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COMPLETE PRESENTATION AND HILBERT SERIES
OF THE MIXED BRAID MONOID MB, 3

ZAFFAR IQBAL, MUHAMMAD MOBEEN MUNIR, MALEEHA AYUB,
AND ABDUL RAUF NIZAMI

ABSTRACT. The Hilbert series is the simplest way of finding dimension and
degree of an algebraic variety defined explicitly by polynomial equations. The
mixed braid groups were introduced by Sofia Lambropoulou in 2000. In this
paper we compute the complete presentation and the Hilbert series of the
canonical words of the mixed braid monoid MB1 3.

1. INTRODUCTION

The braid group B,41 for the Euclidean space consisting on n 4+ 1 strands is
given by the following Artin presentation [3]:

ZiZj = Zj 24 1f|Z—]|22

B ={(21,%22,...,% . )
ntl b=2 o Zi+1 Ri Ri+1 = Ri Ri+1 %4 1f1§z§n—1

Elements of B, ;1 are expressed in the generators 21, 2o, . .., z, and their inverses.
The presentation of the braid monoid MB,; is similar to the presentation of
B, +1. In [I2] Lambropoulou gave the presentation of the mixed braid monoid
Byy,n. Before this presentation she gave the presentation of By, in [II]. In this
paper we compute the Hilbert series of By 3.

Definition 1.1 ([I2]). The mized braid group By, n of m + n strands is defined as
BrBs = Bs Br if|’l“ - 3| >2

A1y eeey Oy, Bra1 Br Bra1 = Br Bry1 Brif 1 <r <n—1
517-“767171 O‘pﬂszﬁsapif32271§p§m
ap (Brog Br ') = (Broag By ) ap if ¢ <p

In the mixed braid group B, », the first index m denotes the strings which make
the identity braid of m strings, and the next n strings show the braiding by itself
and with m strings. The mixed braid group B,, , is a subgroup of the Artin braid
group By, 4,. The associated Dynkin diagram for By, , is given in [12]:

Bm,n =
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FIGURE 1.

In the above diagram, the double lines represent the relation of length 4, while
the relation of length 3 is represented by the single line. However, if the there is
no line among the generators, then they commute. Hence the Dynkin diagram for

MB; 5 reduces to

4
[ ——

21 Z2

FIGURE 2.

Therefore we have
MBLQ = <Zl, Z9 | Z9 2122721 = 217221 22> .

The complete structure and Hilbert series for MB o are computed in [2]. This
motivated us to compute the Hilbert series of MB; 3, where the Dynkin diagram
for M B 3 is as follows:

21

Z9 z3

FIGURE 3.

Therefore we have the following presentation of MB; 3:

MBy 3 = (21, 22,23 | 2322 23 = 20 23 20, 22 21 22 21 = 21 %3 21 %2, 23 21 = 21 73

In this case we have three Artin relations, namely, Ry : 2321 = 2123, R :
2921 2921 = 21 22 21 29, and Ry : 23 29 23 = 29 23 z2. The following is an example of
a braid in B 3.

In [6], Zafar et al. constructed a linear system for the braid monoid MB,,+; and
computed the Hilbert series for the braid monoids MB3 and MB4. The growth
series of binomial edge ideals was computed by Kumar and Sarkar in [10]. In [6],
growth series of the graded algebra of real regular functions on the symplectic
quotient associated to an SU2-module has been given.
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In [9], the authors computed the Hilbert series of the braid monoid M B in band
generators. In [8], the authors constructed a linear system of canonical words of
finite dimensional generalized Hecke algebras H(Qpn,3), where Q,,, = 2™ —1,m €
{3,4,5} and computed its Hilbert series. In [I4] Saito computed the growth series
of Artin monoids. In [I3] Mairesse and Mathéus gave the growth series of Artin
groups of dihedral type. In [I] we computed the Hilbert series of the Artin monoids
M(I2(p)), where M(I(4)) is isomorphic to MBi 2 and MB o is isomorphic to the
Artin monoid of type Bsy. In this paper we construct a similar kind of linear system
to compute the Hilbert series of MB; 3 which is isomorphic to the Artin monoid of
type Bs.

