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THE PRINCIPAL SMALL INTERSECTION GRAPH
OF A COMMUTATIVE RING

SOHEILA KHOJASTEH

Abstract. Let R be a commutative ring with non-zero identity. The small
intersection graph of R, denoted by G(R), is a graph with the vertex set
V (G(R)), where V (G(R)) is the set of all proper non-small ideals of R and
two distinct vertices I and J are adjacent if and only if I ∩J is not small in R.
In this paper, we introduce a certain subgraph P G(R) of G(R), called the
principal small intersection graph of R. It is the subgraph of G(R) induced by
the set of all proper principal non-small ideals of R. We study the diameter,
the girth, the clique number, the independence number and the domination
number of P G(R). Moreover, we present some results on the complement of
the principal small intersection graph.

1. Introduction

There are many papers on assigning a graph to a ring R, see, for instance,
[1, 3, 4]. Also, the intersection graph of some algebraic structures such as poset,
group, ring and module have been studied by several authors, see [2, 7, 8, 9, 10]
and [11]. Let R be a commutative ring, and let I(R)∗ be the set of all non-zero
proper ideals of R. In [5], the small intersection graph, G(R) of R was introduced
and studied. The vertex set of G(R), V (G(R)), is the set of all proper non-small
ideals of R and two distinct vertices I and J in V (G(R)) are adjacent if and only if
I ∩J is not small in R. In this paper, we continue the study of G(R) and introduce
PG(R), the induced subgraph of G(R) on the set of all proper principal non-small
ideals of R.

We first summarize the notations and concepts. Throughout the paper, all rings
are commutative with non-zero identity and all modules are unitary. Let M be an
R-module. A submodule N of M is called small in M (denoted by N � M) in
case for every submodule L of M , N+L = M implies that L = M . A module M is
said to be a hollow module if every proper submodule of M is a small submodule.
A cyclic module is a module that is generated by one element. We denote by J(R)
and Max(R) the Jacobson radical of R and the set of all maximal ideals of R,
respectively. If R has a unique maximal ideal, then R is said to be a local ring.
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Also, an ideal I of R is small (denoted by I � R) if I +K = R for some ideal K
of R implies K = R, or equivalently, I ⊆ J(R). As usual, Z and Zn will denote
the set of integers and the set of integers modulo n, respectively.

Let G be a graph with vertex set V (G). If a is adjacent to b, then we write
a— b. If |V (G)| ≥ 2, then a path from a to b is a series of adjacent vertices
a—x1 —x2 — · · · —xn — b. A graph G is connected if for every pair of distinct
vertices a, b ∈ V (G), there exists a path between a and b. For a, b ∈ V (G) with
a 6= b, d(a, b) denotes the length of a shortest path from a to b. If there is no such
path, then we will make the convention d(a, b) =∞. The diameter of G is defined
as diam(G) = sup{d(a, b) | a and b are vertices of G}. For any a ∈ V (G), the
degree of a, d(a), is the number of edges incident with a. A regular graph is a graph
where each vertex has the same degree. The complement of G, denoted by G, is
a graph on the same vertices such that two distinct vertices of G are adjacent if
and only if they are not adjacent in G. A graph G is complete if each pair of
distinct vertices is joined by an edge. For a positive integer n, we use Kn to denote
the complete graph with n vertices. Note that a graph whose edge-set is empty is
totally disconnected. A cycle is a path that begins and ends at the same vertex in
which no edge is repeated and all vertices other than the starting and ending vertex
are distinct. We use Cn to denote the cycle with n vertices, where n ≥ 3. If a
graph G has a cycle, then the girth of G (denoted by gr(G)) is defined as the length
of a shortest cycle of G; otherwise gr(G) = ∞. A forest is a graph with no cycle.
Also, a unicyclic graph is a connected graph with a unique cycle. Suppose that H
is a non-empty subset of V (G). The subgraph of a graph G whose vertex set is H
and whose edge set is the set of those edges of G with both ends in H is called the
subgraph of G induced by H and is denoted by 〈H〉. A graph G may be expressed
uniquely as a disjoint union of connected graphs. These graphs are called the
connected components, or simply the components, of G. For a connected graph G,
x is a cut vertex of G if 〈V (G)\{x}〉 is not connected. For every positive integer r,
an r-partite graph is one whose vertex set can be partitioned into r subsets, or
parts, in such a way that no edge has both ends in the same part. An r-partite
graph is complete r-partite if any two vertices in different parts are adjacent. We
denote the complete bipartite graph with part sizes m and n by Km,n.

