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THE w-CORE-EP INVERSE IN RINGS WITH INVOLUTION

DIJANA MOSIC, HUIHUI ZHU, AND LIYUN WU

ABSTRACT. The main goal of this paper is to present two new classes of gen-
eralized inverses in order to extend the concepts of the (dual) core—EP inverse
and the (dual) w-core inverse. Precisely, we introduce the w-core-EP in-
verse and its dual for elements of a ring with involution. We characterize the
(dual) w-core-EP invertible elements and develop several representations of
the w-core—EP inverse and its dual in terms of different well-known generalized
inverses. Using these results, we get new characterizations and expressions for
the core—EP inverse and its dual. We apply the dual w-core-EP inverse to
solve certain operator equations and give their general solution forms.

1. INTRODUCTION

Let R be an associative ring with unit 1. For a € R, we define the kernel
ideals a®° = {x € R : ax = 0} and °a = {z € R : za = 0}, and the image ideals
aR ={ax: 2 € R} and Ra = {za:z € R}.

An element a € R is Drazin invertible if there exists € R such that

rar =z, ar=za and dof ="z (1.1)

for some nonnegative integer k. The Drazin inverse z of a is unique (if it exists)
and denoted by a” (see [6]). It is known that the Drazin inverse was defined in
a semigroup [6] and in a semigroup without the identity we have k > 0, while for
a semigroup with identity we have & > 0 and for k = 0 we define a® = 1. The
smallest above mentioned k is called the Drazin index of a and denoted by ind(a).
Recall that a” double commutes with a, that is, ay = ya implies a”y = ya”. For
ind(a) = 1, a is group invertible and its group inverse is denoted by a*. Notice
that a# satisfies a#aa# = a#, a#a = aa® and aa®a = a. It is well known that
a* exists if and only if a € a>R N Ra? if and only if aR = a?*R and Ra = Ra?
[6, 25]. The sets RP and R# involve all Drazin invertible and all group invertible
elements of R, respectively.
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An involution a +— a* in a ring R is an anti-isomorphism of degree 2, i.e.
(a*)* =a, (a+b)* =a*+b* and (ab)* = b*a* for all a,b € R. An element p € R
is an orthogonal projector if p?> = p = p*. Significant results related to orthogonal
projectors can be seen in [I6]. An element a € R is Moore—Penrose invertible if
there exists x € R satisfying the so-called Penrose equations [26]:

(1) axa =a, (2) zaxr==x, (3) (ax)* =azx, (4) (za)* = za.

The Moore-Penrose inverse z of a is uniquely determined (if it exists) and denoted
by « = a'. The set of all Moore-Penrose invertible elements of R will be denoted
by R1.

An element z € R is a {1}-inverse of a € R if axa = a and, in this case, we
say that a is regular. An element x € R is a {1,3}-inverse (or {1,4}-inverse) of
a if axa = a and (ax)* = azx (aza = a and (ra)* = za). The symbol a{l,3}
(or a{l,4}) stands for the set of all {1,3}-inverses ({1, 4}-inverses) of a. The set
of all {1,3}-invertible ({1, 4}-invertible) elements of R will be denoted by R{!:3}
(R114}). An interesting class of {1}-inverses was studied in [4].

The notion of inverse along one element introduced by Mary [19] is important
because a number of well-known generalized inverses, such as group inverse, Drazin
inverse and Moore—Penrose inverse, are special cases of this inverse. For d € R, an
element a € R is invertible along d if there exists z € R satisfying

zad =d=daxr and x € dRNTRM.

The inverse x of a along d is unique (if it exists) and denoted by all? [I9]. According
to [19, 21], @ € R* if and only if all* exists if and only if 111* exists. In addition,
a# = all* and 11® = aa#. Also, a € RP if and only if all*" exists for some positive
integer k; and a € R if and only if al@” exists. Furthermore, a® = al@" and
at = al*”. More results about the inverse along one element can be found in
2,13, 20, 38).

The core-EP inverse was introduced in [27] for a square matrix over an arbitrary
field, as an extension of the core inverse given in [I]. The core-EP inverse for
elements of a ring was defined in [I0] in the following way. Let a € R. Then a is
core-EP (or pseudo core) invertible if there exists an element x € R such that

k+1 k

ar? =z, za"'=d* and (az)* =ax

for some positive integer k. The core-EP inverse of a is unique (if it exists) and
denoted by a®. The smallest positive integer k£ in the definition of the core-EP
inverse is called the pseudo core index of a and denoted by I(a), either equals the
Drazin index ind(a) of a if ind(a) > 0, or is 1 if ind(a) = 0 (see [10, Theorem
2.3] and observe that Gao et al. defined the Drazin index of a as the smallest
positive integer k that satisfies (1.1])). Notice that a is core-EP invertible if and
only if there exist a” and (a¥)(*3) € a*{1,3} for k > ind(a) [10, Theorem 2.3]. In
addition, a® = aPd* (a*)%3) . The dual core-EP inverse a@ of a was introduced
as the unique solution of equations x?a = x, a**'z = a* and (za)* = za for some
positive integer k. In a special case that ind(a) = 1, the core-EP inverse of a
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becomes the core inverse a® = a#aal [1], and the dual core-EP inverse coincides
with the dual core inverse ag = ataa®.

Recently, the core inverse and core-EP inverse were studied in numerous papers
[5, 1T, 13}, 14}, 15, [17), 30} 32} 39]. For instance, different properties and representa-
tions of the core-EP inverse were proved in [, [9, [I7, [I8] 23] B1]; limit representa-
tions for the core-EP inverse were given in [32]; continuity of core-EP inverse was
investigated in [12]; an iterative method for computing core-EP inverse was proved
in [28, 29]. The core-EP inverse was extended for operators on Hilbert spaces in
[22, 24] and for tensors in [30].