2. COMPLETE PRESENTATION OF MDB; 3

To obtain a canonical form of a word in an algebra, the diamond lemma by
G. Bergman [4] is extremely useful. To understand the notions of ambiguities and
canonical words, we start with his terminology.

Definition 2.1 ([4]). Let oy = ut and as = tv be two words consisting of the
left-hand sides of two relations R; and R; in M B, 3. The word of the form utv is
said to be an ambiguity and we denote it by R; — R;.

A word containing a sub-word of the left-hand side of any relation of a braid
monoid is called a reducible word, and a word that does not contain any sub-word
of the left-hand side of any relation is called an érreducible (or canonical) word.

Definition 2.2 ([5]). Let G be a finitely generated group and S be a finite set of
generators of G. The word length ls(g) of an element g € G is the smallest integer
n for which there exist s1,...,5, € SUS™! such that g = 51 - 5,,.

The diamond lemma says that a set of relations is complete if all the ambiguities
are solved. We call a complete set of relations in MB; 3 a complete presentation of
MB, 3. The other names for the complete presentation are being used as Grobner
bases, presentation with solvable ambiguities and rewriting system, etc. We find
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the system of linear equations of the canonical words of MB; 3 and solve this
system, which consequently leads to the Hilbert series of MB 3.

In a relation in MB; 3 we place the equivalent words on the left-hand side which
are greater in length-lexicographic ordering [7] (we choose a natural total order
21 < 23 < -+- < z, between the generators). For example, the words 25212021

and 21222122 are equivalent in the mixed braid monoid MDB; 3. Hence we write

. . . . 4
29212921 = Z1%2221%2 as the basic braid relation. We use the notation R; ) to express

jth generalized relation in MB; 3. The words Xzy X9 22Y and Xzo21 Xo1 2221Y
denote the products X2z and Xz521Y, respectively.

The ambiguity utv has two resolutions, namely (ut)v and u(tv). Let w = utv.
Then by L(w) we mean the canonical form of (ut)v and by R(w) we mean the
canonical form of u(tv). If L(w) and R(w) are identical, then the ambiguity is
solvable. If L(w) and R(w) differ by lexicographic order, then we get a new relation
in MBlyg.

Theorem 2.3. The complete presentation of MB1 3 is given by

_ _ _ R(4) R(4)
21,%2,%23 \ 2321 = X1 R3,R3R223 = Z2R2322,2221 %221 = 212271 %2, ",...,1117 ),

where

4 1
Rg ). zzz’IH' 292120 = 2129212527

—_
~—

(
(2) Rgl) © 23292723 = 20232227
(3) R§4) 23202320 = 20232528
(4) Rf) D Z3292] 20 23y = 223202l Zazy
(5) Ré4) D 232972128 2320 = ZoZ3Zoz1 222y
(6) Ré4) D o232B 2 2gzaz1 20 = 2023252125 2027
(7) R;4) D Zazerlayt 212 232021 2y = Zaz3zer Zaz1 2yt 2ok
(8) Ré4) 232921252 232021 20 = 20212320721 2228 2021
(9) Ré4) D o23(2B e 2y 2] 232021 2023 = 2023252128 2027 23 (202 2% )
(10) R%) o z3z(2 2yt 2R 2P 2 - )23zaz1 2023
= 29232027 202125 2021 2 23 (252 214 -+ +)
(11) Rﬁ) o 232921 (2527 252 -+ )232021 2223

= 292123%29212025 2927 23 (252217 -+ ),

with n,n1,n92,n3,... € N,

Proof. In this proof we use the inductive argument. We compute the relations
by solving the ambiguities involving the relations Ry, R;, and R and the new
relations.
(1) In [I] we computed the first relation (for p = 4) R§4), which is given by
R§4) : 222711“222122 = zlezlzgz?.
(2) For an ambiguity Re — Ry = 23222321 = wy (say), we have