A clique of a graph is a complete subgraph and the number of vertices in a
largest clique of a graph G, denoted by ω(G), is called the clique number of G.
An independent set is a subset of the vertices of a graph such that no vertices are
adjacent. The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by α(G). A dominating set is a subset S
of V (G) such that every vertex of V (G) \ S is adjacent to at least one vertex in S.
The number of vertices in a smallest dominating set, denoted by γ(G), is called the
domination number of G. By χ(G) we denote the chromatic number of G, i.e., the
minimum number of colors which can be assigned to the vertices of G in such a way
that every two adjacent vertices have different colors. A graph is weakly perfect if
χ(G) = ω(G).
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Here is a brief summary of the paper. We introduce the principal small in-
tersection graph of a commutative ring R, denoted by PG(R). In Section 2, we
prove that diam(PG(R)) ∈ {1, 2,∞} and gr(PG(R)) ∈ {3,∞}. Also, it is shown
that PG(R) is a forest if and only if PG(R) ∈ {K2,K2 ∪ K2}. Moreover, it is
proved that if R is a commutative ring with finitely many maximal ideals, then
γ(PG(R)) = 2 and α(PG(R)) = |Max(R)|. In Section 3, we study the complement
of the principal small intersection graph. It is proved that if Max(R) is finite, then
diam(PG(R)) ∈ {1, 2, 3} and gr(PG(R)) ∈ {3, 4,∞}. Among other results, we
prove that χ(PG(R)) = |Max(R)|, where Max(R) is finite.

2. Basic properties of PG(R)

We begin with the following definition.
Definition. Let R be a ring. The principal small intersection graph PG(R) is
the graph with the vertex set V (PG(R)), where V (PG(R)) is the set of all proper
principal non-small ideals of R, and two distinct vertices Rx and Ry are adjacent
if and only if Rx ∩Ry is not small in R.

Remark 2.1. Clearly, PG(R) is an induced subgraph of the intersection graph of
ideals of R. This is an important result of the definition.

To prove the next results, we use the prime avoidance theorem (see [12, p. 56]). If
{Mi}n

i=1 ⊆ Max(R), then Mi *
⋃

j 6=i Mj and
⋂

j 6=i Mj *Mi for every i, 1 ≤ i ≤ n.

Theorem 2.2. Let R be a ring. Then V (PG(R)) = ∅ if and only if R is a local
ring.

Proof. First, suppose that V (PG(R)) = ∅. Assume to the contrary that R is a
non-local ring and M1,M2 ∈ Max(R). Since M1+M2 = R, we have Rx1+Rx2 = R
for some x1 ∈ M1 \M2 and x2 ∈ M2 \M1. Therefore, Rx1, Rx2 ∈ V (PG(R)),
a contradiction. Hence R is a local ring. Conversely, assume that R is a local
ring. Then Rx is a small ideal of R for every non-unit element x ∈ R. Therefore,
V (PG(R)) = ∅ and the proof is complete. �

Next, we study the case where PG(R) is totally disconnected.

Theorem 2.3. Let R be a ring. Then PG(R) is totally disconnected if and only
if R ∼= F1 × F2, where F1, F2 are fields.

Proof. Assume that PG(R) is totally disconnected. By the previous theorem,
we have |Max(R)| ≥ 2. First, suppose that |Max(R)| ≥ 3. Let M1,M2,M3 ∈
Max(R), x ∈M1 \ (M2 ∪M3), and let y ∈M2 \ (M1 ∪M3). Then Rx ∩Ry *M3
and so Rx∩Ry is not small in R. Hence Rx and Ry are adjacent, a contradiction.
Therefore, |Max(R)| = 2. Let Max(R) = {M1,M2}.

We claim that M1 = Rx1 and M2 = Rx2, where x1 ∈M1\M2 and x2 ∈M2\M1.
If x′1 ∈ M1 \ M2 and Rx1 6= Rx′1, then Rx1 and Rx′1 are adjacent, which is
impossible. Therefore, M1 = J(R) ∪ Rx1. Similarly, M2 = J(R) ∪ Rx2. Now,
we show that J(R) ⊆ Rx1 ∩ Rx2. Let a ∈ J(R). Clearly, a + xi ∈ Mi \ J(R)
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for i = 1, 2. Therefore, a + xi ∈ Rxi for i = 1, 2. Hence a ∈ Rx1 ∩ Rx2. So
J(R) ⊆ Rx1∩Rx2. This yields M1 = Rx1 and M2 = Rx2, and the claim is proved.
Clearly, M2 = R(1− x1).

