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ABSTRACT. Near a singular point of a surface or a curve, geometric invariants
diverge in general, and the orders of this divergence, in particular the bound-
edness about these invariants, represent the geometry of the surface and the
curve. In this paper, we study the boundedness and orders of several geometric
invariants near a singular point of a surface which is a suspension of a singular
curve in the plane, and those of the curves passing through the singular point.
We evaluate the orders of the Gaussian and mean curvatures, as well as those
of the geodesic and normal curvatures, and the geodesic torsion for the curve.

1. INTRODUCTION

In this paper, we study the boundedness of several geometric invariants near
a singular point of a surface which is a suspension of a singular curve in the
plane. More precisely, let ¢ be an A-equivalence class of singular plane curve-
germs. A o-edge is a map-germ f : (R2,0) — (R3,0) such that it is A-equivalent
to (u,v) = (u,c1(v),ca(v)), where ¢ = (c1,c¢2) is a representative of o, namely, a
one-dimensional suspension of o. Here, two map-germs hq, ho : (R™,0) — (R"™,0)
are A-equivalent if there exist diffeomorphisms ®, : (R™,0) — (R™,0) and
®, : (R",0) — (R™,0) such that hy = ®;0hyo® L. A cuspidal edge (A-equivalent

to the germ (u,v) — (u,v?,v3) at the origin) and a 5/2-cuspidal edge (A-equivalent

to the germ (u,v) — (u,v?,v%)) are examples of o-edges, and o are a 3/2-cusp and
5/2-cusp, respectively. If o is of finite multiplicity, then the o-edge is a frontal.
A frontal is a class of surfaces with singular points, and it is well known that
surfaces with constant curvature are frequently in this class. In these decades,
there are several studies of frontals from the viewpoint of differential geometry

and various geometric invariants at singular points are introduced (for instance,
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[3, 5, 6], 8l [0, 12, [13]). If a surface is invariant under a group action on R?, then
o-edges will appear naturally. Singularities appearing on surfaces of revolution,
and a helicoidal surface are examples of such surfaces [IT}, [I5]. Moreover, such
singularities appear on the dual surface at cone-like singular points of a constant
mean curvature surface in the de Sitter 3-space (see [7]).

In this paper, we study geometry of o-edges. For this, we consider two classes
of singular map-germs, which we shall call m-type and (m,n)-type edges, the first
including (m, n)-type edges and also o-edges when o has finite multiplicity (see
Section . One observes that m-type edges are frontals. In order to proceed with
our study, we find a normal form for each one of these map-germs preserving the
geometry of the initial map, since we only use isometries in the target (Proposi-
tion . In [I0, [I3] the authors define singular, normal and cuspidal curvatures,
as well as cuspidal torsion for frontals. In an analogous way, we define similar
geometric invariants for m-type edges, using the same names, except for the cus-
pidal curvature, which we call (m,m + i)-cuspidal curvature. These invariants are
related with the coefficients of the normal form given in Proposition 2.9 It is
worth mentioning that these cuspidal curvatures are similar. In fact, we know
that a frontal-germ is a front if and only if the cuspidal curvature is not zero. We
conclude from Proposition that an m-type edge is a front if and only if the
(m, m + 1)-cuspidal curvature is non-zero at 0. In particular, we study orders of
geometric invariants and geometric invariants of curves passing through the singu-
lar point. We evaluate the orders of Gaussian and mean curvatures (Theorem
and the minimum orders of geodesic, normal curvatures and geodesic torsion for
a singular curve passing through the singular point (Theorem [3.5). These mini-
mum orders are written in terms of singular, cuspidal and normal curvatures and
the cuspidal torsion. As a corollary, we give the boundedness of these curvatures
under certain generic conditions (Corollary [3.6)).

2. GEOMETRY OF 0-EDGES

We give several classes similar to o-edges. They include o-edges, and these
classes will be useful to treat. We recall that a map-germ f : (R?,0) — (R?,0) is
a frontal if there exists a unit vector field v along f such that (df,(X,),v(p)) =0
holds at any p € (R?,0) and any X, € T, R?, where (-, -) is the canonical inner prod-
uct of R3. The vector field v is called a unit normal vector field of f. A map-germ
f:(R%0) — (R3,0) is an m-type edge if it is A-equivalent to (u,v™,v™ a(u,v))
for a function a(u,v). A map-germ f : (R?,0) — (R3,0) is a (m,n)-type edge
(m < n) if it is A-equivalent to (u, v™, v"™h(u,v)), where h(0,0) = 1. This is equiv-
alent to being A"-equivalent to (u,v™,v™). Two map-germs are A"-equivalent if
their n-jets at the origin are A-equivalent. We establish the following lemma.

Lemma 2.1. Let f be a o-edge (respectively, an m-type edge, an (m,n)-type edge).
Then an intersection curve of f with a surface T which is transversal to f(S(f))
passing through p € S(f) near 0 is A-equivalent to o (respectively, A™-equivalent
to (t™,0), A™-equivalent to (t™,t")).
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Proof. Since the assumption and the assertion do not depend on the choice of the
coordinate systems, we can assume f is given by (u, ¢1(v), ca(v)), where ¢ = (c1, ¢2)
is A-equivalent to . Then T can be represented by the graph {(z,y,z)|z =
h(y,z)} in (R3,0) as the zyz-space, and the intersection curve is (h(c1(v), c2(v)),
c1(v),ea(v)). Since T is transverse to the z-axis, the orthogonal projection of T
onto the yz-plane is a diffeomorphism, and thus, we see the assertion. One can
show the other claims in a similar way. O

2.1. A sufficient condition. We give a sufficient condition for a frontal-germ
being an m- or (m,n)-type edge under the assumption n < 2m. We assume
n < 2m throughout this subsection. Let f : (R2,0) — (R3,0) be a frontal-germ
satisfying rank dfy = 1. Then there exists a vector field n such that 7, generates
ker dfy, if p € S(f). We call 1|5y a null vector field, and n an extended null vector
field. An extended null vector field is also called a null vector field if it does not
induce a confusion. We assume that the set of singular points S(f) is a regular
curve, and the tangent direction of S(f) is not in ker dfy. Let £ be a vector field
such that &, is a non-zero tangent vector of S(f) for p € S(f). We consider the
following conditions for (&, 7):

[2.1] nif=0(1<i<m-—1)on S(f).

2.2] rank(§f,n™f) =2 on S(f).

[2.3] rank(Ef, 7™ f,n'f) =2 (m <i<n)on S(f).

2.4] rank(§f,n™f,n"f) = 3 at p.
Here, for a vector field ¢ and a map f, the symbol ¢'f stands for the i-times
directional derivative of f by (. Moreover, for a coordinate system (u,v) and a
map f, the symbol f,: stands for 9 f/Ovt.

Proposition 2.2. Let f : (R%0) — (R>0) be a frontal-germ satisfying
rank dfyp = 1. Assume that the set of singular points S(f) is a regular curve, and
the tangent direction of S(f) generated by & is not in ker dfy. If there exists a null

vector field n satisfying [[2.1], and (§,n) satisfies [2.2], then f is an m-type edge.
Moreover, if (£,m) also satisfies |[2.3|H[2.4], then f is an (m,n)-type edge.

As we will see, the conditions [2.2]H[2.4]| do not depend on the choice of null
vector field n satisfying|[2.1]] To show this fact, we show several lemmas which we
shall need later. Firstly we show that the conditions do not depend on the choice
of the diffeomorphism on the target. In what follows in this section, f is as in

Proposition [2.2]

Lemma 2.3. Let ® be a dzjj‘eomorphzsm germ on (R3,0), and set f= O(f). If f
and (&,m) satzsfy the condition C, then f and ( ) satzsfy C, where C = {}

C = {2122 ¢ = {21H23]} and € = {21 [2.4]}
Proof. Let us assume 7 satisfies m By a direct calculation, we have 7 f =
d®(f)nf, and

i—1
0= e’ @) f (e € R\{0}). (2.1)

J=0
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By nif =02 <i<m—1)and g™f = d®(f)n™f on S(f). Then we
see the assertion for the cases C = {[[2.1]}} and C' = {[2.1]][2.2]}. We assume 7
satisfies [2.1]H[2.3]l By (2.1) and ¢1, = 1 (#£ 0) we see the assertion. O

It is clear that the conditions |[2.2]{H{[2.4]| do not depend on the choice of &, i.e.,
non-zero functional multiple and extension other than S(f). Moreover, they do
not depend on the non-zero functional multiple of 7:

Lemma 2.4. Let h be a non-zero function. If f and (§,m) satisfy the condition C,
then f and (&,7) satisfy C, where i = hn and C is the same as those in Lemma|2.3|

Proof. Since (hn)'f is a linear combination of nf,...,n'f, and the coefficient of
n'f is h', we see the assertion. (]

A coordinate system (u,v) satisfying S(f) = {v = 0}, n[s(s) = 9, is said to be
adapted.