R(w1) = Z3Z223%] = Z322Z1%3, L(wl) = Z322%3%1 = Z223%2%1.
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Hence we have a relation R, : 23222123 = 22232221. Again by solving a new
ambiguity R, — Ro = 2322212321 = w2 we have

_ _ 2 _ _
R(ws) = 2329212321 = 232227 23, L(wsy) = 2322212321 = 2223222122,

which gives another relation R, : 23222%23 = 2923%2221%2. By continuing the same
process we have the general relation

4
Ré ). 232221 %3 = 22232227 .
(3) In the ambiguity Ry — Ry = 2329232223 = w3, we have
Rus) = — i, L) = ~ 22033
W3) = 2322232223 = R329R3%2, W3) = 2322232273 = 22232923
Hence we have a relation R, : 23232329 = 20232523. Therefore in general we have
4
Ré ). 232 2329 = 2223,2%2:’;.
. L 4 .
(4) Successive ambiguities of Ré ) and R, lead to the relation
R(4) . n_ ni _ n ni
4+ R3R2%1 R9 R3R2 = 222322271 X2R3 -
(5) By solving R,,, — Ry = 232921232223 and generalizing, we have

4
Ré ). 2320212 2329 = 292322212975 -

(6) Ré4) t 232021 23202120 = 2023232125 29210 is obtained by solving the ambi-
guity of the relations R:(;l) and Rj.
(7) Solving the ambiguities formed by Rf) and Ri, we get

4
Rg ). 232027 25 212 232021 20 = ZoZ3Zaz| Zoz174 2oz 2.
. C 4 .
8) Successive ambiguities of R( ) and R, lead to the relation
5
R(4) . n_ ni _ n ni
g - Z3R22%1%9 Zl 23222129 = 22212322212223 2’22’1 .

(9) Now, solving the ambiguity formed by Ré4), Rffl), and Ry, we have

4
Rg ). zg(2h 2y 25221 -+ 232021 2023 = zgzgzgzlngzgz?lzz),(zg%? S ).
(10) The relation
4
Rgo) o ozaze(27 2yt 21 2g R 21 - - ) 2azez1 2023 = ZaZ3%07) 2oz 725 2oz P 23 (2a 2Tt - )

is obtained by solving the ambiguities formed by R§4), Rffl), and Ry.

(11) Successively solving the ambiguities formed by Rgl), Rf:l), and Ry, we get

). n,nina n _ n, .n ne _m
Ryt 23z (25211 297 21° -+ )zazez1 2223 = 2021232021202 2227 23(25° 2% -+ ).

All other ambiguities are solvable. Hence we have the complete set of relations. [
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3. HILBERT SERIES OF MB 3

Definition 3.1 ([5]). Let M be a group or a monoid and a, be the number of
elements of M of word length n. The Hilbert series of M for arbitrary variable ¢ is

&)
denoted by Hp(t) and is defined by Hps(t) = > ant™.
n=0

We use the complete presentation of MB; 3 to compute the Hilbert series. Let
Am+n) and B(Mm+1) denote the set of all canonical and reducible words in MB,,, ,,

respectively. In particular assume that A,(Lmﬂl) and Bfffﬁn) denote the set of
all canonical and reducible words in MB,, ,, respectively, where p is related to

n+m)
j(G—1)...k
denotes the collection of all canonical words in MB,, ,, that start with z;z;_q ... 2

and B§TZ+R) B+ enote the collection of all reducible words that start with

the prefix of a word while v is the suffix of the word. For example, A(

J(J+1),
Z(mtn)—1%(mtn)—2 - - - Zj A0 Z(m4n)—1Z(m4n)—2 * " 2122 * * - 25, respectively, and v is
a word in the generators 21, ..., 2,. The set B£%+n) denotes all the reducible words
starting with any word and ending in the generators zi,...,z,. Hence in MB 3

we have the following set of reducible words:

BY) = {mzzmn}, B, ={n4 M nnn), B = {znz),

(4) (4) (4) n
By s = {32227 23}, Bj 30 = {2325 2322}, Bi s = {z32227 25" 2322},
(4)
12,32 = = {23222125 2322},
(4)
2,
(

oS

B3 3010 = {2325 21" 232021 22}, BE ?2212 = {232027 25" 212 23222122},

B12),3212 = {23222125 2" 232221 22}, 35,322123 = {23(25 27" 252 27° - - - 2322212223},
35%322123 = {z322(27 23" 212 25° 21" - ) 232221 2223},

353)32123 = {232221(25 21" 25% - + ) 2320212223}

Assume that Q5" (¢) denotes the Hilbert series of BY%™™ and P{™ ™ (t) denotes
the Hilbert series of AEL"H_"). If A denotes a set of canonical words in MBiy, 1,

then EA£m+n) denotes the same set of canonical words with each index increased
by 1. For example, for Ag2 = {z1,2},2},...}, we have EA = {2,22,23,...}.
Therefore

PO =t 4834 = —

Lemma 3.2 ([2]). The following equations hold for the canonical words in MBi »:

(1) PP(#) = ey
(2) P (1) = A
(3) PV () = 755ty
(4) PRY) = =ty
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Corollary 3.3 ([2]). The Hilbert series for the canonical words in MBs o is
1
(1—t)(1—t—t2—1¢3)
Now, we have to find P1(4) (1), P2(4) (t), and P§4) (t) for the computation of the
Hilbert series H](é) (t) of MBs 3.
Lemma 3.4. The following equations hold for the reducible words in MBy 3:

H(3)( t) =

6
4 4 t
1) QY =t (2) Q%5 = T—1
@ _ (a _ _t*
3) =t (4) Q=
2,3 1,3 1_¢
3 5
() Q= () @4 = 7
6 6
4 t 4 t
(7) 5:2,2 = (1—1)2 (8) §2>32 1_¢
Now _ _t oW -t
(9) Qi3 = [=DE (10) Q33212 = [=DE
1) th 1) th
(11) Q7 3212 = “a-ue (12) Q133212 = A=
13) 0@ (1 —t+2t> — %) u 01+ ¢%)
( ) Q* 3212 - (1 _ t)3 ( ) 2 32123 (1 —t—12 — t3)(1 _ t)Q
2t13 @ t12(1 —|—t2)

(15) 1 32123 (1 —t—12 — t3)(1 _ t)g (16) Q12,32123 = (1 —t—12 — t3)(1 _ t)2
O —t 262+ —1°)
(1—t—2—3)(1— 1)

Proof. We proceed with the proof by considering tail-wise reducible words. Here
for all the reducible words we use the decompositions.

(17) Q105 =

(1) We have only one word that starts and ends with 2021, i.e., BY}Q) = {22212921 }.
Hence we have QYL% =t

(2) Since 35212 = {22 202120} = {2021} ¥ A§2) x {z22122}, we have Qigm =
£
(3) For B( g = {z32223}, we have Qg% =
(

4) Similarly, B§73 = {23222723} = {2’32’22’1} X1 A?) x {z3}. Therefore QY}% =

4.

(5) As there are two types of reducible words whose tail is z3, that is, Big =
ng L Bfg, we have

4 3
QY =4 o = .

(6) The decomposition ngQ = {z3202320} = {2322} X EA?) X {z322} gives

(4) t5

2,32 = 1-¢°
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e set = R3%221 k9 k3225 = 12372711 X1 X X 12322 gives
7) Th Bi‘fiz P AP x 24 i
the relation Q1 32 = (1t6t)2
mmilar y, = 2322212’ 2329 232972122 X2 X 1%3%2¢. ere-
Similarly, Bl3s, = n AP Th