Now, we prove that M1M2 = 0. Since x2
1 ∈ M1 \M2, we have Rx1 = Rx2

1.
Hence x1 = rx2

1 for some r ∈ R. This implies that x1(1− rx1) = 0 ∈ J(R) and so
1− rx1 ∈M2. We note that 1− rx1 /∈M1. If not, 1− rx1, rx1 ∈M1 = Rx1 which
is impossible. Since 1 − rx1 ∈ M2 \M1, we have M2 = R(1 − x1) = R(1 − rx1).
On the other hand, we find that Rx1R(1− rx1) = M1M2 = 0.

Next, we prove that J(R) = 0. Let 0 6= a ∈ J(R). Then a+ x1 ∈M1 \M2 and
so a+x1 = sx1 for some s ∈ R. This yields a = (s−1)x1 ∈M1∩M2, which implies
that s− 1 ∈M2. We have a = (s− 1)x1 ∈M1M2. Therefore, J(R) = M1M2 = 0.
Now, by the Chinese remainder theorem [6, p. 7], R ∼= F1 × F2, where F1 = R/M1
and F2 = R/M2 are fields.

Conversely, if R ∼= F1 × F2, then Max(R) = {F1 × 0, 0× F2} = V (PG(R)) and
PG(R) ∼= K2. This completes the proof. �

Now, we have an immediate corollary.

Corollary 2.4. Let R be a ring. Then PG(R) is totally disconnected if and only if
G(R) is totally disconnected. Moreover, PG(R) is totally disconnected if and only
if PG(R) = G(R) ∼= K2.

Proof. If PG(R) is totally disconnected, then by the above theorem R ∼= F1 × F2,
where F1, F2 are fields. Hence Max(R) = {F1 × 0, 0 × F2} and F1 × 0, 0 × F2 are
distinct cyclic hollow R-modules (see [13, p. 352]). Then by [5, Theorem 2.4], G(R)
is totally disconnected. The proof of the converse is clear. �

Also, we have the following result for the case whereG(R) is totally disconnected.

Corollary 2.5. Let R be a ring. Then G(R) is totally disconnected if and only if
R ∼= F1 × F2, where F1, F2 are fields.

Theorem 2.6. Let R be a ring. Then the following statements are equivalent:
(i) PG(R) is disconnected;

(ii) |Max(R)| = 2;
(iii) PG(R) = G1 ∪ G2, where G1, G2 are two disjoint complete subgraphs of

PG(R).

Proof. (i)⇒ (ii) Assume that PG(R) is disconnected, G1 and G2 are two compo-
nents of PG(R) and Rx,Ry are two vertices such that Rx ∈ G1 and Ry ∈ G2. Let
Max(R) = {Mi}i∈I and let A = {i ∈ I | Rx * Mi}, B = {i ∈ I | Ry * Mi}.
Since Rx ∩Ry � R, we have Rx ∩Ry ⊆ J(R). This implies that A ∩B = ∅. Let
a ∈ A and b ∈ B. If |Max(R)| ≥ 3, then Max(R) \ {Ma,Mb} 6= ∅. Suppose that
Mc ∈ Max(R) \ {Ma,Mb} and z ∈ Mc \ (Ma ∪Mb). Clearly, Rx ∩ Rz * Ma and
Ry ∩ Rz * Mb. Hence we have a path Rx—Rz—Ry, a contradiction. There-
fore, |Max(R)| ≤ 2. If |Max(R)| = 1, then by Theorem 2.2, we conclude that
V (PG(R)) = ∅, a contradiction. Therefore, |Max(R)| = 2.
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(ii)⇒ (iii) Let Max(R) = {M1,M2} and let Gi = {0 6= Rx | Rx ⊆ Mi, Rx is
not small in R} for i = 1, 2. If Rx,Ry ∈ G1 and Rx and Ry are not adjacent
then Rx ∩ Ry � R, which implies Rx ∩ Ry ⊆ M2. Hence Rx ⊆ M2 or Ry ⊆ M2,
which gives Rx� R or Ry � R, a contradiction. So G1 is a complete subgraph of
PG(R). Similarly, G2 is a complete subgraph of PG(R). Clearly, there is no path
between G1 and G2. Therefore, PG(R) = G1 ∪G2, where G1 and G2 are disjoint
complete subgraphs.