Lemma 2.5. Let f: (R?,0) — (R3,0) be a frontal-germ satisfying rank dfy = 1.
We assume that the set of singular points S(f) is a regular curve. For any null
vector field n, there exists an adapted coordinate system (u,v) such that n = 9, for
any (u,v).

In this lemma, we do not assume that f is an m-type edge.

Proof. Since rank dfy = 1, one can easily see that there exists a coordinate system
(u,v) such that n = 9, for any (u,v). Since S(f) is a regular curve, and the tangent
direction of it is not in ker dfy, S(f) can be parametrized as (u,a(u)). Define a new
coordinate system (@, ) by & = v and ¥ = v — a(u). Then S(f) = {0 = 0} and
0/0v = 0/0v hold. This shows the assertion. O

Lemma 2.6. If two null vector fields 0,7 satisfy| 2.1, and (§,7) satisfies C, then
(&,7) also satisfies C. Here, C is the collection of the conditions C = {[2.2][},

C={22{2.3]}, C = {[2:2]{2.4]}

Proof. Let us assume that n and 7 satisfy Since the assumption and
the assertion do not depend on the choice of the coordinate system on the source
by Lemma we take (u,v) an adapted coordinate system with n = 9, for any
(u,v) and £ = 9. Since f, = -+ = fym—1 = 0 on the w-axis, f, has the form
fo = v 1p(u,v). If the pair (£,7) satisfies then rank(f,,%) = 2 on the
u-axis. On the other hand, any null vector field is written as a1 (u, v)9, +a2(u, v)0y,
(a1(u,0) = 0, az(u,v) # 0). By Lemma dividing this by as, we may assume
an extended null vector field 7 is

71 = va(u, v)0y + Oy.

Since it holds that 72 f = 0 on the u-axis (when m > 2) and f,(u,0) # 0, we have
a(u,0) = 0. Continuing this argument, we may assume

i1 =v"" a(u,v)0y + Oy. (2.2)
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Thus, 7jf = v™ Y(af,+) holds, and 7™ f = (m—1)!(af,+1) holds on the u-axis.
Therefore (£, 7) satisfies [[2.2]] We assume that the pair (§,7 = 9,) satisfies
[12.3]l and (&,7) satisfies [[2.1]] By this assumption, rank(f,,v) = 2, and
rank(fy, ¥, 1%,:) = 2 (0 < i < n—m). By the form of 7, it holds that 77+ f =
(m — D)W ay fu + afuw + 1¥y) on the u-axis. Since f, = 0 on the w-axis, fy, = 0 on
the u-axis. Thus, rank(¢f, 7™ f, 7™ f) = 2 on the u-axis. Similarly, fym-1 = 0
on the u-axis, fy,2 = -+ = fuum-1 = 0 on the w-axis. Thus, if i < m — 1, then
since n < 2m, we have 7™ f = (m — 1)!(yi + a,: fu) on the u-axis. Thereby we
have rank(Ef, 7™ f, 7™ f) = 2 (i < m — 2) on the u-axis. The last assertion can
be shown by the same calculation. O

Proof of Proposition 2.2l We assume f satisfies the condition of the proposition,
and (£,n) satisfies the conditions and Then we take an adapted coor-
dinate system (u,v) such that n = 9,. By the proof of Lemma there exist
p(u) and g(u,v) such that f(u,v) = p(u) + v™q(u,v), and (p1)(0,0) # 0, where
p = (p1,p2,p3). Weset U = pi(u),V =wv. Then f has the form (U, Po(U), P3(U))+
V™Q(U,V). By a coordinate change on the target, f has the form (U,0,0) +
VmQU, V), where Q(U, V) = (0,Q2(U,V),Qs(U,V)). Rewriting the notation, we
may assume f is written as
flu,v) = (u,v"ga(u,v),v"q3(u,v)).

On this coordinate system, 0, satisfies the condition and it also satisfies
by Lemma This implies (¢g2(0,0), ¢3(0,0)) # (0,0). So we assume g2(0,0) # 0.
We set U = u, V = vga(u, v)l/m. Rewriting the notation, we may assume f is writ-
ten as (u,v™, v™qs(u,v)). By a coordinate change on the target, we may assume f

is written as (u,v™,v™*1g3(u,v)). This proves the first assertion. We assume that

n also satisfies and[[2.4] We may assume f is written as (u, v™, v™+1gs(u, v)).
By Lemma [2.6), we may assume that 0, satisfies [[2.3]| and [[2.4] By [[2.3]} the

function gs(u,v) satisfies g3 = (¢3)y = -+ (¢3)yn-m-1 = 0 on the u-axis. Thus,
f is written as (u,v™,v"qs(u,v)). By [2.4]} it holds that ¢4 # 0, and hence the
assertion is proved. O

By the proof of Lemma [2.6] we have the following property:

Corollary 2.7. Let f: (R%,0) — (R3,0) be a frontal satisfying rank dfy = 1, and
let the set of singular points S(f) be a regular curve. Furthermore, assume 7 is
a vector field satisfying [2.1]} Let (u,v) be an adapted coordinate system with O,

satisfying . Then there exists 1 such that nf(u,v) = v™ Y (u,v).

2.2. Normal form of m- or (m,n)-type edges. Given a curve-germ v : (R,0) —
(R2,0), if there exists m such that v/ = t™~1p (p(0) # 0), then v at 0 is said to
be of finite multiplicity, and such an m is called the multiplicity or the order of v
at 0. Moreover, if there exists n (n > m and n # km, k = 2,3,...) such that ~ is
A™-equivalent to (t™,t"), then + is called of (m,n)-type. This (m,n) is well-defined
since if 7 is A"-equivalent to (#™,0) then it is not A"-equivalent to (t™, %) for i < r,
1 #km (k=1,2,...). We simplify a curve-germ of (m,n)-type and an (m,n)-type
edge by coordinate changes on the source and by special orthonormal matrices on
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the target. Let (z,y) be the ordinary coordinate system of (R2,0). A coordinate
system (u,v) = (u(z,y),v(x,y)) is positive if the determinant of the Jacobi matrix
of (u(x,y),v(x,y)) is positive. We have the following results.

Lemma 2.8. Let v : (R,0) — (R2,0) be a curve germ satisfying v (0) = 0
(i=1,...,m—1) and ¥™(0) # 0. Then there exist a parameter t and a special
orthonormal matriz A on R? such that

Ay(t) = (™, t™b(t)).

Letv: (R,0) — (R2,0) be a curve germ of (m,n)-type. Then there exist a param-
eter t and a special orthonormal matriz A on R? such that

ln/m]
Ay(t) = (tm, > aitim+t"b(t)) (b(0) # 0), (2.3)

i=2
where |k| is the greatest integer less than k (in our convention, n/m is not an
integer).

Proof. One can easily see the first assertion. We assume that v is a curve germ
of (m,n)-type; then we may assume ~(t) = (t™,¢™+1b(t)). If t™+1b(¢) has a term
tt (i < n,i # km), then j™y(0) is not A"-equivalent to (", ¢"). This proves the
assertion. U

Proposition 2.9. Let f: (R?,0) — (R?,0) be an m-type edge. Then there exist
a positive coordinate system (u,v) and a special orthonormal matriz A on R3 such

that
u2a(u) o™ ubo(u) V™

Af(u,v) = (u, ) o m!bm(u,v)) (b (0,0) =0). (2.4)

Moreover, if f is an (m,n)-type edge, then there exist a positive coordinate system
(u,v) and a special orthonormal matriz A on R? such that

u?a(u) 0™ u?bo(u) b/l im "y, (u, v)
A = _ —_— bzm : )
f(u,v) “ + m!’ 2 + ; (im)! (u) + n!
(2.5)

b,(0,0) #£ 0.
Proof. By the proof of Proposition [2.2] we may assume
fu,v) = (u, uas(u) + v agm (u, v), u?as(u) + V™ azm (u, v)).