_ t°
fore Q12732 =17

(9) Using complete presentation, we have two different types of reducible words

ending with z3zo (as 3%)32 is a subword of BE :22 for n = 1), i.e. Bigg = Bé gg

B§,?22' Hence, we have

5 6 5
@ _ @ @t ot
Quse = Qa3 T Q13 = T 1—-t)2 (11—t

(10) As ngzm = {23282 23202120} = {2322} X EA%Q) X AgQ) x {z3292122}, we

4 8
have Q(27%212 = (13702

11) B = {23202 20 22 23292120y = {232021} X AP 2A® 43
1,3212 172 41 1 1 1
10
{z3222122} gives Ql %212 = 7(1t 77
(12) B£2)3212 = {Z3z2zlz2 21 z32021 29 = {232221 } X ZA(Q) X A( X {z3202122}
gives the relation Q12’3212 = %
(13) Using reduced complete presentation, we have three types of reducible words

ending with 2325212, i.e., B£432212 = 35432212 U B§ 32212 U B£2?3212- Hence we get

4)
Qi ,3212 — QQ ;3212 + Q1,3212 + Q12,3212
tS th th
= + +

(1=t (1=t (1-1)?
31—t 4262 - t7)
T a-P

(14) The word Bégng = {z3(2h 21" 25227 - - - )zg2021 2223} = {2322} X Agg) X
{23229212023} can be written as {2322} X ZA?) X {2320} X {z12223} as well as

{2329} x EA%Q) X Agz) X {z3222122} X {z3}. In this case we have reducible subwords,
which will be subtracted. Hence we have

3522123 = {2322} x AY) x {z322212223}\ ((3522 x {z12223}) U (352212 X {Zs})) ;

for which we have
8 9
4 t t
5,22123 = t7P23 T1-¢ (1,715)2

Using Lemma [3.2) we have

W At £
282128 7 1T 2 43 1t (1—t)2
t0(1 4 12)

T A—t—e—t)(1-1t)?2
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(15) As we have Bﬁgng = z320(2] 25" 2% 202 21" - - - ) 232021 2223, We can write
Bﬁﬂzzug = {32221} X Ag3) x {#322212223}. Using the above argument we have
B§f‘§2123 = {z32921} X AgB) x {2z320212223}
\(({232221} X A(12) X {z92120} Xo12 xAéyi)Q X {2329212223})
U ({#32221} A(IQ) x {z3} x {22212223})

[ ({232221} X AgQ) X EAEQ) X {2322} X {212’223})

L ({232221} X A§2) X EA?) X AgQ) X {2’32’22122} X {Zg}))

Hence
t9 t9 th tll
54%2123 = t8P1(3) - Pz(f% - - -
’ 1—¢ 11—t (1-t2 (1-1¢)3
2t13
(1=t —t2—3)(1 —t)3
(16) Similarly, as B$?32123 = 232021 (2521 252 - - - ) 232021 2223, We can write

3932123 = {z3z2120} X A x {z320212023}
\(({2’3222122} X ZA?) X {232’2} X {21222’3})
L ({23222122} X EAgZ) X AgQ) X {23222122} X {23}))

Hence, using Lemma [3.2] we have
th tll

Q%),32123 = t9P2(3) 1t m
(1 + %)
(T—t—t2—13)(1—1¢)2"
(17) We have three types of reducible words ending with 2325212923, i.e.,

4 4 4 4
B£,§2123 = B§,§2123 U B§,§2123 U 352332123-

Therefore we get

4 4 4 4
Qi,g2123 = Qé,%zug + Q(l,%2123 + Qg2),32123

B (1 + %) N 2t"3
T A—t—-2-)1-t2 (1—-t—-2—-)1-1t)?
t12(1 +t2)

+

(1—t—1t2—13)(1—1t)2
(1 -t 422 41 — 1)
(Al —t—2—13)(1—1t)3"
For the computation of the Hilbert series of MB; 3, we have the following linear
system for the canonical words.