(iii)⇒ (i) It is clear. �

From the above theorem and [5, Theorem 2.6], we can deduce the next result.

Corollary 2.7. Let R be a ring. Then PG(R) is connected if and only if G(R) is
connected.

Now, we study the diameter of PG(R).

Theorem 2.8. Let R be a ring. If PG(R) is connected, then diam(PG(R)) ≤ 2.

Proof. Let Rx and Ry be two non-adjacent vertices of PG(R). So Rx ∩ Ry � R.
Let Max(R) = {Mi}i∈I , A = {i ∈ I | Rx * Mi} and B = {i ∈ I | Ry * Mi}.
Since Rx ∩ Ry � R, we have Rx ∩ Ry ⊆ J(R). This implies that A ∩ B = ∅.
Assume that a ∈ A and b ∈ B. By Theorem 2.6, |Max(R)| ≥ 3 which implies
that Max(R) \ {Ma,Mb} 6= ∅. Suppose that Mc ∈ Max(R) \ {Ma,Mb} and z ∈
Mc \ (Ma∪Mb). Clearly, Rx∩Rz *Ma and Ry∩Rz *Mb. Hence Rx—Rz—Ry
is a path in PG(R). Therefore, diam(PG(R)) ≤ 2. �

In [5, Theorem 2.8], it was proved that if G(R) is connected, then diam(G(R)) ≤
2. In the above theorem, we deduce the same result for PG(R). The following
theorem shows that the girth of PG(R) has two possible values.

Theorem 2.9. Let R be a ring. Then gr(PG(R)) ∈ {3,∞}.

Proof. If |Max(R)| = 2, then PG(R) is a union of two disjoint complete graphs
by Theorem 2.6. Hence gr(PG(R)) ∈ {3,∞}. If |Max(R)| ≥ 3, then suppose
that M1,M2,M3 ∈ Max(R). Let x ∈ M1 \ (M2 ∪M3), y ∈ M2 \ (M1 ∪M3) and
z ∈M3 \ (M1∪M2). Clearly, Rx—Ry—Rz—Rx is a cycle in PG(R). Therefore,
gr(G(R)) = 3. �

Theorem 2.10. Let R be a ring such that Max(R) is finite. Then the following
hold:

(i) there is no vertex in PG(R) that is adjacent to every other vertex;
(ii) PG(R) can not be a complete graph.

Proof. (i) Suppose, to the contrary, that Rx is a vertex of PG(R) adjacent to every
other vertex. Let Max(R) = {M1,M2, . . . ,Mn}. By Theorem 2.6, we know that
n ≥ 3. Since Rx is a vertex of PG(R), we have x ∈ Mi for some Mi ∈ Max(R).
Let y ∈

⋂
j 6=i Mj \Mi. We note that Rx and Ry are distinct vertices of PG(R).

But Rx is not adjacent to Ry, a contradiction.
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(ii) If the edge-set is empty, then PG(R) is totally disconnected with one vertex.
Corollary 2.4, shows that PG(R) ∼= K2 and PG(R) has two vertices, a contradic-
tion. Hence PG(R) has at least one edge, which is a contradiction by (i). Thus
PG(R) can not be a complete graph. �

Theorem 2.11. If R is a ring, then PG(R) contains a pendant vertex if and only
if |Max(R)| = 2 and PG(R) ∼= K2 ∪K2.

Proof. Let Max(R) = {Mi}i∈I . First, suppose that there exists Rx ∈ V (PG(R))
such that d(Rx) = 1. Since Rx ∈ V (PG(R)), we have x /∈ Mj for some Mj ∈
Max(R). Suppose, for contradiction, that |Max(R)| ≥ 3. Let M1,M2 ∈ Max(R) \
{Mj}. It is not hard to see that Rx is adjacent to both Ry and Rz for every y ∈
M1\(Mj∪M2) and z ∈M2\(Mj∪M1), a contradiction. Therefore, |Max(R)| = 2.
Also, by Theorem 2.6, we conclude that PG(R) ∼= K2 ∪ K2. The proof of the
converse is obvious. �

In the following result, we determine that all forests can occur as the principal
small intersection graph of a commutative ring.

Corollary 2.12. Let R be a ring. Then PG(R) is a forest if and only if PG(R) ∈
{K2,K2 ∪K2}.