By that proof again, (az.,(0,0), azm(0,0)) # (0,0). By a rotation on R3, we may as-
sume ag, (0,0) > 0 and az,,(0,0) = 0. By a coordinate change v + vag,, (u,v)/™,
we may assume f(u,v) = (u, u?ag(u)+v™/m! u?az(u) +vmagm (u,v)), (a3m(0,0) =
0). This proves the first assertion. If f is an (m,n)-type edge, then the function
azm (u,v) can be expanded by

n—1
Z v'bi(u) + 0"y (u, v).
i=0
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Since f is an (m,n)-type edge, the curve v — f(u,v) is of (m,n)-type for any u
near 0. This implies that b;(u) =0 (i # km, k > 1). By a3,,»(0,0) =0, bo(u) = 0.
This proves the assertion. O

Each form and is called the normal form of an m-type edge and an
(m,n)-type edge, respectively. Looking at the first and the second components in
and , we remark that the m-jet of the coordinate system (u,v) which
gives the normal form is uniquely determined up to £ when m is even. Let f :
(R?,0) — (R3,0) be an m-type edge and 7 a null vector field which satisfies the
condition Then the subspace Vi = dfo(ToR?) and the subspace Va spanned
by dfo(ToR?), n™f(0) do not depend on the choice of 7. We assume that the
representation f = (f1, f2, f3) of xyz-space R3 satisfies that V; is the z-axis and
Vs is the zy-plane. Then the coordinate system (u,v) gives the normal form
if and only if fi(u,v) = u and (f2)4, is identically zero.

2.3. Geometric invariants.

2.3.1. Cuspidal curvatures. Let f be an m-type edge. A pair of vector fields (&, n)
is said to be adapted if £ is tangent to S(f), and 7 is a null vector field. We take an
adapted pair of vector fields (£, n) such that 7 satisfies the condition and (&, 7)
is positively oriented. One can show the existence of such a pair by the definition
of m-type edge. We define

_ eI det (€ fon™ fon )

Win,m+1(t) = €f x Umf‘(Qm'H)/m (1(1)),

where £ is a parametrization of S(f). We call wy, m+1 the (m,m + 1)-cuspidal
curvature. We have the following proposition:

Proposition 2.10. The function wp, m+1 does not depend on the choice of (§,m)
satisfying the condition |2.1]|

Proof. Since it does not appear in the formula, wy, 1 does not depend on the
choice of the coordinate system. Let (£,17) be an adapted pair of vector fields
satisfying the condition It is clear that the function wy, m+1 does not depend
on the choice of £&. We take an adapted coordinate system (u,v) satisfying 9, = 7.
Then

wm,m+1(u) = |fu|(m+1)/m det(fua form, fv"‘+1)|fu X fym —(@m+1)/m

By Corollary we have f, = v™ 14. Let 7 be another null vector field
satisfying the condition We see that wy, m+y1 does not depend on the non-
zero functional multiples of 1; we may assume 7 = a(u,v)d,, + 0,. By the proof of
Lemma we may assume that 7 is

i1 =" a(u,v)0y + Oy. (2.6)

Then by f, = v™ 11,
nf = Umil(afu + lb)
Thus,

" f = (m— 1Dl afu +¥) + (m = 1)(m = Divn(afs +¥) + v?g(u,v),  (2.7)
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where g is a function, and

7" f = (m=1D)(afu+v)+(m=1)(m=1)lpun(afu+v) = ml(nafu+anfu+n)

hold on the w-axis. Since ¥ = ((m — 1))~ fym and 1, = (m!) 7! fym+1, we have
(€100 det(f,n™ f, 0™ ) _ [l 0O det(fu, 1, 1)

&7 > e G — a0 = gm0
_ |fu|(m+l)/m det(fuafvmafvm+1)
a ‘fu X fvm|(2m+1)/m (U,O)
This shows the assertion. O

We have the following proposition.

Proposition 2.11. Let f: (R%,0) — (R3,0) be an m-type edge. Then f at 0 is
an (m,m + 1)-type edge if and only if wpm m+1 # 0 at 0.

Proof. Since f is an m-type edge, by Proposition we may assume that f is
given by the right-hand side of (2.4). Since b,,(0,0) = 0, there exist ¢;(u) and
ca(u,v) such that by, (u,v) = ¢1(u) + vea(u,v). Since we can take n = 9,, the
function wy, 1 is @ non-zero functional multiple of c3(u,0). Then we see the
assertion. U

It is easy to show that (m, m+ 1)-type edges are fronts and that an m-type edge
is a front if and only if wy, m+1 7# 0. In Appendix [Al we define the (m, n)-cuspidal
curvature for a curve germ of (m,n)-type, denoting it by 7, ». An intersection
curve of (m, m+1)-type edge f with T as in Lemmais a curve-germ of (m, m+1)-
type. The following holds.

Corollary 2.12. Let f: (R?,0) — (R3,0) be a o-edge, where o is A-equivalent to
v = (V™0™ ). Then the (m,m + 1)-cuspidal curvature wy, m+1 at 0 coincides
with the (m, m+ 1)-cuspidal curvature vy, 41 of the intersection curve p of f with
a plane P which is perpendicular to the tangent line to f at 0.

Proof. By the assumption, we may assume that f is given by the normal form
(2.4). Since f,(0,0) = (1,0,0) and f,(0,0) = (0,0,0), the plane P is given by
P =1{(0,y,2) € R? | y,2 € R}. Thus, the intersection curve p can be parametrized
by

™ m v Um+1
P(U) = f(0, U) = (07 ml’ %)

This can be considered as a normal form of a curve which is A™*!-equivalent to
v — (v™,v™T1). Hence we have the assertion by Example O

Let f be an m-type edge. We assume wi, m+1 is identically zero on S(f). Let
u(t) be a parametrization of S(f). We define

(m+2)/md mf m+2
mmialt) = (o).
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We will see this does not depend on the choice of (£,n) which satisfies the con-

ditions and in Proposition and det(Ef,n™f,n7f) =0 (5 < m+ 2).

Inductively, we define Wy, ;i When wy, my; =0 (j < i —1) by

_|gf|mansm det(f, ™ f 0™ )
Wm,m+i = |5f < nmf|(2m+l)/m M(t))

We will also see this does not depend on the choice of (£,7) satisfying the condi-

tions and in Proposition and det(Ef,n™f,n7f) =0 (5 < m+1i). If

i =m, we set Bm.om = Wm,2m-

Proposition 2.13. Under the assumption wmm+1 = -+ = Wmm+ti—1 = 0, the
function wy, mti (i =1,...,m —1) does not depend on the choice of the pair (§,n)
which satisfies the conditions and in Proposition and the condition
det(Ef,n™ f,n™ 7 f) =0 (1 <7 <i).

Proof. We already showed the case ¢ = 1 in Proposition Let (&,71) be a
pair of vector fields satisfying the assumption of the lemma. We take an adapted
coordinate system (u,v) such that 8, = n. By the proof of Lemma we see that
fv — ”Umfl’g/).

Moreover, we have:

Lemma 2.14. There exist functions «, B8, and a vector valued function 6 such that
1/% = afu + 5%11 =+ Ui719~
Proof. Since fym+1 = (m — 1), on the u-axis, Wy, m+1 = 0 implies that there
exists ai, 1,601 such that ¥, = ayf, + B1¥ + vf;. We assume that there exist
g, Br, Or such that ¥, = agfu + B + 050, (k =1,...,i—2). Differentiating this
equation, we have
e
ka‘*'l = Z (l) ((ak)vlfuvk_l + (Bk)'ulka_l + (vk)vl(ek)vk_l) .
1=0

Thus, since fyy = -+ = fupm-1 = 0 and ¥,; € (fu,¥)g (J < k) on the u-axis,
we have 2 = rank(f,, ¥, ¥,r+1) = rank(fy, 1, 0;) on the u-axis. Hence there exist
functions a1, Bk+1, and a vector valued function 011 such that 0y = agy1fu +
Br+1¥ + v8;y1. This shows the assertion. O

We continue the proof of Proposition[2.13] Since the assertion holds by multiply-
ing the null vector field by a non-zero function, we take a null vector field 7 as in the
right-hand side of . By the same calculations in the proof of Proposition m
we have nf = v™ (af, + ). Thus,

e -1
m+ip - k. m—1_m+i—1—k
VA EY < h >n vy (afu+1).

k=0

Since nFv™~1 = 0 if k # m — 1 and nFv™ =1 = (m — 1)!, we have

= (m N 1) (m — DY (afu + ¥).

m
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Thus, n™" f = vg(u,v) + (afy + 1)y, where g is a function. Since f,, = -+ =
fupm-1 =0, and i € (fu,¥)g (j < k) on the u-axis by Lemma - we have

|£f‘(m+z)/m det(§f7 77mf7 ’r]erZf)( O) _ |fu|(m+z /m det(fuafvmvam+'i)( 0)
|§f X nmf|(2m+i)/m u, - |fu X fvm+i (2m+i)/m V)

and this shows the assertion. O

We call wy myi the (m,m + i)-cuspidal curvature and By, 2m the (m,2m)-bias.
Note that By,,2m does not depend on the choice of (&£,7) satisfying
and ({f,n™f) = 0 at p by the same calculation. In this case, a(0,0) = 0 by
the additional assumption. If f is an m-type edge, and written as (2.4), then
Win,m+1(0) = (m 4+ 1)(bn),(0,0). If f is an (m,n)-edge (n < 2m), and written
as (2.5), then wy, »(0) = b,(0,0), and B 21, (0,0) = ba(0). See Appendix [A] for
geometric meanings of the terms b, (i =2,...,|n/m]).

