11, there are 1

n+1
(2n

n

)
canonical

readings, so by Proposition 3.11, these canonical readings correspond to seeds and
the mutations of canonical readings correspond to flips, which correspond to cluster
mutations. □
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