Two new classes of generalized inverses were recently presented in [36]. Precisely,
the w-core inverse and its dual for elements of a ring with involution were introduced
in [36] as generalizations of the core inverse and dual core inverse, respectively. We
now state the definition of the w-core inverse. Let a,w € R; we say that a is w-core
invertible if there exists an element x € R such that

awz? =2, rawa=a and (awz)* = awz.

If such z exists, it is the uniquely determined w-core inverse of a [36] and denoted
by a@. Note that the 1-core inverse of a coincides with the core inverse of a, i.e.
al@ = a®. Some significant results about the w-core inverse can be found in [35].

Motivated by a number of researches and popularity of the core—EP inverse and a
recent investigation about the w-core inverse, the aim of this paper is to introduce
a new class of generalized inverses which includes the core-EP inverse and the
w-core inverse. In particular, we present the w-core-EP inverse and its dual for
elements of a ring with involution. In this way, we define two new wider classes
of generalized inverses, extending the notions of the core—EP inverse, the w-core
inverse and their duals. Various characterizations for the existence of the w-core—
EP inverse and its dual are established as well as corresponding representations
involving the inverse of w along a corresponding element, group inverse, Drazin
inverse, {1, 3}-inverse and {1,4}-inverse of adequate elements. Using these results,
we obtain new characterizations and representations of the core—EP inverse and its
dual. Applying the dual w-core—EP inverse, we solve several operator equations
and give the forms of their general solutions.

We shortly describe the content of this paper. In Section 2, we define the w-core—
EP inverse and investigate necessary and sufficient conditions for the existence of
the w-core-EP inverse and its representations. New characterizations and expres-
sions of the core-EP inverse are also given. The dual w-core-EP inverse is studied
in Section 3 as well as the dual core-EP inverse. Section 4 contains applications of
the dual w-core-EP inverse in solving some operator matrix equations.

2. THE w-CORE—EP INVERSE

In order to extend the notions of the core-EP inverse and the w-core inverse,
we define the w-core—EP inverse in a ring R with involution.
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Definition 2.1. Let a,w € R. Then a is called w-core-EP invertible if there exists
an element x € R such that

awz? =z, z(ew)*la = (aw)*a and (awz)* = awz

for some nonnegative integer k. In this case, x is a w-core-EP inverse of a.

Observe that, for £ = 0 in the above definition, the w-core-EP inverse becomes
the w-core inverse. Notice that the 1-core-EP inverse is equal to the core-EP
inverse. Thus, core-EP invertible and w-core invertible elements are w-core-EP
invertible. The smallest nonnegative integer k in the definition of the w-core-EP
inverse is called the w-core-EP index of a and denoted by i, (a).

Theorem 2.2. Let a,w € R. Then a has at most one w-core-EP inverse.

2 k+1 k

Proof. Tf x is the w-core-EP inverse of a, then awz® = z, x(aw)*tta = (aw)*a
and (awz)* = awz for some nonnegative integer k. We have z(aw)**2? = (aw)*+!
and thus = = (aw)®. O

Since the w-core-EP inverse of a is unique, if it exists, by Theorem [2.2] we use
the symbol aw® to denote the w-core—EP inverse of a.

Although core-EP invertible elements are w-core-EP invertible, the converse is
not true in general. In the next example, we give a w-core-EP invertible element
which is not core-EP invertible.

Example 2.3. Let R = Z be the ring of all integers. For a = 2 and w = 0, we
conclude that a is w-core-EP invertible with a? = 0. However, a is not Drazin
invertible in Z and so it is not core-EP invertible.

Several necessary and sufficient conditions for the existence of the w-core-EP
inverse are established now.
Theorem 2.4. Let a,w € R. Then the following statements are equivalent:

(i) a is w-core—EP invertible;
(i) there exists an element x € R such that

2

awz? =z,  z(aw)*la

= (aw)*a, zawz =z,
awx(aw)ka = (aw)ka and (awz)* = awz

for some nonnegative integer k;
(iii) there exists an element x € R such that

awz(aw)*a = (aw)*a, (aw)*aR =2R and Rz =TR ((aw)ka)*

for some nonnegative integer k;
(iv) there exists an element x € R such that

awz(aw)*a = (aw)*a  and (aw)*aR = 2R = 2*R

for some nonnegative integer k;
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(v) there exists an element x € R such that
awz(aw)*a = (aw)*a  and (aw)*aR = 2R D =*R

for some nonnegative integer k;
(vi) there exists an element x € R such that

awz(aw)fa = (aw)ka, ° ((aw)ka) =° and z2°= (((aw)ka)*)
for some nonnegative integer k;

(vii) there exists an element x € R such that
awz(aw)fa = (aw)*a, °((aw)*a) =°z and 2° 2 (((aw)*a)*)
for some nonnegative integer k;

(viii) there exists an element x € R such that

k+1a — (

o

[e]

aw)*a, awz = (aw)"z" and (awz)* = awz

awz? =z, x(aw)
for some nonnegative integer k and all/some positive integer n.

Proof. (i) = (ii): Assume that z is the w-core-EP inverse of a. Thus, for some

nonnegative integer k, awr? = z, z(aw)**'a = (aw)*a and (awz)* = awz. Then
r = awz? = (aw)?z® = - - = (aw)* M 2" = ((aw)*a)wa >
= z(aw)* awz*? = rawz
and
k+1 k

(aw)*a = z(aw)* o = awz?(aw)* M a = awz(aw)a.

(ii) = (iii): Using z(aw)**'a = (aw)*a and awz?

(aw)*aR = z(aw)* aR C 2R = awz*R = (aw)*awz"* TR C (aw)*aR.
k k

= x, we have

Thus, (aw)*aR = 2R. The assumptions awz(aw)*a = (aw)

imply

a and (awz)* = awz

R ((aw)ka)* =R (awx(aw)ka)* =R ((aw)ka)* awz C Rex.
Since awx = (aw) 121 we have
x = zawz = z(awz)" = x ((aw)k+1mk+1)*
=z ((aw)*awz*1)" = 2 (wa**1)" ((aw)*a)”,
which gives Rz C R ((aw)ka)*. Hence, Rz =R ((aw)ka)*.
(iii) = (iv) = (v): It is evident.