2.3.2. Singular, normal curvatures and cuspidal torsion. Let f be an m-type edge,
and u(t) be a parametrization of the singular set. Let v be a unit normal vector
field of f, and set A = det(f,, fu,v) for an oriented coordinate system (u,v) on
(R?,0). We set i = f o . Then we define

relt) = sgn (5 Aty ) SUELLL00) iy - BHUD) (o

P ’ '
and
det(£f, 0™ f,€n™ f) det(Ef, 0™ f, 2 f) €, n™ f)
Ke(t) = w(t)) — n(t)), 2.9
= eprqrgp #0) erPlerxgmpe O 29
where § = 1 if (u/,n) agrees with the orientation of the coordinate system, and
0 = —1if (¢, n) does not agree with the orientation. We call ks, x, and k; singular

curvature, normal curvature and cuspidal torsion, respectively. These definitions
are direct analogies of [I3] [T0]. It is easy to see that the definitions do not
depend on the choice of parametrization of the singular curve. Moreover, k4 does
not depend on the choice of v, nor the choice of n when m is even. To see the
well-definedness of x;, we need the following proposition.

Proposition 2.15. The definition (2.9) does not depend on the choice of the
adapted vector fields (§,m), where n satisfies||2.1]|

Proof. One can easily check it does not depend on the choice of functional multipli-
cations of 7. Since the assertion does not depend on the choice of local coordinate
system, one can choose an adapted coordinate system (u, v) with 9, satisfying|[[2.1]|
Let 1 be a null vector field which satisfies||2.1]l Then by the proof of Lemma
may assume 7 is given by (2.2). Then by , we see that n™ f = (m—1)/(af,+7)
on the u-axis, where 1 is given in the proof of Lemma Furthermore, by ,
we see that Eén™f = (m — 1)/(ay fu + afyz + 1) on the u-axis. Substituting these
formulas into the right-hand side of , we see it is

et 0010 (o1 et fu) ()
|fu X¢|2 7 ‘fu|2|fu ><¢|2

(u,0),
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and since f,m = (m — 1)l), this shows the assertion. O

If an m-type edge f is given by the form (2.4)), then x4(0) = a(0), k. (0) = b(0)
and k:(0) = (by,)(0,0).

2.4. Boundedness of Gaussian curvature and mean curvature near an
m-type edge. Here we study the behavior of the Gaussian and mean curvatures.
Let g : (R%,0) — R be a function-germ (i = 1,2). If there exists an integer
n (n > 1) such that g € M? and g ¢ M?H, then g is said to be of order n,
where M; = {g: (R*,0) — R | g(0) = 0} is the unique maximal ideal of the local
ring of function-germs and M7 denotes the nth power of M, (cf. [ p. 46]). If
g & M, then the order of g is 0. The order of g is denoted by ord(g). If g is of
order n (n > 0), then g is said to be of finite order. Let g1,g2 : (R?,0) — R be
two function-germs such that g; is of finite order. The rational order ord(f) of a
function f = g1/g2 : (R*\ Z,0) — R, where Z = g5 1(0), is

ord(f) = ord(gy) — ord(gs).

For a function f = g1/(|g2]g3) : (R*\ Z,0) — R, we define ord(f) = ord(g1) —
ord(gs) — ord(gs), where Z = g5 '(0) U g3(0). If gy € M, then we define
ord(f) = oo. If ord(f) = 0, then f is called rationally bounded, and if ord(f) = 1,
then f is called rationally continuous (JI2, Definition 3.4]). If ¢ = 1, this is the
usual one.

Since the property g € M7 does not depend on the choice of coordinate system,
the order and the rational order does not depend on the choice of coordinate system.

Let f: (R?%,0) — (R3,0) be an m-type edge, and let (u,v) be an adapted
coordinate system with J, satisfying We take (m — 1)!¢ in Corollary
Namely, here we set ¢ by f, = v™ 1/(m — 1)!. Since f is an m-type edge,
fu and ¢ are linearly independent (Proposition and the independence of the
condition [2.2]). Thus, the unit normal vector v of f can be taken as v = /||
(D = fu x ). Using f,, ¥ and v, we define the following functions:

(v, ),
- <w77//\v> .

E: <fu7fu>’ ﬁ: <fu7'(/J>7 é:
‘/L\:_<fu71//\u>7 ]\/ZZ—Wﬁu% N:

We note that coeflicients of the first and the second fundamental forms of o-edges
being of multiplicity m can be written as

N vmfl - ,Umfl 2 -
E=FE F=—_F G=|—) G
’ (m—1)1"" <(m—1)!) ’
Z m—1 o m—1 R
LZTv M:A’Ui‘Ma N:viwj\ﬁ
7| [7|(m —1)! (m — 1!y
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Lemma 2.16. The differentials v,, and v, of v are written as

GL - FM EM — FL
Vo= e fy ),
(EG — F2)|9| (EG — F2)|p|
,Umfl e PN PN ,Umfl e
—~_ _GM-FN EN- — __FM
5 __(m-=1) - (m—1)!
! (EG - F2)p| " (EG — F2)|p|

Proof. Since (v, V) = (v, v) = 0, there exist functions A, B, C, D on (R?,0) such
that

Vu:AfuJ"Bwa Vv:Cfu+D1/)-
Considering (v, fu) - (. 8) » (o fu) el (1,14}, we have

1 (L\_(E F)/(A 1 WH _[E F\ [C
pl\m) \F G)\B) |7 N ~\F G)\D)"
Solving these equations, we have the assertion. O

By this lemma, v, can be written as

-~

N ~ ~
Vy = m(Ffu - Ew)

along the u-axis. Since f, and 1 are linearly independent and E # 0, the condition

v,(0) #£ 0 is equivalent to N(0) # 0. To see this fact, we take the same setting in
the proof of Proposition [2.10] Then we see that

det(fuv fvmvaerl) = mdet(fua'l/}a'l/)v) =m <ﬁ,wv> = mﬁ (210)

along the w-axis, where o = f,, X ¢ and N = (D, 1) = — (D, ). Since {fy, ¥, v}
is a frame of R® and (fy, ) = (fo,vu) = 0, (v,1,) = 0, it holds that v, # 0 if
and only if (v,,¢) # 0. Moreover, smce (v,9) = 0, it holds that (1,,v¢) # 0 is
equivalent to (9,,%) # 0. Let f: (R?,0) — (R3,0) be an (m,n)-type edge, and
let us set

r = min ({n} U {im | b;n(0) # 0 in the form (2.5),i=2,3,...}).

Theorem 2.17. Let f : (R?,0) — (R3,0) be an (m,n)-type edge. Then the
rational order of the mean curvature H is v — 2m. If the normal curvature does
not vanish at 0, then the rational order of the Gaussian curvature K is r — 2m.

Proof. We take an adapted coordinate system (u,v) such that 9, satisfies [2.1]
Since L = (fyu, V), the normal curvature does not vanish if and only if L(0) # 0.
The Gaussian curvature K and the mean curvature H of f are given by
(m — 1)1 LN — &5 M? (m— 1)l EN = 2255 FM + 5=5;GL
vl P2(EG - F?) ] vm=t 2[0|(EG — F?) '

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



SINGULARITY WHICH IS A SUSPENSION OF A SINGULAR CURVE 487

This and E # 0, EG — F2 # 0 at 0, together with

N Ur—m—l
N=————(b.(0 ,v)),

5 (40 % va(u,v)
where « is a function, by using the form (2.5)) and ([2.10), give the assertion. O

By Theorem the orders of K and H coincide. Moreover, since n < 2m,
they are never bounded when the normal curvature does not vanish.

3. CURVES PASSING THROUGH m-TYPE EDGES

In this section, we consider geometric invariants of a curve 7 passing through
an m-type edge f. If 4 = f o~ is non-singular, then the usual invariants can be
defined in the same way as in the regular case. We consider the case when 4 has a
singular point, namely, v passing through a singular point of f in the direction of
a null vector.