Example 2.13. There are some rings R for which PG(R) ∼= K2 ∪ K2. For
instance, suppose that R = Zp2q2 for some distinct prime numbers p, q. Then
Max(R) = {pZp2q2 , qZp2q2} and V (PG(R)) = {pZp2q2 , qZp2q2 , p2Zp2q2 , q2Zp2q2}.
Also, pZp2q2 — p2Zp2q2 and qZp2q2 — q2Zp2q2 are two paths. Hence PG(R) ∼=
K2 ∪K2.

Corollary 2.14. Let R be a ring. Then PG(R) is not a unicyclic graph.

Proof. Suppose, for contradiction, that PG(R) is a unicyclic graph. Since PG(R)
is a connected graph, |Max(R)| ≥ 3. Then by Theorem 2.11, PG(R) does not
have a pendant vertex. Hence by Theorem 2.9, PG(R) is a 3-cycle. On the other
hand, Theorem 2.10 shows that PG(R) can not be a complete graph. In particular,
PG(R) can not be a 3-cycle, a contradiction. This completes the proof. �

Now, we provide a lower bound for the clique number of PG(R).

Theorem 2.15. Let R be a ring. Then the following hold:
(i) ω(PG(R)) = 1 if and only if R ∼= F1 × F2, where F1, F2 are fields;

(ii) if ω(PG(R)) ≥ 2, then |Max(R)| ≤ ω(PG(R));
(iii) if ω(PG(R)) <∞, then |Max(R)| <∞;
(iv) if Max(R) is finite, then ω(PG(R)) ≥ 2|Max(R)|−1 − 1.

Proof. (i) It is clear by Theorem 2.6.
(ii) Suppose, for contradiction, that ω(PG(R)) = n ≥ 2 and |Max(R)| ≥ n+1 ≥

3. Let M1, . . . ,Mn+1 ∈ Max(R) and let xi ∈ Mi \
⋃

j 6=i Mj for i = 1, . . . , n + 1.
It is not hard to see that {Rx1, . . . , Rxn+1} is a clique of PG(R), a contradiction.
Therefore, |Max(R)| ≤ ω(PG(R)).
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(iii) It is clear by (ii).
(iv) If |Max(R)| = 1, then by Theorem 2.2, V (PG(R)) = ∅. So, consider

|Max(R)| ≥ 2. Let Max(R) = {M1, . . . ,Mn}, A = {M2, . . . ,Mn} and let P (A)
be the power set of A. For each ∅ 6= X ∈ P (A), set xX ∈

⋂
Mi∈X Mi \M1. It is

not hard to see that if ∅ 6= X,Y ∈ P (A) and X 6= Y , then RxX 6= RxY . Also,
RxX ∩ RxY * M1. This implies that the subgraph of PG(R) with the vertex set
{RxX | ∅ 6= X ∈ P (A)} is a clique of PG(R). We note that |P (A)\{∅}| = 2n−1−1,
so |{RxX | ∅ 6= X ∈ P (A)}| = 2|Max(R)|−1 − 1. This completes the proof. �

Example 2.16. (i) The lower bound in part (iv) of the previous theorem is
sharp. To see this, consider R = F1 × F2, where F1, F2 are fields. Then we
have ω(PG(R)) = 2|Max(R)|−1 − 1 = 1.

(ii) There are some rings R for which ω(PG(R)) > 2|Max(R)|−1−1. For instance,
suppose that R = Zpnqm for some distinct prime numbers p, q and positive integers
n,m with max{n,m} ≥ 2. Then Max(R) = {pZpnqm , qZpnqm}. It is not hard to see
that PG(R) ∼= Kn∪Km. We have ω(PG(R)) = max{n,m} and 2|Max(R)|−1−1 = 1.
Clearly, ω(PG(R)) > 2|Max(R)|−1 − 1.

To prove Theorem 2.18, we need the following simple lemma.

Lemma 2.17. Let R be a ring. If Rx,Ry ∈ V (PG(R)) and Rx ⊂ Ry, then the
following hold:

(i) d(Rx) ≤ d(Ry).
(ii) If Rz is adjacent to Rx, then Rz is adjacent to Ry.

Proof. Apply the proof of [5, Theorem 2.15]. �

Theorem 2.18. If R is a ring and PG(R) is an r-regular graph, then |Max(R)| =
2 and PG(R) ∼= Kr+1 ∪Kr+1.