(v) = (i): From awz(aw)*a = (aw)
u€R,

kq and (aw)*aR = xR, we get, for some

z = (aw)fau = awz ((aw)kau) = awz?.
The hypothesis (aw)*aR D z*R yields, for some y € R,

r=y ((aw)ka)* =y (awx(aw)ka)* =y ((aw)ka)>k (awz)* = z(awz)*.
)* implies that (awz)* = awz and so x = zawz. Because
ko = zv = zaw(zv) = z(aw)*Ha.

Further, awz = awz(awzx
(aw)*a = xv for some v € R, we have (aw)
Therefore, x = ay .
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(iif) = (vi) = (vii): These implications are obvious.

(vii) = (i): The condition awz(aw)*a = (aw)*a gives 1 — awz € ° ((aw)¥a) =
°r. Thus, (1 — awz)r = 0, i.e. * = awx?. Since ((aw)*a)*(awz)* = ((aw)ka)*,
we have 1 — (awz)* € (((aw)ka)*)o C z°. Hence, z = z(awz)* yields awz =
awz(awz)* = (awz)* and = zawz. Now, 1 — zaw € °z = ° ((aw)*a) implies
(aw)*a = x(aw)**T1a. So, x is the w-core-EP inverse of a.

(i) & (viii): This equivalence is clear. O

In the case that & = 0, notice that Theorem recovers [36, Theorem 2.6]
related to w-core invertible elements.

Remark 2.5. Let a,b,c € R. An element x € R is a (b, ¢)-inverse of a if zax = z,
R = bR and Rx = Re. The (b, ¢)-inverse of a is unique, if it exists, and denoted
by al®€) [7]. By Theorem iii), for a,w € R, we have that a is w-core-EP
invertible if and only if aw is ((aw)*a, ((aw)*a)*)-invertible for some nonnegative
integer k. In this case, a® = (aw)”((aw)ka’((aw)k“)*).

Applying Theorem [2:4] for w = 1, we get new characterizations for core-EP
invertible elements.

Remark 2.6. Let a € R. Then a is core-EP invertible if and only if there exists
an element = € R such that, for some nonnegative integer k and all/some positive
integer n, one of the following equivalent statements holds:

(i) az? =z, xa**? = a** raxr = z, aza®t! = ¥t and (ax)* = ax;

(ii) ara®*t! = a**t1 ¥R = 2R and Rz = R(a*+1)*;
aza®t! = ¢**t1 and oF 'R = 2R = =*R;

111

—

)
)
iv) aza**l = a**! and "R = 2R D 2*R;
(V) azxaFtl = ak+17 o(akJrl) — % and z° = ((ak+1)*)o;
(vi) aza®t! = aF*l ° (1) = °x and 2° D ((aFT1)*)°;
(vii) ax? =z, za**? = o**! and (ax)* = ax = a™z".

By [36, Theorem 2.11], a is w-core invertible if and only if there exist wll* and
al3) ¢ a{1,3}. In this case, a? = wlleg(:3) We can develop a representation of
the w-core-EP inverse in terms of the inverse along a corresponding element and
{1, 3}-inverse, generalizing [36, Theorem 2.11] for the w-core inverse.

Theorem 2.7. Let a,w € R. Then the following statements are equivalent:

(i) a is w-core—EP invertible;

(ii) there exist wl@w)?®a gpg ((aw)ka)(l’g) € ((aw)ka) {1,3} for some nonneg-
ative integer k;

(ii) there exist wl@) @ gnd ((aw)’”l)(l’s) € ((aw)*1) {1,3} for some non-
negative integer k;

(iv) there exist wll(@)a gnd ((aw)k+1a)(1’3) € ((aw)**ta) {1,3} for some non-
negative integer k.
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In addition, if any of statements (1)—(iv) holds, then, for some nonnegative integer k
and ((aw)ka)(1’3) € ((aw)ka) {1,3},

a? = (aw)kw”(aw)ka ((aw)ka)(l’g) .

Proof. (i) = (ii): Let = be the w-core-EP inverse of a. Then awz? = z, z(aw)**la =

(aw)*a and (awz)* = awx for some nonnegative integer k. Because

k+1

(aw)fa = z(aw)"a = 2 ((aw)*a) wa = 2* (aw) ' awa = 2* (aw)*awawa = . ..

= 2" (aw)*aw(aw)*a € R ((aw)*a) w ((aw)*a)

and

Fa = z(aw)* e = awz®(aw)* o = - = (aw) P23 (qw)

= (aw)*aw(aw)*awz® 3 (aw) *'a € ((aw)*a) w ((aw)*a) R,

(aw)

by [21, Theorem 2.2], we deduce that w € Rll(@w)*a, Furthermore, from the rela-
tions

Fa = (aw)*aw(aw)*awz® 3 (aw)*a

= ((aw)*a) w(aw)*awz* 3 aw ((aw)*a)

(aw) (2.1)

and

k+1 k k+1)*

(aw)Fawz" T = awz = (awz)* = ((aw)*awz ,
we observe that (aw)fa € R(13).
(ii) = (i): Suppose that © = (aw)kwu(a“’)k“ ((aw)*a

integer k and ((aw)ka)(l’g) € ((aw)*a) {1,3}. Notice that

(19)
)

for some nonnegative

aw)®a k+1w\|(aw)ka

(aw)*a = (aw)*aww( = (aw)
and (aw)*a = w“(““’)k“w(aw)ka = w”(”“’)k“(wa)k"’l. Since wl(ew)’ e — (aw)*au =
v(aw)¥a for some u,v € R, we get wllew) e — (aw)*a ((aw)ka)(1’3) wlew)®a anq
wllew)*a — yll(aw)*a ((aw)ka)(l’g) (aw)*a. Therefore,

awr = (aw)kﬂw”(“w)k“ ((aw)ka)(1’3) = (aw)*a ((aw)ka)(l’?’)
gives (awx)* = awx and

awz?® = (aw)® ((aw)ka)(l’g) (aw)kw”(aw)ka ((aw)ka)