3.1. Normalized curvatures of singular curves. Following [14, 4], we intro-
duce normalized curvature on curves in R2. Let 4 : (R,0) — (R",0) be a curve,

and let 0 be a singular point. We assume that there exists k such that 4’ = t*~1p
(p(0) # 0).
We set
5= / 19| dt (3.1)
and

5 = sgn(s)|s|'/*, (3.2)
where we see § is a C*° function and d3§/dt(0) > 0. We call this parameter a
1/k-arc-length.
Proposition 3.1. The parameter t is a 1/k-arc-length parameter of 4 if and only
if A/ ()] = k[t
Proof. 1f |%/(t)| = k|t*~!| and s(t) as in (3.I), it holds that

t t
s(t) = / k|lgRt de = / ckeblde = eth (e =sgn(t) if k is even, 1 if k is odd).
0 0

Since sgn(s) = sgn(t), we have |s| = [tF|, and therefore, t = sgn(s)|s|*/*.

Let us suppose now that t is the 1/k-arc-length, i.e., t = sgn(s)|s|"/*, with s(t)
as in (3.I). Since sgn(s) = sgn(t), we have t* = sgn(s)*|s| = sgn(s)*™'s, and
consequently, s'(t) = sgn(t)*T1ktk=1 = E|t|*~L1. Therefore, it holds that |4 (t)| =
E[thF=1]. a

Let us set n = 2. Then the curvature k satisfies that

is a C*° function. We call & the normalized curvature. This is originally introduced
in [T4] and generalized in [4]. Let f(t) be a given C*°-function, and k > 2 be an
integer. Then similarly to [I4, Theorem 1.1], one can show that there exists a
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unique plane curve up to isometries in R? with normalized curvature given by
k(t) = f(t), where t is the 1/k-arc-length parameter.

Using the frame {e,n} along 4 defined by e = p/|p| and n the 7/2-rotation of
e, the normalized curvature can be interpreted as follows: We define the function

k1 by the equation
e\ (0 ki\fe
(o) = (0 ) ) 59

where the prime ’ denotes differentiation with respect to the 1/k-arc-length. Then
we have:

Proposition 3.2. Let {e,n} be the above frame along #(t) in the Fuclidean plane
R? satisfying (3.3), where t is the 1/k-arc-length parameter. Then k1 = k& holds.

Proof. Since 4'(t) = t*~1p(t), where p(0) # 0 and the 1/k-arc-length parameter ¢
satisfies |9/ (¢)| = k[t|F~1, we have 4" (t) = (k—1)tk=2p(t)+tF=1p/(t) and |p(t)| = k.
Then

K1) = g det(p(0). /(1)

Consequently,

- _ 1

(1) = IH () = 1 det(o(t), (1),
On the other hand, since x1(t) = €'(t) - n(t), where e(t) = p(t)/|p(t)] = p(t)/k
and n(t) is the m/2-counterclockwise rotation of e(t), and the dot ‘-’ denotes the
canonical inner product of R2, it holds that

1 1
1) = 10 (1) - mt) = 2 det(p(0), (1)

Thus, we have the assertion. O

3.2. Normalized curvatures on frontals. Following Section we define the
normalized curvatures for curves on a frontal. Let f : (R?,0) — (R?,0) be a frontal
and v a unit normal vector field of f. Let v: (R,0) — (R2,0) be a curve. We set
4 = fo~. We assume there exists k such that 4’ = t*~1p (p(0) # 0). The geodesic
curvature kg, the normal curvature x, and the geodesic torsion 7, are defined by

_ det(¥,5",v) (B, v) _ det(§',v,v")

ST RE O TR T TR

on regular points (see [I], p. 261]). These curvatures can be unbounded near singular
points. Indeed, it holds that

1 det(p,p',v) 1 (p,v) 1 det(p,v,v/')
Ky =  Kp = L Ty= ) 3y
ST s T ET s T e B
One can easily see that
Fg=8""1ky, En=3"1k,, T,=5"17, (3.5)

are C* functions, where 5 is the function given by (3.2) for 4. We call &g, Ry, 7y
normalized geodesic curvature, normal curvature, and geodesic torsion of 7, respec-
tively. These satisfy:
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Lemma 3.3. It holds that
B 1 det (%), 4¢+D 1)
ST R EIVRE WP

1 <’7(k+1),u>
Fp =
k2 k1-1/k |@(k)|1+1/k’

R

1 det(3®), v, 1)
ke k1=1/k R [1+17k

Tg =

att=0.
Proof. Since 4(t) = t*=1p(t), we have p(0) = z;’i)(lt))?’ p'(0) = *y““*kl!’(o) and pg =
|p(0)] = KR Therefore, it holds that

(k—1)!
k-1 k-1 Pg)kil)/k
S =1 W + tO(t) 5

where O(t) is a smooth function of ¢. Thus, by (3.4)) and (3.5)), we get at ¢ = 0:

k—1
po” k¥ det(p, p',v)  KYF det(p, p',v)

kg = L p(3) k ngrl/k
VR (| — 1)12+U/k det (40) 4041) 1y g1k det(4(0), 4R +D) )
FE-D ROREA TR peREE
) R )
T (k=1)/k p% Tk p(1)+1/k
JU/R(f — 1)11+1/k <,Ay(k+1)’ vy kK <,Ay(k+1)7 V)
k k! |5 (R |1+17k k2 3Rk
- PR det(p, v, 1) _ EYE det(p, v, V')
L(k—1)/k 2 L p(1)+1/k
CEYE(R — DIHYE det(3R), v, 0") RIVE det(50), v, 0)
k(k—1)! |y (k) | 1+1/k ko R®[/E
which show the assertion. O

Similar to the case of plane curves, these invariants can be interpreted as follows.
Under the same assumption above, we set e = p/|p|, v = v(§) and b = —e X v.
Then {e,v, b} is a frame along 4. We define k1, ko, k3 by

e 0 K1 Ko e
b/ = —K1 0 K3 b s
v —Kkg —kKk3 O v

where’ = d/dt denotes differentiation with respect to the 1/k-arc-length parameter.
With the above notation, we get the following:
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Proposition 3.4. Ift is the 1/k-arc-length parameter, then
k1 = kRkg, ko =kRk, and k3=FkT,
hold for any t.

Proof. The 1/k-arc-length parameter ¢ satisfies |4/(t)| = k[t*~1|. Then |p(t)| = k,
and e = p/k. So, putting § = ¢ at (3.5) and using (3.4), it holds that

1
K1 = <€/ab> = ﬁdet(lm play) = k’%gv

1
/€2=<€/,V> = E<p/7y> = kkn,

1
kg = — (V' b) = z det(p, v, V') = k7y.
Thus, the assertion holds. O

3.3. Behaviors of k4, x, and 7, passing through an m-type edge. In this
section we shall study the orders of the geodesic and normal curvatures and the
geodesic torsion of a curve passing through an m-type edge, concluding on bound-
edness. Describing the condition, we use the curvature of such curve. Let f :
(R?,0) — (R3,0) be an m-type edge, m > 2, and v : (R,0) — (R2,0) be a reg-
ular curve such that 7/(0) is a null vector of f at 0. Let (u,v) be a coordinate
system which gives the form (2.4), and (t) = (u(t),v(t)) be a parametrization of
v, where the coordinate system on the target space is (u,v), and the orientation
of 4 agrees the direction of v at 0. Since such coordinate system is unique (unique
up to (u,v) — (u, —v) if m is even), the order of contact of 4 with the v-axis at 0
and the curvature & of 4 is well-defined as a curve on f. We call such order of
contact the order of contact with the normalized null direction, and we call % the
curvature written in the mnormal form. If (t) = (t'c(t),t) (c(0) # 0), then the
order of contact with the normalized null direction is [, and &= (0) = —I!¢(0)
and =1 (0) = —(1 + 1)!¢/(0) hold.

Theorem 3.5. Let f : (R%,0) — (R3,0) be an m-type edge, m > 2, and v :
(R,0) — (R2,0) be a regular curve with order of contact | > 2 with the null
direction of f at 0 and K the curvature of v written in the normal form of f. Then
it holds that:
(1) The casel > m. For kg,
o ifm <1 <2m, then ordrky =1 — 2m;
o if | >2m, then ordky, > 1, and ord Ky = 1 is equivalent to

{(z — D1 (0)wmmy1(0) — ml(m 4+ D)REDO0) £ 0 if l=2m+1,

o if | =m, then ordxy, > 1 —m, and ordx, = 1 —m if and only if
£=D(0) # 0.