Proof. Let PG(R) be an r-regular graph. By Theorem 2.15, Max(R) is finite. First,
assume that |Max(R)| = n ≥ 3, x ∈ M1 \

⋃n
i=2Mi and y ∈ (M1 ∩M2) \

⋃n
i=3Mi.

By Lemma 2.17, d(Rxy) ≤ d(Rx). We claim that d(Rxy) < d(Rx). Let z ∈⋂n
i=3Mi \ (M1 ∪M2). It is clear that Rz is adjacent to Rx, but Rz is not adjacent

to Rxy. Therefore, d(Rxy) < d(Rx) and the claim is proved. This is a contradiction
because PG(R) is a regular graph and d(Rxy) = d(Rx). Hence |Max(R)| = 2 and
by Theorem 2.6, PG(R) ∼= Kr+1 ∪Kr+1. �

Now, we are in a position to state one of the main results of this section.

Theorem 2.19. Let R be a ring. Then PG(R) can not be a complete r-partite
graph.

Proof. Suppose, for contradiction, that PG(R) is a complete r-partite graph with
r parts V1, . . . , Vr. Then by Theorem 2.15, |Max(R)| ≤ r. In view of the proof of
Theorem 2.15, we find that {Rx1, . . . , Rxn} is a clique of PG(R), where Max(R) =
{M1, . . . ,Mn} and xi ∈ Mi \

⋃
j 6=i Mj for i = 1, . . . , n. With no loss of generality,

assume that Rxi ∈ Vi for i = 1, . . . , n. Suppose that yi ∈
⋂

j 6=i Mj \Mi for every i,
1 ≤ i ≤ n. Then Rxi and Ryi are not adjacent. This implies that {Rxi, Ryi} ⊆ Vi
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for every i, 1 ≤ i ≤ n. Let Rx ∈ V (PG(R)). Hence Rx *Mt for some t, 1 ≤ t ≤ n.
Therefore, Rx and Ryt are adjacent. Since Rxt ∈ Vt, Rx and Rxt are adjacent, a
contradiction. �

Theorem 2.20. Let R be a ring such that PG(R) is connected. Then PG(R) has
no cut vertex.
Proof. Suppose, for contradiction, that Rx is a cut vertex of PG(R). Then the
induced subgraph 〈V (PG(R)) \ {Rx}〉 is disconnected. Hence there exist vertices
Ry and Rz such that Rx lies on every path from Ry to Rz. Theorem 2.6 shows
that |Max(R)| ≥ 3. Let M1,M2,M3 ∈ Max(R). Obviously, Ry and Rz are
proper non-small ideals of R. With no loss of generality, we may assume that
Ry *M1, Rz *M2, because Ry∩Rz � R. Since Ry∩Rz � R, we have Ry ⊆M2
and Rz ⊆ M1. If there exists w ∈ M3 \ (M1 ∪M2) such that Rw 6= Rx, then we
have a path between Ry and Rz in PG(R), a contradiction. Therefore, Rw = Rx
for every w ∈ M3 \ (M1 ∪M2). If |Max(R)| ≥ 4, then by a similar argument as
above, we conclude that Rw = Rx for every w ∈ M \ (M1 ∪M2) and for every
M ∈ Max(R) \ {M1,M2,M3}, which is impossible. Therefore, |Max(R)| = 3. Let
x1 ∈M1 \ (M2∪M3) and x2 ∈M2 \ (M1∪M3). It is clear that Ry—Rx2 —Rx1 —
Rz is a path in 〈V (PG(R)) \ {Rx}〉, a contradiction. �

In the rest of this section, we study the domination number and the independence
number of the principal small intersection graph of R.
Theorem 2.21. Let R be a ring. If Max(R) is finite, then γ(PG(R)) = 2.
Proof. Since V (PG(R)) 6= ∅, |Max(R)| ≥ 2. We divide the proof into two cases:
Case 1. |Max(R)| = 2. Then by Theorem 2.6, we deduce that γ(PG(R)) = 2.
Case 2. |Max(R)| ≥ 3. Let Max(R) = {M1, . . . ,Mn}, xi ∈ Mi \

⋃
j 6=i Mj for i =

1, 2, and let S = {Rx1, Rx2}. If Rx is a vertex of PG(R) and Rx /∈ S, then Rx is
adjacent to Rx1 or Rx2. Otherwise, Rx∩Rx1 ⊆ J(R) and Rx∩Rx2 ⊆ J(R). Hence
Rx ⊆

⋂
j 6=1Mj and Rx ⊆

⋂
j 6=2Mj . Therefore, Rx ⊆

⋂n
j=1Mj , a contradiction.