( a (1,3)
[(aw)ka ((aw)ka)(l’?)) (aw)ka} (wa)*u ((aw)ka)(
( w

1,3)

. (aw)kw‘l(a“’)k“ ((aw)ka)(l’B)

= (aw)*[a(wa)*u] ((aw)*a)
=z.
According to [2I, Theorem 2.1], we have

wl@)*s = (qw)*+1)# (aw)*a = (aw)* ((aw)*+!)#a.
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So,
z(aw)*a = (aw)kwl\(aw)’“a ((aw)ka)(l’g) (aw)**1a
= (aw)k [wH(aw)ka ((aw>ka)(1,3) (aw)ka} wa — (aw)kwu(aw)kawa

= (aw)* ((aw)*)* (aw)*awa = [(aw)"* ((aw)"*)*a](wa)"

aw)ka( )k+1 k

= wll( (aw)*a

O

and * = @y .

(i) = (iii): By [37, Lemma 2.2], recall that u € R{13} if and only if u €
Ru*u. Since (aw)Fa € R} for some nonnegative integer k, we have (aw)*a €
R ((aw)*a)” (aw)*a, which yields (aw)**! € R ((aw)*a)” (aw)**!. Notice that,
by the equivalence (i) < (ii), holds. Hence, (aw)*a € (aw) T R, which gives
((aw)ka)” € R ((aw)*1)". Now (aw)* ' € R ((aw)*+1)" (aw)*+! implies that
(aw)F+t € RIL3Y,

(i) = (iv): Because (aw)** € RIS} gives (aw) ! € R ((aw) 1) (aw)r*,
then (aw)**'a € R ((aw)**1)" (aw)*a. Also, (aw)*a = (aw)F+1l@) e anq

wlaw)*a — (aw)*au for some u € R imply
aw = (aw)kﬂw“(“w)k“w = (aw)* a(wa)*uw.

Therefore, ((aw)*1)" € R ((aw)*+'a)” yields (aw)**'a € R ((aw)*+'a)” (aw)*+1a
and so (a )k“a e R{L3}
(iv) = (i
((aw ’““‘101)(1 P e ((aw)*a) {1,3}, for some nonnegative integer k, we have
(aw ((aw)r+? ) A (aw)**+1a ((aw)k“a)(l’?’) and thus ((aw)*a) {1,3} #
]

(aw)* ! = (aw)*

): Since wl@w)’™a exigts, by 21, p. 1132], (aw)¥a is regular. Using

aw awa

0.

Remark 2.8. It is clear that the representation of the w-core-EP inverse given
in Theorem does not depend on the choice of {1, 3}-inverse. Indeed, for z,y €

((aw)ka) {1,3}, we have that (aw)*axr = (aw)*ay and wll(@w)*a — wH(aw)kay(aw)ka,
which imply wll@w)ay — w”(“w)k“y(aw)kam = (w”(MU)kay(aw)ka)y — wl\(aw)kay
and (aw)kw“(aw)kag; = (aw)kwl\(aw)kay

As a consequence of Theorem we obtain the following characterization of a
core—EP invertible element and its expression based on the inverse along an element
and the {1, 3}-inverse.

Corollary 2.9. Let a € R. Then the following statements are equivalent:
(i) a is core—EP invertible;
(i) there exist 119" and (a*+1)13) € (ab+1){1,3} for some nonnegative in-
teger k;
(iii) there exist 114" and (ak+2)(1’3) € (a*2){1,3} for some nonnegative
integer k.
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In addition, if any of statements (1)—(ii) holds, then, for some nonnegative integer k

and ((aw)ka)(1’3) € ((aw)ka) {1,3},

a® = gkl (ak“)(l’s).

By Theorem and some properties of inverse along an element proved in [21],
we can provide more characterizations of w-core-EP invertible elements.

Theorem 2.10. Let a,w € R. Then the following statements are equivalent:
(i) a is w-core—EP invertible;
(ii) (aw)ka € (aw)**'R and there exist ((aw)kJ“l)# and ((aw)ka)(l’g) €
( ) {1,3} for some nonnegative integer k;
(iii) (aw)ka € R(wa)**! and there emist ((wa)k“)# and ((aw)ka)(1’3) €
((aw)*a) {1,3} for some nonnegative integer k;
(iv) (aw)*a € (aw)**T1aR N R(aw)?**1a and there exists ((aw)ka)(l’g) €
((aw)* ) {1,3} for some nonnegative integer k.
In addition, if any of statements (1)—(iv) holds, then, for some nonnegative integer k

and ((aw)ka)(l’g) € ((aw)’“a) {1,3},
a = ((aw)k+1)# (aw)**a ((aw)ka)(l’?)) = (aw)*a ((wa)k“)# ((aw)ka)(l’g) ,

w

Proof. This result is evident by Theorem [2.7]and [2I, Theorems 2.1 and 2.2]. O
For w =1 in Theorem [2.10] we get the next result.

Corollary 2.11. Let a € R. Then the following statements are equivalent:
(i) a is core—EP invertible;
(ii) a*t' e R*¥ N R for some nonnegative integer k.
In addition, if any of statements (1)—(ii) holds, then, for some nonnegative integer k
and (a*+t1)(13) € gF+1{1 3},
a@ _ (ak+1)#a2k+1(ak+1)(1,3) _ ak(akJrl)@'

We can show that a is a core-EP invertible element if and only if a is a-core-EP
invertible.