For k,, it holds that ordk,, > 1 —m, and ordk,, = 1 — m if and only if
Wm,m+1(0) # 0. For 74,
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o if | < 2m, then ordry > | —2m + 1, and ord1y = [ —2m + 1 is
equivalent to

Win,m+1(0) #0 if 1 <2m —1,
{m(l — )1k (0) 4+ (m — D2 R (0) wppms1(0) 0 if 1 = 2m — 1;

o if I > 2m, then ord7y > 0, and ord Ty, = 0 if and only if x,(0) # 0.
(2) The case m/2 < I < m. For this case, it holds that ord K, = m — 21,
ordk, >m —2l+ 1, and ord k,, = m — 2l + 1 is equivalent to

Win,m+1(0) # 0 ifl>(m+1)/2,
(m+ D) (m — 14 1)k, (0)(FY"2)2(0) + 21%wmm1(0) 0 if 1= (m+1)/2.

For 74, it holds that ordTy > 1 —1, and ordty = 1 — [ is equivalent to

Wm,m-i—l(o) # 0.
(3) The case l <m/2. In this case, it holds that ord kg > 0, and ord kg = 0 is
equivalent to

ks(0) #£ 0 ifl <m/2,
{m!HS(O)(R(l2))2(O) +20% 40 ifl =m/2.

For kK, it holds that ord k,, > 0, and ord k, = 0 if and only if k,(0) # 0.
For 14, it holds that ord7y > 1 — 1, and ordTy = 1 — 1 if and only if

wm7m+1 (0) # 0

If m is even and (u,v) is a coordinate system that gives the form 7 then
(u, —v) also gives (2.4). In this case, changing (u,v) to (u, —v), the signs of & and
Wm,m+1 Teverse, and those of x; and x; do not change. So, when m is even, none
of the conditions

(1 = )16 (0)wmm i1 (0) — ml(m 4+ 1)1&ED(0) # 0,
m(l —1)1k(0) + (m + )2 &172(0) Wynm1(0) # 0,
mlrg(0)(RE2)2(0) + 2012 #0

change under the coordinate change (u,v) to (u, —v).

Proof. Let 4 = f o~. One can assume that f is given by the form and, since
Ov is a null vector of f, one can take v(¢) = (z(¢),t), with £(0) = 2’(0) = 0. Then
x(t) is of order [ and we set y(t) = (t'c(t),t) (c(0) # 0).

In the normal form , since b,,(0,0) = 0, we may further assume f is given
by f(u,v) = (u,u?a(u)/2 + v™/m! u?bo(u)/2 + (V™ /m!) (ubm1 (1) + vbma(u, v))).
We recall that £5(0) = a(0), k,(0) = b(0) and k¢(0) = (bp,),(0,0). Furthermore,
it holds that #¢(0) = by1(0), Wimmi1 = (M + 1)bya(0,0), £4=2(0) = —1!¢(0) and
1D(0) = —(1+ 1)!(0). We set o by f, = v Lp/(m —1)!. Then iy = f, x ¢
gives a non-zero normal vector field to f.
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(1). Assume | > m. By (2.4)) we get 4 = t™p, where

ﬁ(t) = (tl_mc(t)v g2 (t)v tg?)(t))a
mlt?=ma(t)e(t)? + 2
2m)!

mltl—m-1 c(t)? 2 b (t)e
) = (Ol +22HI;T (1) + 24 by (Fe(t)

Then 4 = t™~1p, where p = mp+tp’. Note that p(0) # 0. Setting vo(t) = Pa(y(t)),
we can show that vy (t) = (£d(t), te(t), 1), where

g2(t) =

)

d(t) = 27r3m! ( — 2mbmi1 + 2mt> " by Pm! — 2mt' T " byem!

+ 28T b aem! + 2mtt T T M abaem! + mtS T b A mla)

+ e mla’ + mt T T M b mla’ — mt? T P mlby

+ 2t2+l7macm!bm2,v + t2+2l7m02m!a'bm2,u —2mtleb),, — thbmg,u),
e(t) = %(mt"lbmlw (14 m)bmo +tbm2,v). (3.6)

We abbreviate the variable, namely a = a(t), b2 = bma(y(¢)), for instance, and
(bm2)v = bma,. Here, we see that

92(0) = % 5(0) =0, g5(0) = bm;(!o), d(0) = %271'(0) (if m < 1),

—m!by(0)c(0) — by (0) . o 1)y (0
0 © 1(0) (if m =1), e(o):_%.

d(0) =
To see the rational order of the invariants xg, kn, 74 at 0, we may use v5(t) instead
of vo~y(t) in ([3.4). Since g5(0) = 0, we can write g = tg. We see that
p=(t""c+ T imgs + 20, (m + 1)tgs + t2g5), (3.7)
. {(l(l —m)t =" e + 7 m0(1),t0(1), (m + 1)g3 +tO(1)) (I > m) 58)
((m+1)¢ +tO(1),t0(1), (m + 1)gs + tO(1)) (m =1), '

where O(1) means a smooth function depending on ¢. Then we see that |p, p’, va|,
where | - | = det(-), is, for [ > m,

="+ t=mHOo) 11— m)t=m"le+t=m0O(1) t™d
mga +tO(1) tO(1) te |. (3.9)
(m + 1)tgs + t20(1) (m+1)gs +tO(1) 1
If 2m — 1 +1 > 0, then (3.9)) is t'=™"1 A, (t), where
0 I(l—=m)c(0) 0
A1(0) = |mgo(0) 0
0 (m+1)gs(0) 1

(Il —m)
(m—1)!

o
|

¢(0).
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If 2m — 1+ 1 =0, then (3.9) is "™ A2(t), where

0 I(m+1)c(0) d(0)
As(0) = |mgo(0) 0 0 |=
1

0 (m + 1)gs(0)
_ om+ 1 (byibme
=~y (g +1e) O
If2m —1+41<0, then ! > m and (3.9)) is t"™A3(t), where

—m(m +1)g2(0)(lc — dg3)(0)

0 0 d(0)
A3(0) = |mg2(0) 0 0 | =m(m+1)d(0)g2(0)g5(0)
0 (m+1)gs3(0) 1
_ m(l+m)

s tmt 0ma (0):

If m =1, by and , we see the assertion, once ord [t|™™* = m — 1 and
ord |p|®> = 0. This shows the assertion for x.

Since one can easily see that (p/,v2) = (m + 1)by2/m! at 0, the assertion for ,
is proved. Next we see that |p, vo, V5] is

#=me+t=mHO1) tmd mt™td +t™O(1)

mga + tO(1) te e+t0O(1) : (3.10)
(m+ 1)tgs +t20(1) 1 0
If 2m —1—1> 0, then is /=™ By (t), where
l(0) 0 0 o 1)
B1(0) = [mg2(0) 0 e(0)| = —le(0)e(0) = memg(O)c(O)
0 1 0

If 2m — 1 — 1 =0, then m <[ and (3.10)) is t™ 1 By(t), where
le(0) 0 md(0)
B2(0) = |mga(0) 0 ¢(0) | = (~lce +m?dga)(0)

0 1 0
bim1(0) I(m + 1)by2(0)c(0)
+ .
(m —1)!2 m
If 2m — 1 — 1 < 0, then m < [, and (3.10]) is ™1 Bs(t), where
0 0 md(0)
B5(0) = |mga(0) 0 €(0) | = ma(0)ga(0) = — 1O
3V = Mgz e - 9280 = (m—1)12"
0 1 0
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This shows the assertion for 7.

(2) and (3). We assume ! < m and we shall use the same notation of case (1).
Setting va(t) = a2(7(t)), we can show that ve(t) = (t'd(t), te(t), 1), where

1 _
d(t) = 7( —omt™ b1 4 2mmitlabmic? — 2mmlboc 4 2mltabmac + 2mm!tabmac
2mm!