O
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Lemma 3.5. The following equations hold for the canonical words in MBy 3:
1) PY = p® 4 p®pY
9 P2(4) _ P(3) + P(3)P(4)

5) PV =t + 1PV + P§§)

4 4 2 4 3 (14t —t2 4 tt(1—t4+2t2 -3 4
6 Péz):tp()_ﬁp?f) ((1 1)2 )P() ( (1—t)3 )P?E2%2
t°(1—t4+2t%+t* —1°) (4)
T (A—t—t2—3)(1—1)3 * 32123

4 4 3 4 4 4 2 4 (1 2_¢3 4
() Pyt =Py — 5 P5Y — (13715)213( = (1( T Pizts — o Paatas
4 4 4 4 1 4
(8) Piyly = tPi1) — 15 Py — rrip Pinla — e esiyireye Pintas

4 4 4
9) Pz’fziz:’) = t4P?E ) - t4P3(2)-
Proof. The canonical words may start with zy, 2o, 2921, 222129, 23, 2322, 232221,
2322%21%9 OT 2322212223. By U we mean the disjoint union of sets.
(1) For the canonical words starting with z1, we have the decomposition of the
form A§4) = Agg) U (Agg) X Ag4)). The associated Hilbert series becomes

P = p® 4 pBpW.

2) The canonical words starting with zo have the form A(4) = A(g)l_l A(g) ><A(4) .
2 2 2 3
Hence

P® = P + PP P,
(3) The decomposition Aél) = AS) U (Ag) X Az(;l)) gives
P p® & PO p.
(4) The decomposition Aé1)2 = A(21)2 U (Agl)2 X A( )) gives
Piis(t) = Piiy + Py Py

(5) The canonical words starting with z3 can be written as Agl) = {z3 U ({23} x
A:(;l)) U A:(é). Therefore the corresponding Hilbert series is

PO =t +tP" + PY).

(6) By taking the product of z3 on the left side of the set of canonical words

starting with zo, we may have reducible words of any one of the form B,(f,),. In order
to get canonical words starting with z3z2, we have to get rid of the above-mentioned
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reducible words from the {z3} x Agl). Therefore,
©

4 4 4 4 4 4
Agz) = {23} x Aé )\((Bi?), X3 Ag’, )) (B( ?22 X3 A:(),2)> U (B*,3212 X 3212 Az(az)u)
4 4
U (Bi,:32123 X 32123 A:(>>2)123))'

Hence we have

4 4 2 3 ot —t+202 13 4
P3(2):tp2()_1_tP3()_(1_t)2P3(2)_ (1—t)3 P?E232
P -t 2P 1)
(1—t—12—13)(1—¢t)3 2212
Equivalently we have
2 3 4 2 3
@ _ @ t @ A —t4+27 1)
thy” — s _(1+W)P32 - TEE P3s19

7t5(17t+2t2+t47t5)P(4) 0
(1—t—t2—3)(1—¢)3 312 7

(7) Similarly we can write

A = {22221} X A(4)\((B(4§ x3 AS) U (B{Y, x32 AS)
4
- (38212 X 3212 A3212) U (B§2?3212 X 3212 Ai(’)2)12)

4 4 4 4
U (B§,322123 X 32123 Ag2)123) U (B§2?32123 X 32123 Ag2)123))-

Therefore we get

3 4 6 6
(4) (4) 2 (4) t (4) t (4) t (4)
P321—tP 417tP3 _(1*t)2p32 _(17t)3p3212_(17t)2p3212
- £ P TR
(1—t—t2—t3)(1—t)3 32123 (1—t—t2—t3)(1—t)2 32123
or
y_ 1 pa 4 g t°2-1) hu
PP ) 7tp3( ) _ (1 7 P P~ ﬁpﬁ;ﬁ?

Tt =18 PO g
(1—t—t2—3)(1—¢)3 %1%

(8) Similarly we have

(4 4 4
Aéz)u = {z3222122} X212 Azu\(( 12)32 X 32 A ) (B§2?3212 X 3212 A;(sz)u)