Theorem 2.12. Let a € R. Then the following statements are equivalent:

(i) a is core-EP invertible;

(ii) a is a-core—EP invertible.
Proof. Since a is core-EP invertible, by Corollary |2 a*tl € R#*¥ nRA) for
some nonnegative integer k. Then a2k+2 (a*+1)2 ¢ R# and a?#*! = gkabt! =
a®(aFt1)2(a" 1) # € a? 2R, For y € a#*1{1, 3}, the equalities a**lyar*t! = aF+!
and a**ly = (a¥*1y)* imply a?**+1a(abt1)#ya?* 1 = ?*+1 and

a2k+la(ak+1)#y _ ak+1y _ (ak—i-ly)* _ (a%ﬂa(akﬂ)#y)*,

i.e. a(a®*h)#y € a?*T1{1,3}. Using Theorem [2.10, we deduce that a is a-core-EP
invertible.
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If a is a-core EP-invertible, then, by Theorem alle™™ exists and a2+ €
R(13) for some nonnegative integer k. Since alla™™ exists, we have that a € RP
with ind(a) < 2k + 1. So, by [10, Theorem 2.3], a is core-EP invertible. O

Consequently, when w = a in Theorem Theorem and Theorem
we present a list of characterizations for core-EP invertible element using Theo-
rem [2.12)

Corollary 2.13. Let a € R. Then the following statements are equivalent:
(i) a is core—EP invertible;
(ii) there ewist all”™™ and (a1 (13) ¢ 264101 3 for some nonnegative
integer k;
(iii) there exists an element x € R such that

2

za®k 3 = a1 and  (d®2)* = d®z

a’a? =z,
for some nonnegative integer k;
(iv) there exists an element x € R such that

rak+3 — g2k+1 2 2,2k +1 — 2k+1

a’x? =z, , ra‘x =, a and (a’z)* = a’x

for some nonnegative integer k;
(v) there exists an element x € R such that

a?xa® T = 2L PPHIR — 2R and Rax = R(a2k+1)*

for some nonnegative integer k;
(vi) there exists an element x € R such that

a?za® Tt = o?* 1t and d*TaR = 2R = 2'R

for some nonnegative integer k;
(vii) there exists an element © € R such that

a?ra® 1 = ¢?* 1 and PR = 2R D 2R

for some nonnegative integer k;
(viii) there exists an element x € R such that

a2xa2k+1 — G/Qk-i-l7 o(a2k+1) =% and z° = ((a2k+1>*)o

for some nonnegative integer k;
(ix) there exists an element x € R such that

a2xa2k+1 _ a2k+17 O(a2k+1) — % and 2° 2 ((a2k+1)*)0

for some nonnegative integer k;
(x) a®*1 € a®**2R and there exist (a**T2)# and (a?*T1)(13) € ¢2kF1{1 3}
for some nonnegative integer k;
(xi) a®**' € Ra**2 and there exist (a®*T2)# and (a?*+1)(13) ¢ o2k+1{1, 3}
for some nonnegative integer k;
(xii) a?**! € a** 3R N Ra* 3 and there exists (a?Ft1)(13) € o2F+1{1,3} for
some nonnegative integer k.
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In addition, if any of statements (i)—(xii) holds, then, for some nonnegative inte-
ger k and (a?*+1)(13) ¢ (a2+1){1,3},

aa@ _ azka‘lazwrl (a2k+1)(1,3) — (a2k+1)#a4k+1(a2k+1)(1,3).

It is interesting to observe that a being w-core—EP invertible is equivalent to aw
being core—EP invertible.

Theorem 2.14. Let a,w € R. Then the following statements are equivalent:
(i) a is w-core—EP invertible;
(ii) aw is core—EP invertible;
(iii) there ewist (aw)? and ((aw)k)(l’g) € (aw)k{1,3} for k > ind(aw);
(iv) there ewist (aw)? and the unique orthogonal projector p € R such that
pR = (aw)*aR for k > ind(aw).
In addition, if any of statements (1)—(ii) holds, then i, (a) < I(aw) < iy(a) + 1
and, for ((aw)ka)(1’3) € ((aw)ka) {1,3},

a® = (au)® = (aw)"p = (aw)” (aw)"a ((aw)*a) .

Proof. (i) = (ii): It is clear by Theorem

(ii) = (i): If x is the core-EP inverse of aw, then awz? = x, z(aw)**! = (aw)*
and (awz)* = awx for some positive integer k. Because x(aw)¥*ta = (aw)*a, we
conclude that x is the w-core-EP inverse of a.

(ii) < (iii): This equivalence follows by [10, Theorem 2.3].

(iii) = (iv): For k > ind(aw) and ((aw)k)(m) € (aw)*{1,3}, we observe that
y = w(aw)?” ((aw)k)(l’s) € ((aw)*a) {1,3} by

(aw)kay = (aw)kaw(aw)D ((aw)k)(l’s) = (aw)k ((aw)k)(l’g)

and
(aw)kay(aw)ka = (aw)k ((aw)k)(l’g) (aw)ka = (aw)ka.
Set p = (aw)*ay. Hence, p = p* = p? and pR = (aw)*ayR = (aw)*aR.

To prove the uniqueness of p, let two orthogonal projectors p and p; satisfy
PR = (aw)*aR = p1R. Then p = pip and py = pp1 gives p = p* = (p1p)* = pp1 =
pi1-

(iv) = (i): Because there exist (aw)? and the unique orthogonal projector
p € R such that pR = (aw)*aR for k > ind(aw), we have p = (aw)*au for

ome u € R, and (aw)*a = p(aw)*a. Therefore, (aw)ka = (aw)*au(aw)*a and

s
((aw)Fau)* = p = (aw)*au, that is, (aw)fa € RM3). We now observe that
(1,3)

p = (aw)*au = (aw)Fa ((aw>ka)(1,3) (aw)rau = (aw)ra ((aw)ra)™ p, where
((aw)ka) ™ € (aw)*{1,3}. So,
p =" = plaw)*a ((aw)*a) " = (aw)*a ((aw)*a) .