+ mm! b cca’ + mit T becia + mmlt becia’ — thCQm!bg

+ 2m!t2acbm2,v + m!tl+zc2a'bm2,u —2mt™ b, — 2mtm7l+1bm2,u)

and e is the same as in (3.6). We assume [ < m/2. Then 4 = t!j, where p(t) =
(c(t), t'ga(t), t'gs(t)) and

2t 2 mla(t)e(t)?
B 2m)

2t g (D) e(t) 4 26™ 2 b0 (y(8)) 4 milbo () c(t)?
N 2m! '

92(t)

)

g3(t)

Then 4" = t'p, where p = I + tp' with p(0) # 0. Since 4 has multiplicity I, we
need to replace m — 1 in equations (3.4]) by | — 1. Here, we see that

92(0) = a(0)c(0)?/2 (if I < m/2), g2(0) = a(0)c(0)?/2 + 1/m! (if m = 21),
93(0) = bO(O)C(O)2/27 6(0) = _(1 + m)me(O)/m-
To see the order, we may use v (t) instead of v o y(t) in (3.4). We see that

p = (le+tc ' (2lgs + tgh), t'(2lgs + tgs)),

3.11
o = (14 1) +10(1), 87 (202g, 1+ 10(1)). 1 (22g, + tO(1Y). D
By applying the formula
11 Ti12 13 r11 kxi2 ki
kxor xaa x23| = w21 a2 T23
kxs1 x32 x33| |r31 T3z Ts3
for k = t'=1, we see that |p, p’,vs| is
le+tO(1) (I+1)d +to(1) td
t'(2lg +tO(1)) #71(20%g2 +tO(1)) te
t'(2lgs +tO(1)) t71(2%g3 +tO(1)) 1
le+tO(1) 11+ 1) +tO(1) t2-1d (3.12)

= [t(2lgs +tO(1)) t71(202go +tO(1)) te
t(2lg3 +tO(1)) t71(21%2g5 +tO(1)) 1
=710 (1)
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with
le+tO(1) (I+ 1) +tO(1) ¥4
Ci(t) = |t(2lgs + tO(1))  21%go +tO(1) te
t(2lg3 +tO(1))  21%g3 +tO(1) 1
Then C4(0) = 213¢(0)g2(0). This shows the assertion for k,. By (3.11)), we see that
(p/,ve) = t171(21%2g3 + tO(1)) and |p, v2, 4| (0) = I(m + 1)c(0)by,2/m. This shows
the assertions for &, and 7.
Next we assume | > m/2. In this case, 4 = t!(c(t), t™ ! go(t), t™H1gs(t)). We
set A(t) = (c(t), t™ga(t), t™ "+ gs(t)) and

2+ m!t2"a(t)c(t)?

ga(t) = o] )
4a(t) = 2617 1b,,1 () c(t) + 2bym2 (7252)!) +m! t2l_m_1b0(t)c(t)2.
Here, it holds that
92(0) = 1/m!, €(0) = (1+m) 2(0)/m,

(
93(0) = by2(0)/m! (if 21 — m — 1 > 0),
93(0) = bo(0)c(0)? /2+bm2( )/m! (if m=20—1).
It holds that 4’ = t!~!p with p =I5 + tp’ and p(0) # 0. We see that

p(t) = (le+tc/ .t~ (mgn +1g3), "~ ((m + 1)gs + tg5)),
§ () = ((+ D¢ +10(1), 7= (m(m — 1)ga +tO(1)),
= ((m+ 1) (m — L+ 1)g3 + t0(1))).

Using a similar method to (3.12), we see that |p, p/, 1] is

le+tO(1) 1+ +tO(1) td
tm = (mgy +tO(1)) tm ==L (m(m — 1) ga +tO(1)) te
" (m 4+ 1)gs +tO0(1))  t™ 7 (m+ 1) (m — 1+ 1)g; +t0(1)) 1
le+tO(1) tm==H (1 + 1) +tO(1)) tm=1q
=1 t(mgs +tO(1)) tm= = m(m — )ge + tO(1)) te
2((m+1)gs +t0(1)) t"~((m+1)(m—1+1)gs+tO(1)) 1
=m0y (1),
with
le+tO(1) (1+10)d +tO(1) tm—1d
Co(t) = t(mgs +tO(1)) m(m —1)gz +tO(1) te

t2((m+1)gs +t0(1)) t((m+1)(m —1+1)gs +t0(1)) 1

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



496 L. F. MARTINS, K. SAJI, S. P. DOS SANTOS, AND K. TERAMOTO

Then C3(0) = I(m—1)mc(0)g2(0) = I(m—1)c(0)/(m—1)! and, replacing m—1 by -1
in equations , this shows the assertion for ry. By , we see that (p/, v9) =
tm=LC3(t), where C3(t) = m(m —)ga(t)ea(t) + (m +1)(m — 1+ 1)g3(t) +tO(1). Tt
holds that

(m +1)bma2(0)

- (m<2l—-1),

C3(0) = 16o(0)e(0)* | bim2(0)

(m+1)< 207 ol ) (m=2l—1),

and |p, v2, v5](0) = —1c(0)e(0) = I(m + 1)c(0)by,2(0)/m. This shows the assertions
for x, and 7. O

In particular, we have the following corollary on boundedness directly obtained
from Theorem 3.5

Corollary 3.6. Let f : (R%,0) — (R3,0) be an m-type edge with m > 2, and
v : (R,0) — (R2,0) be a reqular curve with order of contact | > 2 with the null
direction of f at 0.
(1) The casel > m. For kg,
o if | > 2m, then k4 is bounded at O;
o if m <1< 2m, then k4 is unbounded at O;
e ifm =1 and R'"V(0) # 0, then r, is unbounded at 0.
For ky, if wm,m+1(0) # 0, then k, is unbounded at 0. For 74,
o ifm<1<2m—1 and wp,m4+1(0) # 0, then 74 is unbounded at 0;
e ifl=2m—1 and m(l —1)'k:(0) + (m — )12 54=2(0) Wy m+1(0) # 0,
then 74 is bounded at O;
o if | >2m — 1, then 74 is bounded at 0.
(2) The case m/2 <1 < m. In this case, kq is unbounded at0. Ifl = (m+1)/2,
then ky, is bounded at 0. If m > 1> (m+1)/2 and wp m+1(0) # 0, then
kn is unbounded at 0. If Wy, 1m+1(0) # 0, then 74 is unbounded at 0.
(3) The casel <m/2. In this case, ky and k,, are bounded at 0. If wy, pmt1(0) #
0, then 74 is unbounded at 0.

We consider the case where f: (R%,0) — (R3,0) is a cuspidal edge. By defi-
nition, it is a (2, 3)-edge, in particular, a 2-type edge. Then by Theorem the
following assertion holds.

Corollary 3.7. Let f: (R?,0) — (R3,0) be a cuspidal edge, and let v : (R,0) —
(R?,0) be a regular curve with order of contact I > 2 with the null direction of f
at 0 and K the curvature of v written in the normal form of f. Then, it holds that:

For kg,

o ifl =2, then ordky > —1, and ord Ky = —1 if and only if £=1(0) #£ 0;
o ifl=3 or4, thenordry, =1 —4;
e if [ > 5, then ordky > 1, and ordky = 1 is equivalent to

(I — 1)k (0)wz,3(0) — 12&42(0) #£0  ifl =5,

Iit(O)wz’g(O) 75 0 Zfl > 5.
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For k,, it holds that ord k,, = —1.
For 74,

e ifl=2o0r3, thenordry > 1 —3, and ord 1, =1 — 3 is equivalent to
wa,3(0) #0 ifl <3,
{2(1 — D!k (0) + ZD(0) wag(0) £0  if 1 =3;
o ifl >4, then ordt, > 0, and ord 7, = 0 if and only if x:(0) # 0.

Proof. Since ws 3 corresponds to the cuspidal curvature x. and it does not vanish
at 0 ([I2, Proposition 3.11]), we have the assertion by Theorem [3.5 O

About the boundedness, we have the following immediate corollary from Theo-

rem [3.71

Corollary 3.8. Under the same assumption of Corollary 3.7, we have the follow-
mng:
(1) For the geodesic curvature kg,
o if | >4, then Ky is bounded at 0;
o if | =3, then Ky is unbounded at 0;
o if l=2 and '(0) # 0, then kq is unbounded at 0.
(2) The normal curvature Ky, is unbounded at 0.
(3) For the geodesic torsion Tg,
o ifl =2, then 74 is unbounded at 0;
o if 1 =3 and 4k:(0) + &'(0) k.(0) # 0, then 74 is bounded at 0;
o if | >4, then 74 is bounded at 0,
where K. is the cuspidal curvature (cf. [12]) corresponding to wo 3.

Note that ord k, > —1 for [ > 2 is pointed out in [2, Proposition 2.19].

We observe that although in the above results we could not guarantee that the
three invariants are bounded at the same time near a singular point, it is easy
to find an example where it happens: taking f = (u, %,v5) and y(t) = (t*,1), it
holds that m = 2, | = 4, ordk, = 0, ord k,, = 1, ord 74, = 3 (see Figure [I)). Thus,
these three invariants are bounded at 0 (cf. Corollary . For the cuspidal edge
f(u,v) = (u,v?,v3) and the same v, we see that k, and 7, are bounded, but f,, is
unbounded at 0 (cf. Corollary . Figure [2| shows the graphs of these invariants

near 0.