This implies that S is a dominating set of PG(R) and so γ(PG(R)) ≤ 2. Now,
Theorem 2.10 shows that γ(PG(R)) = 2. �

In [5], it was proved that α(G(R)) = |Max(R)|, where Max(R) is finite. Next,
we prove that if Max(R) is finite, then α(PG(R)) = α(G(R)).
Theorem 2.22. Let R be a ring such that Max(R) is finite. Then α(PG(R)) =
|Max(R)|.
Proof. Let Max(R) = {M1, . . . ,Mn} and let S1 = {Rxi | x ∈

⋂
j 6=i Mj \Mi for i =

1, . . . , n}. Clearly, S1 is an independent set for PG(R). Therefore, n ≤ α(PG(R)).
Suppose that S2 = {Ry1, . . . , Rym} is an independent set of PG(R). If m > n,
then by the pigeonhole principle, we find that there exist i, j, 1 ≤ i < j ≤ m, and
Mt ∈ Max(R) such that Ryi *Mt and Ryj *Mt. This yields Ryi∩Ryj *Mt. On
the other hand, we have Ryi, Ryj ∈ S2 and S2 is an independent set of PG(R). This
shows that Ryi∩Ryj � R, a contradiction. Therefore, α(PG(R)) = |Max(R)|. �
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Corollary 2.23. If R is an Artinian ring, then α(PG(R)) = |Max(R)|.

Proof. By the structure theorem of Artinian rings [6, Theorem 8.7], there exists a
positive integer n such that R ∼= R1×R2× · · · ×Rn and (Ri,mi) is a local ring for
all 1 ≤ i ≤ n. The above theorem shows that α(PG(R)) = |Max(R)| = n. �

The following example approves the equality α(PG(R)) = |Max(R)|.

Example 2.24. Let F1, F2, F3 be fields and let R = F1 × F2 × F3. In view of the
proof of Corollary 2.23, we find that α(PG(R)) = 3. We draw the graph PG(R) in
Fig. 1. One can easily see that {F1×0×0, 0×F2×0, 0×0×F3} is an independent
set of PG(R).

0× 0× F3

0× F2 × F3

0× F2 × 0

F1 × 0× F3

F1 × F2 × 0
F1 × 0× 0

Figure 1. PG(F1 × F2 × F3) = G(F1 × F2 × F3).

3. The complement of PG(R)

In this section, we determine the diameter, the girth and the chromatic number
of the complement of the principal small intersection graph of R. As we mentioned
in the introduction, the complement of the principal small intersection graph of R,
PG(R), is the graph with the vertex set V (PG(R)) = V (PG(R)), and two distinct
vertices Rx and Ry are adjacent if and only if Rx ∩Ry � R.

First, we determine the diameter of PG(R).

Theorem 3.1. Let R be a ring such that Max(R) is finite. Then PG(R) is con-
nected and diam(PG(R)) ∈ {1, 2, 3}.

Proof. If R is a local ring, then by Theorem 2.2 we have V (PG(R)) = ∅. Also,
if |Max(R)| = 2, then by Theorem 2.6, PG(R) is a complete bipartite graph
and so diam(PG(R)) ∈ {1, 2}. Now, suppose that |Max(R)| ≥ 3 and Rx,Ry ∈
V (PG(R)). Let Max(R) = {M1, . . . ,Mn}, with n ≥ 3. If Rx and Ry are not
adjacent in PG(R), then assume that A = {Mi | 1 ≤ i ≤ n, Rx ⊆Mi}, B = {Mi |
1 ≤ i ≤ n, Ry ⊆ Mi}, Max(R) \ A = A′ and Max(R) \ B = B′. We have the
following two cases:
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Case 1. A∩B ∈ {A,B}. With no loss of generality, we may assume that A∩B = A.
Then B′ ⊆ A′. Let z ∈ (

⋂
Mi∈A′ Mi) \J(R). It is clear that Rz is adjacent to both

Rx and Ry. Therefore, d(Rx,Ry) = 2.
Case 2. A ∩ B /∈ {A,B}. Then A′ ∪ B 6= Max(R) and B′ ∪ A 6= Max(R). Let
z1 ∈ (

⋂
Mi∈(A′∪B)Mi) \ J(R) and z2 ∈ (

⋂
Mi∈(B′∪A)Mi) \ J(R). Clearly, Rx—

Rz1 —Rz2 —Ry is a path between Rx and Ry in PG(R). Hence d(Rx,Ry) ≤ 3.
This completes the proof. �

As an immediate consequence of the previous theorem, we have the next result.