(1,3

Denote by z = (aw)Pp = (aw)? (aw)*a ((aw)*a) ). From the relations

awz = (aw(aw)® (aw)*)a ((aw)ka)(l’?)) = (aw)*a ((aw)ka)(l’s) =p,

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



556 DIJANA MOSIC, HUIHUI ZHU, AND LIYUN WU

awz? = pr = [(aw)ka ((aw)ka)(1’3) (aw)ka} w((aw)?P)%a ((aw)ka)(1’3)
= (aw)*(aw)Pa ((aw)ka)(l’?’) =z
and
z(aw)* o = (aw)Pplaw)*ta = (aw)P (aw)*ta = (aw)*a,
we deduce that z is the w-core-EP inverse of a. t

As a consequence of Theorem and [34, Theorem 4.4], we develop one more
representation for the w-core-EP inverse.

Corollary 2.15. Let a,w € R. Then the following statements are equivalent:
(i) a is w-core—EP invertible;
(i) R = R(aw)* @ °((aw)*) = R((aw)¥)* @ °((aw)*) for some positive inte-
ger k;
(iii) R = (aw)*R @ ((aw)*)° = R((aw)*)* @ °((aw)*) for some positive inte-
ger k.
In addition, if any of statements (1)—(iii) holds, then a® = (aw)?*=1b2a*s*, where
b,s €R, c € ((aw)*)° and t € °((aw)F) such that (aw)*b+ ¢ = s((aw)k)* +t = 1.

Proof. (i) < (ii) < (ili): These equivalences follow by Theorem and [34]
Theorem 4.4]. O

Under the assumption (aw)¥a € R, we prove that the w-core-EP inverse of a
is equal to the inverse of aw along (aw)*a((aw)*a)*.

Theorem 2.16. Let a,w € R such that (aw)*a € RT for some nonnegative inte-
ger k. Then the following statements are equivalent:

(i) a is w-core—EP invertible with i, (a) = k;

(ii) aw is invertible along (aw)*a((aw)*a)*.
In addition, if any of statements (1)—(ii) holds, then a® = (aw)”(m“)k“((m”)k“)*.
Proof. (i) = (ii): For d = (aw)*a((aw)ka)* and z = a?, we have

zawd = z(aw) T a((aw)*a)* = (aw)*a((aw)Fa)* = d
and
dawz = (awzd)* = (awz(aw)*a((aw)fa)*)* = ((aw)*a((aw)¥a)*)* = d* = d.

Applying Theorem and the hypothesis (aw)*a € R, it is clear that x €
(aw)*aR N R ((aw)ka)” = (aw)*a ((aw)ka)* R N R(aw)ka ((aw)’“a)* =dR NRd.
So, we deduce that z = (aw)“(“w)k“((aw)k“)*.

(if) = (i): Let ¢ = (aw)”(““’)ka((“w)k“)* and d = (aw)*a((aw)*a)*. Then TR =
dR = (aw)*aR and Rx = Rd = R((aw)*a)*. We observe that (aw)*a((aw)¥a)* =
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d = dawz = (aw)*a((aw)*a)*awz and v = du = (aw)*a((aw)¥a)*u for some
u € R, which imply
awz = (aw)* ta((aw)ka)*u = (aw)*a((aw)*a) ((aw)* a((aw)*a)*u)
— (aw)*a((aw)*a) aws = [((aw)*a)!]* (aw)*a)! (aw) a((w)*a)* awz)
= [((aw)* )] ((aw)*a)(aw)* a((aw)*a)" = (aw)*a((aw)"a)".
Thus, (awz)* = awz. Since
(@w)ha)* = (aw)a)! ((@w)*a((aw)a)*) = (@w)a)! (aw)a((@w)e) sz
= ((aw)*a)*awz,

we get (aw)*a = awzr(aw)*a. By Theorem [2.4] we conclude that x = a®. O

)

We also verify that a being w-core-EP invertible implies that away a is w-core
invertible.

Theorem 2.17. Let a,w € R. If a is w-core-EP invertible, then awaw®a is w-core
invertible and

(awa@a)® = o@.
) )

Proof. Suppose that a is w-core-EP invertible and a’ = away a. Then aw(ay )? =
ag , a?(aw k+lg = (aw)*a and (awaw®)* = awa® for some nonnegative integer k.
Now, d'way = aw(ay away ) = awag , which yields (a’wag)* = (awaw®)* =

© 2

awa? = a’wa? and a'w(aw )? = aw(a?) = ag. Furthermore, since
a@d'wa’ = (aQawa®)aw(awa®)a = aPLaw(aw) (o) +1q

(a2 (@) a)w(@R)**a = (aw)*aw (@) *'a

we deduce that (awaw®a)

3. THE DUAL w-CORE-EP INVERSE
This section is dedicated to investigating the dual w-core-EP inverse.

Definition 3.1. Let a,w € R. Then « is called dual w-core-EP invertible if there
exists an element x € R such that

2

2?wa =z, (aw)"H!

ar = (aw)*a and (zwa)* = zwa

for some nonnegative integer k. In this case, x is a dual w-core-EP inverse of a.
When k& = 0 in the above definition, the dual w-core-EP inverse coincides with

the dual w-core inverse. Also, the dual 1-core-EP inverse is the dual core-EP

inverse, i.e. dual core-EP invertible elements are w-core-EP invertible. The smallest

nonnegative integer k in the definition of the dual w-core—EP inverse is called the
dual w-core-EP index of a and denoted by i/, (a).
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As in Theorem [2.2] we can check the following result.
Theorem 3.2. Let a,w € R. Then a has at most one dual w-core-EP inverse.

Thus, if the dual w-core-EP inverse of a exists, it is unique and denoted by
ORIE
Lemma 3.3. Let a,w € R. Then a is dual w-core-EP invertible if and only if a*

is w*-core~EP invertible. In addition, (ag),w)" = (a*)% and i\, (a) = iy~ (a*).

Proof. Note that z is the dual w-core-EP inverse of a if and only if z?wa = x,
(aw)**lar = (aw)*a and (rwa)* = zwa for some nonnegative integer k, which
is equivalent to a*w*(z*)? = z*, v*(a*w*)**la* = (a*w*)*a* and (a*w*z*)* =
a*w*x* for some nonnegative integer k, that is, x* is the w*-core—EP inverse of a*.