4 4
U (352332123 X 32123 A:(32)123))-

The corresponding Hilbert series becomes
t6

4 4 tt 4 4
P?S2]).2:tP2(1%_ 17tP?E2)_ (17t)2pé2%2_ (17t7t27t3)(1*

tT(1+¢%) (4)
t)2 32123
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or
4 6 1 42 7 2
(4) t (@ THE=2t+1_(y t'(14+¢%) 4
tP212_17tP32 - (lft)Q P3212_ (17t7t27t3)(1ft)2P32123_O.
(9) The decomposition Az(é)123 = {z322212223} X3 Aé4)\({232221222322} X 39 A:(é))
gives Piylos = t*PSY —t4P3) or #1P{Y — 4Py — P3),, = 0. O

Finally we have our main result.
Theorem 3.6. The Hilbert series of MBy 3 is

1

(4)
H,/(t) = :
(1) (L—t) (1 =2t — 24 t* + 15+ 16 +¢7 + 19)

Proof. Let Ty =1 —t—t>—t3and Th =1 — 2t — > +t* + > + 5 + 17 + 3. Then
solving the linear system given in Lemma [3.5] we have the augmented matrix of the
system:

1000 gx 0 0 0 0 T
—t(14t+t> t(1+t+t?
01 0 o =D 0 0 0 0 Pl
—t2 (14t t2(1+t
0010 = 0 0 0 0 e
_43 3
0001 = 0 0 0 0 =
0000 1-—t -1 0 0 0 t
42 1—¢)2 443 —t*(1—t42t2 13 —t°(1—t42t2 414 —t°
0 ¢t 0 0 = L (1,)t>2 0 ( a3 : (I—t)°Ty : 0
43 4t —t%(2—t —t7 (14 t+t2 13
00 t O Tit ﬁ -1 # W 0
44 (1—t)% 48 —t7 (14>
000 ¢ 0 %0 U ) 0
00 00 tt —t* 0 0 ~1 0 |
The solution gives the following values:
P _ ¢ pw _ +t417)
! (1—-t)(Tp)" 2 Ty ’
@y tA—t2 =83 —tt -5 — 16 —¢7) @  t*(1+1)
P3 - ) P21 - 9
TQ T2
P _ t* P _ t2(1 — 3 — 4 — 5 — 1)
21 T27 32 T2 ’
P _ 31—t =13 —t* —t7) P& _ (1 -2 =13 — %)
321 — Tg ’ 3212 — Tg ’
p -t 2 —13)
32123 T2 :
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All the canonical words in MB 3 are expressed as A4 = {e}I_IAYl) I_|A§4) I_IAé4).
Hence the corresponding Hilbert series is given by

Hy () = 1+ P + PV (1) + PV (1)

t t(1+t+t2)+t(1—t2—t3—t4—t5—t6—t7)
(1—=1)(Tz) T, T,
1

(I—t) (1 —2t—t2+t4 4+ 15 + 6 417+ 18)

= 1+ 3t + 82 + 2063 + 48¢4 + 1126° + 263t° + -+ + alVtF ..+ |

=1+

where a,(f) is an arbitrary constant. O

Definition 3.7. Let {ax}r>1 be a sequence of positive numbers and r be a positive
real number. The growth rate r of the sequence {ax}r>1 is defined as

log ak)
)
Corollary 3.8. The growth rate of MBj 3 is 2.29.

—Tm (
r 1I£nexp

Proof. The Hilbert series in rational form obtained in Theorem [3.6]can be resolved
(approximately) into its partial fraction, using Maple, as follows:
1
(1—t)(1—2t =2+t 4+ 15 +t6 +¢7 +18)
0.65564t + 0.51628 0.33333

= 21008567t + 135852 T 1—¢
0.60593t — 0.39941 0.56106¢ + 0.60272

t2 — 0.98615¢ + 1.49520 * t2 + 2.21096¢ + 1.45727
0.80972

0.4364 4+t~

The first four terms have negligible contribution in the approximation of the series;
however, the last term can be approximated as

0.809722

7% —1.8552{1 + 2.29¢ + (2.29)%t% + (2.29)33 + .- }.

0.43644 + ¢ {14229+ (2.20)7 + (2.29)°¢" + -}
Therefore al(f) ~ 1.8552(2.29)%. Hence the growth rate of MB; 3 is 2.29. O
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