Corollary 3.2. Let R be a ring such that Max(R) is finite. Then the following
hold:

(i) diam(PG(R)) = 1 if and only if |Max(R)| = 2 and PG(R) ∼= K2.
(ii) diam(PG(R)) = 2 if and only if |Max(R)| = 2, PG(R) is a complete

bipartite graph and PG(R) � K2.
(iii) diam(PG(R)) = 3 if and only if |Max(R)| ≥ 3.

Proof. Parts (i) and (ii) are clear.
(iii) Let Max(R) = {M1, . . . ,Mn}, x ∈ M1 \

⋃
i 6=1Mi and y ∈ M2 \

⋃
i 6=2Mi.

Clearly, Rx ∩Ry *M3. This implies that Rx and Ry are not adjacent. We claim
that d(Rx,Ry) = 3. Otherwise, the previous theorem shows that there exists a
vertex, say Rz, such that Rz is adjacent to both Rx and Ry. Since Rz is adjacent
to Rx, z ∈

⋂
i6=1Mi. On the other hand, since Rz is adjacent to Ry, z ∈

⋂
i6=2Mi.

This implies that z ∈
⋂n

i=1Mi, which is impossible. Therefore, the claim is proved.
Now, by Theorem 3.1, diam(PG(R)) = 3. �

Example 3.3. By Theorem 3.1, if R is a ring with finitely many maximal ideals,
then PG(R) is connected. But there are some rings R with infinite maximal ideals
whose PG(R) is not connected. Let R = Z. It is clear that Max(Z) is infinite
and the only small ideal of Z is 0. Also, diam(PG(Z)) = ∞ and PG(Z) is totally
disconnected because I ∩ J 6= 0 for every two non-zero ideals I and J .

By Theorem 2.6, we have the next corollary.

Corollary 3.4. Let R be a ring. Then the following statements are equivalent:
(i) |Max(R)| = 2;

(ii) PG(R) is a complete bipartite graph.

Theorem 3.5. Let R be a ring such that Max(R) is finite. Then gr(PG(R)) ∈
{3, 4,∞}.

Proof. If |Max(R)| = 2, then PG(R) is a complete bipartite graph by Corollary 3.4.
Hence gr(PG(R)) ∈ {4,∞}. If |Max(R)| ≥ 3, then suppose that Max(R) =
{M1, . . . ,Mn}, with n ≥ 3. Let xi ∈

⋂
j 6=i Mj \Mi for i = 1, 2, 3. Clearly, Rx1 —

Rx2 —Rx3 —Rx1 is a 3-cycle in PG(R). Therefore, gr(PG(R)) = 3. �
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In view of the proof of Theorem 3.5 and by Corollary 3.4, we deduce the following
result.

Corollary 3.6. Let R be a ring. Then the following statements are equivalent:
(i) |Max(R)| = 2;

(ii) PG(R) is a complete bipartite graph;
(iii) PG(R) is a bipartite graph.

Theorem 2.22 shows that if Max(R) is finite, then α(PG(R)) = ω(PG(R)) =
|Max(R)|. We close this paper with the following main result, which implies that
the complement of the principal small intersection graph is weakly perfect.

Theorem 3.7. Let R be a ring such that Max(R) is finite. Then χ(PG(R)) =
|Max(R)| = ω(PG(R)).

Proof. Let Max(R) = {M1, . . . ,Mn}. We define the map c : V (PG(R)) −→
{1, . . . , n} by c(Rx) = min{i | 1 ≤ i ≤ n, Rx * Mi}. It suffices to show
that c is a proper vertex coloring of PG(R). If c(Rx) = c(Ry) = t for some
Rx,Ry ∈ V (PG(R)) and for some t ∈ {1, . . . , n}, then we have Rx * Mt and
Ry *Mt. This implies that Rx∩Ry is non-small and soRx andRy are not adjacent
in PG(R). Therefore, c is a proper vertex coloring. Thus χ(PG(R)) ≤ |Max(R)|.
Now, the result follows from Theorem 2.22. �
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