O

Note that, for w = 1, Lemma [3.3]| recovers the well-known fact that a is dual
core-EP invertible if and only if a* is core-EP invertible [10]. In this case, (ag)* =
(a)®

Using Theorem [2:4] and Lemma [3.3] we can present the next characterizations
of dual w-core-EP invertible elements.

Theorem 3.4. Let a,w € R. Then the following statements are equivalent:

(i) a is dual w-core—EP invertible;

(i) there exists an element x € R such that

2?wa =z, (aw)*az = (aw)*a, 2war =z,
(aw)*azwa = (aw)*a  and (zwa)* = zwa

for some nonnegative integer k;

(iii) there exists an element x € R such that
(aw)*azwa = (aw)*a, R(aw)*a =Rz and zR = ((aw)ka)* R

for some nonnegative integer k;
(iv) there exists an element © € R such that

(aw)fazwa = (aw)*a  and ((aw)ka)* R=zR=2"R

for some nonnegative integer k;
(v) there exists an element x € R such that

(aw)*azwa = (aw)fa  and ((aw)ka)* R=2"R2DzR

for some nonnegative integer k;
(vi) there exists an element x € R such that

(aw)*azwa = (aw)ka, ((aw)ka)o =z° and °z="° (((aw)ka)*)

for some nonnegative integer k;
(vii) there exists an element x € R such that

(aw)*azwa = (aw)ra, ((aw)ka)o =2° and °z 2 °(((aw)*a)*)

for some nonnegative integer k;
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(viii) there exists an element x € R such that

2 k+1

?wa =z, (aw)* ez = (aw)fa, zwa = 2" (wa)" and (rwa)* = zwa

for some nonnegative integer k and all/some positive integer n.

Consequently, we have the following result concerning dual core—EP invertible
elements.

Corollary 3.5. Let a € R. Then the following statements are equivalent:

(i) a is dual core—EP invertible;
(ii) there exists an element x € R such that

2 k+2 k+1 k+1 k+1

rPa=zx, a"Cx=a"", zax=2z, T za=a and (za)* =za

for some nonnegative integer k;
(iii) there exists an element x € R such that

Mlra =d"*, R =Rz and 2R = (a")*'R
for some nonnegative integer k;
(iv) there exists an element x € R such that
a*ra ="t and (V)R =2R =2"R
for some nonnegative integer k;
(v) there exists an element x € R such that
a"lea = a**t and  (aPT)*R =2"R D 2R

for some nonnegative integer k;
(vi) there exists an element © € R such that

ak—i—lxa _ ak-{-l’ (ak+1)o = 2° and °x ="° ((ak+1)*)

for some nonnegative integer k;
(vii) there exists an element x € R such that

ak+1xa _ ak+1’ (ak+1)o =2° and °zx D o ((ak+1)*)
for some nonnegative integer k;

(viii) there exists an element x € R such that

2a=x, ot k+1

a

xT=a and (xa)* =za=2"a"

for some nonnegative integer k and all/some positive integer n.

Based on wl(@®)*a and ((aw)ka)(1’4), we give an expression for the w-core-EP
inverse of a.

Theorem 3.6. Let a,w € R. Then the following statements are equivalent:
(i) a is dual w-core—EP invertible;
(ii) there exist wl@w)*a gng ((aw)*a)
ative integer k;
(ili) there exist wl(@)*e gnd ((aw)k+1)(1’4) € ((aw)*1){1,4} for some non-
negative integer k;

9 e ((aw)*a) {1,4} for some nonneg-
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(iv) there exist wl(@)a gnd ((aw)k+1a)(1’4) € ((aw)**1a) {1,4} for some non-
negative integer k;

(v) (a ) € (aw)* 'R and there erist ((aw)k“)# and ((aw)ka)(M) €
((aw ) {1,4} for some nonnegative integer k;

(vi) (aw)ka € R(wa)**! and there exist ((wa)k+1)# and ((aw)ka)(1’4) €
((aw)*a) {1,4} for some nonnegative integer k;

(vii) (aw)ka € (aw)?***1aR N R(aw)***la and there exists ((aw)ka)(lA) €

((aw)* ) {1,4} for some nonnegative integer k.

In addition, if any of statements (1)—(ii) holds, then, for some nonnegative integer k
and ((aw)ka)(1’4) € ((aw)ka) {1,4},
(1,4) aw)*a (1,4) #
a®,w = ((aw)*a) wll(@W) e (ya)k = ((aw)*a) (aw)*a ((wa)F+1)
= ((aw)ka)uA) ((aw)kﬂ)# (aw)*a.
Now, we get new representations for the dual core-EP inverse.

Corollary 3.7. Let a € R. Then the following statements are equivalent:
(i) a is dual core-EP invertible;
(ii) there exist 1" gnd (aF 1A € (aF*+1){1,4} for some nonnegative in-
teger k
(iii) there exist 119" and (ak+2)(1’4) € (ab*2){1,4} for some nonnegative
integer k;
(iv) a1 e R#*¥ N R4 for some nonnegative integer k.
In addition, if any of statements (i)—(ii) holds, then, for some nonnegative integer k
and (1) ¢ (aF+1){1,4},

(ak+1)(1,4)1|\a’“+lak _ (ak+1)(1,4)a2k+1(ak+1)# _ (ak+1) k

CL@Z @a .

Theorem [2.7] and Theorem [3.6] imply the following result.
Corollary 3.8. Let a,w € R. Then the following statements are equivalent:

(i) a is both w-core-~EP invertible and dual w-core—EP invertible;

there exist wl(@)*a gngd ((aw)ka)Jr for some nonnegative integer k;

(i

i)
(iii) there exist wll@w)®a gng ((aw)’““)Jr for some nonnegative integer k;
(iv)

Clearly, we have the next relation between dual w-core-EP invertibility of a and
core—EP invertibility of wa.

there exist wl(@)*e gngd ((aw)’”‘la)T for some nonnegative integer k.