FIGURE 1. The graphs of k, (left), k, (middle) and 7, (right) of
the curve 4(t) = f(y(t)), where f = (u, %,v5) and y(t) = (t4,t).
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4
1
2

-5

FIGURE 2. The graphs of k, (left), x, (middle) and 7, (right) of
the curve 4(t) = f(y(t)), where f(u,v) = (u,v? v3) and y(t) =
(t4,1).

APPENDIX A. GENERALIZED BIASES FOR A PLANE CURVE

Let v : (R,0) — (R?,0) be a curve-germ of (m,n)-type which is given by the
form in the zy-plane (R2,0). The terms a; (i = 2,..., |n/m]) measures the
bias of v near a singular point. We call a;11 the (m,im)-bias (i = 2,...,[n/m])
of v at 0, and it is denoted by By, im. We call b(0) the (m,n)-cuspidal curvature
as in [§], and it is denoted by 74, p-

If m and n are even, then it is a half part of a curve of (m/2,n/2)-type, and we
consider the following cases: (1) both m,n are odd, (2) m is odd and n is even, and
(3) m is even and n is odd. Moreover, let aj denote the first non-zero term of a;
(i=2,...,|n/m]). We consider the cases (1) and (2). Then ~ passes through the
origin tangent to the z-axis. In the case (1), if k is odd, it also passes across the
z-axis. If k is even, it approaches the origin from one side of the z-axis and goes
away into the same side of the z-axis, and if there does not exist such k (namely,
the bias is zero), it passes through the x-axis. In the case (2), if the bias is zero, it
approaches the origin from one side of the z-axis and goes away into the same side
of the z-axis. Figure[3|shows the images of the curves v1 : ¢t — (t3, a1t% +ast? +11)
with (a1, a2) = (1,0), (0, 1), (0,0) from left to right. Figure 4| shows the images of
the curves o @ t > (t3,a1t% + aot? + 1) with (a1, a2) = (1,0),(0,1),(0,0) from
left to right.

FI1GURE 3. The images of the curves ;.

S

FIGURE 4. The images of the curves 7.
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We counsider the case (3). Then « approaches the origin from a direction of
the z-axis, makes a cusp, and goes back in the same direction. If k is both odd
and even, it approaches the origin from one side of the z-axis and goes away
into the same side of the z-axis. If the bias is zero, it passes through the z-axis.
Figure [5| shows the images of the curves 73 : ¢t — (t4, a1t® + aot'? + t'3) with
(a1,a2) = (1,0),(0,1),(0,0) from left to right.

FIGURE 5. The images of the curves ~s.

Example A.1. Let v be a curve-germ A3-equivalent to (¢3,0). We set
o =190 10 det(v9(0),7(0))
' dy®) illy®(0)]

One can calculate the invariants up to 10 degrees as follows. The (3,4)-cuspidal
curvature 734 is

by
T34 = 73
as

(A1)

Ifrzq #0,ie., by # 0, then 7 is A-equivalent to (t3,t*). We assume by = 0. Then
the (3, 5)-cuspidal curvature rs 5 is

T —55

3.5 = .

ay/?

(A.2)

Ifr3s #0,ie., bs # 0, then 7 is A-equivalent to (t3,15). We assume b5 = 0. Then
the (3,6)-bias 836 and the (3, 7)-cuspidal curvature r3 7 are
b
Bas = =, (A.3)
as
—Tagbg + 2asbr
2&;0/3

(A.4)

37 =

Ifrs7 #0,ie., —Taybg + 2asbr # 0, then v is A"-equivalent to (¢3,¢7). We assume
rs7 =0, i.e., by = Tasbs/(2as). Then the (3, 8)-cuspidal curvature r3 g is
—35a3bg + 2d3(—28asbs + Hasbs)

10a**

. (A.5)

3,8 =

If r38 # 0, then v is A%-equivalent to (¢3,t%). We assume 735 = 0, i.e., by =
7(5a3+8asds)bs/(10a2). Then the (3,9)-bias B39 and the (3, 10)-cuspidal curvature
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73,10 are
63a4d5bg + 42a3a6bg — Hazb
Bap = e, (A.6)
3
~ (10@3byo + 945a3dsbs — 42as(3aZ — 10a4a6)bs — 15a3(8a7bs + Haabg))
73,10 = 10&;9/3 ’
(A7)

Proof of Exzample [A71]l By rotating v in R?, we can write
10 7

10
a; b;
V() = (Z it > Z't> +0(10).
1=3 i=4
We set
10 - 1/3
= Qi i3
and the inverse function of s = p(t) as t = 1(s). We set ¥(s) = Zgl it il +
0(10). Then we have:
b =1/al",
Yo = —aa/(6a5°%),
s = (5ai — 4dsds)/(40a3),
o (71755&2 + 252a3G4a5 — 72&3546)/(1080&;3/3),
s = (
e = (

13475a% — 27720a3a3as + 10080a3aade + 43243 (14a2 — Sasar))/(45360as /%),
—1575a5 4 4200azd4as — 1680a3a3d6 + 96a3a4(—21a2 + Hasdr)
+ 16a3(42asds — Hasds))/ (2240a5),
Y7 = (475475a5 — 1556100a3a4ds 4+ 655200a3d;a6 — 42120a3a4 (—28as + Hasdr)
+ 3240a3a4 (—182asdes + 15a3ds)

— 1296@3(91a3 — 60asdsdr + bas(—Tas + dsdo)))/(233280a2"%),
Vg = (—155520a10a3 + 11(—4447625a; + 17243100a3d5as — 7497000a304 a6

+ 2570400a3a5 (—7az + asdr) — 45360a5a; (—238asds + 15asas)

+ 15552a3(—98a2ds + 20asdedr + 15a3dsas)

+ 518454 (833a2 — 420asdsdr + bas(—49a2 + basdo))))/(6998400a2"%),
o = (17920@10a4a3 + 2480625a% — 11113200a3a5as 4+ 4939200a3a; (3as + dade)

— 70560a3a; (84ds + 140a4dsas + 25a3a7) 4 4032d3(84ds + 840aG4a5a6

+ 600a3asar + 25a; (14dg + baads)) + 2560a5(12a5 + 21aeds + 14dsao)

— 4480a5(72a2ar + as(84ag + 90aads) + 5aa(24dcdr + 5aads)))/(89600as"),
P10 = 13(—16865646875a] + 85717170000d3d4a5 + 19595520a10a5 (—10a3 + 3asds)

— 38710980000a3a5as + 2844072000a3d5 (—49a3 + Hasdr)
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— 1422036000a3 a4 (—70asds 4 3azas)

+ 372314880a3a; (—154a2as + 20asdsdr + 15a3dsas)

+ 206841600a5a; (385a5 — 132asdsar + ds(—77dg + Haado))

— 1119744a3a4(10241a2 — 7980asazar + 150a3(4as + Tasds)

+ 70a3as(—133ag + 10asao)) + 186624a5(22344a3as — 10080a3asdsdr

— 3780asdzds + His(—392a8 + 135asdras + 105asdsds)))/(1763596800a5 /).

Substituting ¢ = v (s) into y(¢), and by a straightforward calculation, we see that
Y((s)) = (/6,73 451 /4!) + O(4), and we have (A.1)). Under the condition 734 =
0, we have v(¢(s)) = (s*/6,7355°/5!) + O(5), and we have (A.2). We assume
734 = 73,5 = 0; then we see that v(1(s)) = (s3/6, 83,65%/6! + B3.757/T!) + O(7),
and we have and (A.4). We assume r57 = 0; then we see that v(¢(s)) =
(53/6, 3,655 /6! + B3,85%/8!) + O(8), and we have (A.5). We assume r3 5 = 0; then
we see that ¥(¢(s)) = (s3/6, 83,65°/6! + 83,95 /9! + r3.105'°/10!) + O(10), and we
have and . O

Example A.2. Let v be a curve-germ A™ " equivalent to (#™,t™1). We set
m—+1 @ m—41 b
~(t) = (Z Z,—!th, Z i;ﬁ) +O0(m+1) ((am,bm) # (0,0)).
Then by a standard rotation A in R? and a parameter change

b g lm (4 Qm+1 2
= a < m(m + l)a(m+l)/m )

we see that

— " T"'m,m+1 m—+1 _ Eerl
Ay(t) = (mV mt 'mm+1 = W .
Thus, the (m, m + 1)-cuspidal curvature is 7, m+1. Here, a; and b; are
A 400 5 et 0),400)
a,=—F—=, b= - .
illy(m)(0)| itlym)(0)|
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