Theorem 3.9. Let a,w € R. Then the following statements are equivalent:

(i) a is dual w-core—EP invertible;
(ii) wa is dual core-EP invertible;

(iii) there exist (wa)P and ((aw)k)(1’4) € (aw)*{1,4} for k > ind(wa);
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(iv) there exist (wa)? and the unique orthogonal projector p € R such that
PR = ((aw)*a)" R for k > ind(aw).

In addition, if any of statements (i)—(ii) holds, then, for ((aw)ka)(1’4) €

((aw)ka) {1,4},

ap,w = (wa)p = p(wa)D = ((aw)ka)(IA) (aw)ka(wa)D.

Theorem 3.10. Let a,w € R be such that (aw)*a € R for some nonnegative
integer k. Then the following statements are equivalent:

(i) a is dual w-core—EP invertible with i\, (a) = k;
(ii) wa is invertible along ((aw)*a)*(aw)*a.

In addition, if any of statements (i)—(ii) holds, then ag),. = (wa)”((aw)ka)*(“w)k“,

Note that the dual w-core-EP invertibility of a gives dual w-core invertibility of
an adequate element.

Theorem 3.11. Let a,w € R. If a is dual w-core-EP invertible, then aag) ,wa
s dual w-core invertible and

(aa@),wwa)@.v = a®),w-

We also consider characterizations of dual a*-core-EP invertibility. Recall that,
by [33 Theorem 3.12], a € R is Moore-Penrose invertible if and only if a € aa*aR
if and only if a € Raa*a.

Theorem 3.12. Let a € R. Then the following statements are equivalent:

(i) a is dual a*-core—EP invertible;
(ii) (aa*)*a is Moore-Penrose invertible for some nonnegative integer k;
(iii) a is a*-core—EP invertible.

Proof. (i) = (ii): Since a is dual a*-core-EP invertible, by Theorem (a*)”(‘“‘*)ka
exists for some nonnegative integer k. So,

(aa*)*a € (aa*)faa*(aa*)*aR = (aa*)**1aR,

which gives (aa*)¥a € (aa*)**1(aa*)kaR C (aa*) 1 (aa*)** 1 aR = (aa*)* *+2aR.
According to [33, Theorem 3.12], we deduce that (aa*)*a is Moore-Penrose invert-
ible.

(ii) = (iii): If (aa*)*a is Moore-Penrose invertible, by [33, Theorem 3.12],
(aa*)fa € (aa*)***t1aR N R(aa*)***la C (aa*)**t1aR N R(aa*)?***t1a. Thus,
(a*)“(‘m*)k“ exists and, by Theorem a is a*-core-EP invertible.

(iii) = (i): The hypothesis a that is a*-core-EP invertible and Theorem
imply that (aa*)*a is Moore-Penrose invertible as in the implication (i) = (ii).
Using Theorem [3.6] we conclude that a is dual a*-core-EP invertible. O
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4. APPLICATIONS OF THE DUAL w-CORE—EP INVERSE

We can investigate solvability of some equations applying the dual w-core-EP
inverse. Precisely, we solve some operator equations using the following notations
in this section. Let B(X,Y") be the set of all bounded linear operators from X to Y,
where X and Y are arbitrary Hilbert spaces. Especially, B(X,X) = B(X). For
W e B(Y,X) and A € B(X,Y), according to [22], observe that Drazin invertibility
of W A (or, equivalently, W-weighted Drazin invertibility of A) implies the existence
of Ap,w € B(X). Notice that, for complex rectangular matrices A and W of
appropriated sizes, Ag,w always exists.

Theorem 4.1. Let W € B(Y,X) and A € B(X,Y) be such that WA is Drazin
invertible and i, (A) = k. For b € X, the equation

(AW Az = (AW)* Ab (4.1)
is consistent and its general solution is
r=Apwb+ (I - Ap,wWA)y (4.2)

for arbitrary y € X.
Proof. Assume that = has the form (4.2). Then
(AW Az = (AW)* T AAg wb + (AW AT — AgwW A)y = (AW)* Ab,

which shows that z is a solution to (4.1J).
If x is a solution to (4.1]), by the properties of the dual w-core-EP inverse Ag) w,
we obtain

Apwb = Ag wWAb = AT, (WA o = AT, W ((AW)* Ab)
= AGH W (AW Ax = AT (WA 2

= Ap,wW Ax.
Therefore,
r=Apwb+z—ApgwWAx = Agwb+ (I — Ag,wWA)z,
i.e. = has the form . O

In the case that Ag w exists, we obtain the next result as a particular case of
Theorem 1] for k£ = 0.

Corollary 4.2. Let W € B(Y, X) and A € B(X,Y') be such that Ag w exists. For
b e X, the equation
AW Az = Ab

is consistent and its general solution is
T = A@’Wb + (I — A@’WWA)y
for arbitrary y € X.

When X =Y and W = I in Theorem [£.I]and Corollary [1.2] we get solvability of
the following equations in terms of the dual core-EP inverse and dual core inverse.
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Corollary 4.3. Let W € B(Y,X) and A € B(X,Y) be such that WA is Drazin
invertible and ity (A) =k, and let b € X.

(i) The equation
AFH2p = AM
is consistent and its general solution is
r=Apb+ (I — ApA)y
for arbitrary y € X.
(ii) If Ag exists, the equation
A%z = Ab
is consistent and its general solution is
r=Agb+ (I — AgpA)y
for arbitrary y € X.

For W = A* in Theorem [.1] and Corollary [£:2] we can solve the equations
(AA*)*+1 Az = (AA*)F Ab and AA* Az = Ab as special cases.

Corollary 4.4. Let A € B(X,Y) be such that A*A is Drazin invertible and
i'4:(A) =k, and let b € X.
(i) The equation
(AA*FT1 Az = (AA")F Ab
is consistent and its general solution is
xTr = A®7A*b + (I — A@,A* A*A)y
for arbitrary y € X.
(ii) If A@,a- exists and b € X, the equation
AA*Ax = Ab
is consistent and its general solution is
xr = A@,A*b + (I — A@7A*A*A)y
for arbitrary y € X.
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