COFINITE MODULES AND COFINITENESS OF LOCAL COHOMOLOGY MODULES

ALIREZA VAHIDI, AHMAD KHAKSARI, AND MOHAMMAD SHIRAZIPOUR

ABSTRACT. Let *n* be a non-negative integer, *R* a commutative Noetherian ring, \mathfrak{a} an ideal of *R*, *M* a finitely generated *R*-module, and *X* an arbitrary *R*-module. In this paper, we first prove that if $\dim_R(M) \leq n+2$, then $\operatorname{H}^i_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite *R*-module and $\{\mathfrak{p} \in \operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M)) : \dim(R/\mathfrak{p}) \geq n\}$ is a finite set for all *i*. As a consequence, it follows that $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))$ is a finite set for all *i* when *R* is a semi-local ring and $\dim_R(M) \leq 3$. Then, we show that if $\dim(R/\mathfrak{a}) \leq n+1$, then $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ *R*-module for all *i* whenever $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ *R*-module for all $i = \dim_R(X) - n$. Finally, in the case that $\dim(R/\mathfrak{a}) \leq 2$, *X* is \mathfrak{a} -torsion, and n > 0 or $\operatorname{Supp}_R(X) \cap \operatorname{Var}(\mathfrak{a}) \cap \operatorname{Max}(R)$ is finite, we prove that *X* is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite *R*-module when $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ *R*-module for all $i \leq 2 - n$. We conclude with some ordinary \mathfrak{a} -cofiniteness results for local cohomology modules $\operatorname{H}^i_{\mathfrak{a}}(X)$.

1. INTRODUCTION

Throughout, let R denote a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finite (i.e., finitely generated) R-module, X an arbitrary R-module which is not necessarily finite, and n a non-negative integer. We refer the reader to [9, 10, 26] for basic results, notations, and terminology not given in this paper.

The following questions are two important problems in local cohomology (see [17, First Question] and [20, Problem 4]). Recall that an \mathfrak{a} -torsion R-module X is said to be \mathfrak{a} -cofinite if $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all i [17].

Question 1.1. Is $H^i_{\mathfrak{a}}(M)$ an \mathfrak{a} -cofinite R-module for all i?

Question 1.2. Is $Ass_R(H^i_{\mathfrak{a}}(M))$ a finite set for all *i*?

Hartshorne [17, Section 3] and Singh [27, Section 4] have given counterexamples to these questions. However, these questions have been studied by many authors and they were shown to have an affirmtive answer in some situations (see e.g., [17,

²⁰²⁰ Mathematics Subject Classification. 13D07, 13D45.

Key words and phrases. Associated prime ideals, cofinite modules, local cohomology modules. The research of Alireza Vahidi was in part supported by a grant from Payame Noor University.

Corollary 7.7], [21, Theorem 4.1], [13, Theorem 3], [14, Theorem 1], [31, Theorem 1.1], [11, Theorem 1.4], [6, Theorem 2.3], [7, Theorem 2.6], [23, Theorem 8], and [2, Theorem 3.4]). In [24, Theorem 7.10] and [25, Theorem 2.10], Melkersson provided affirmative answers to these questions for the case that either dim $(R) \leq 2$ or \mathfrak{a} is an ideal of R with dim $(R/\mathfrak{a}) \leq 1$. As a generalization of [24, Theorem 7.10], the answer to these questions is also yes if dim $_R(M) \leq 2$ by [12, Corollary 5.2].

Recall that X is said to be an $\operatorname{FD}_{<n}$ (or *in dimension* < n) *R-module* if there exists a finite *R*-submodule X' of X such that $\dim_R(X/X') < n$ [2, 4]. The class of $\operatorname{FD}_{<n} R$ -modules is a Serre subcategory of the category of *R*-modules from [32, Theorem 2.3]. We say that X is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite *R*-module if X is an \mathfrak{a} -torsion *R*-module and $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all *i* [3, Definition 4.1]. Note that X is a finite (resp. an \mathfrak{a} -cofinite) *R*-module if and only if X is an $\operatorname{FD}_{<0}$ (resp. ($\operatorname{FD}_{<0}, \mathfrak{a}$)-cofinite) *R*-module. Therefore, as generalizations of Questions 1.1 and 1.2, we have the following questions (see [1, Question], [29, Questions 1.6 and 1.8], and [30, Questions 1.5 and 1.6]). In this paper, for a subset A of $\operatorname{Spec}(R)$, the set $\{\mathfrak{p} \in A : \dim(R/\mathfrak{p}) \ge n\}$ (resp. $\{\mathfrak{p} \in A : \dim(R/\mathfrak{p}) = n\}$) is denoted by $A_{\ge n}$ (resp. $A_{=n}$).

Question 1.3. Is $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ an $(\operatorname{FD}_{\leq n}, \mathfrak{a})$ -cofinite R-module for all i?

Question 1.4. Is $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))_{\geq n}$ a finite set for all i?

The first author and Morsali, in [29, Corollary 4.5], provided affirmative answers to Questions 1.3 and 1.4 for the case that $\dim(R/\mathfrak{a}) \leq n+1$, which is a generalization of Melkersson's result [25, Theorem 2.10] (see also [1, Theorems 2.5 and 2.10]). Also, the first author and Papari-Zarei, in [30, Corollary 3.2], proved that the answer to Questions 1.3 and 1.4 is yes if $\dim(R) \leq n+2$, which is a generalization of Melkersson's result [24, Theorem 7.10]. In the first main result of this paper, as generalizations of [12, Corollary 5.2] and [30, Corollary 3.2], we show that the answer to Questions 1.3 and 1.4 is yes if $\dim_R(M) \leq n+2$. As a consequence, we provide an affirmative answer to Question 1.2 for the case that R is a semi-local ring and $\dim_R(M) \leq 3$.

By [8, Corollary 2.6], $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is a finite *R*-module for all *i* when $\dim(R/\mathfrak{a}) = 1$ and $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is a finite *R*-module for all $i \leq \dim_R(X)$. In the second main result, we generalize and improve [8, Corollary 2.6] by showing that if $\operatorname{H}^i_{\mathfrak{a}}(X)$ is an $\operatorname{FD}_{<n+2} R$ -module for all $i < \dim_R(X) - n$ (e.g., $\dim(R/\mathfrak{a}) \leq n+1$) and $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all $i \leq \dim_R(X) - n$, then $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all $i \leq \dim_R(X) - n$, then $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all $i \leq \dim_R(X) - n$, then $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all $i \leq \dim_R(X) - n$, then the i-th Bass number and the i-th Betti number of X with respect to \mathfrak{p} are finite for every integer i and every prime ideal \mathfrak{p} of $\operatorname{Var}(\mathfrak{a})_{>n}$. Here, we denote $\operatorname{Var}(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \supseteq \mathfrak{a}\}$.

From [8, Theorem 3.5], X is an \mathfrak{a} -cofinite R-module whenever R is a local ring with dim $(R/\mathfrak{a}) \leq 2$ and X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq 2$ (see also [22, Theorem 2.6] and [19, Theorem 3.3]). Assume that dim $(R/\mathfrak{a}) \leq 2$, t is a non-negative integer, and n > 0 or $\operatorname{Supp}_{R}(X) \cap$ $\operatorname{Var}(\mathfrak{a}) \cap \operatorname{Max}(R)$ is a finite set. In the third main result, as a generalization and improvement of [8, Theorem 3.5], we prove that if X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n} R$ -module for all $i \leq 2-n$, then X is an $(\operatorname{FD}_{<n}, \mathfrak{a})$ -cofinite R-module. This result shows that when $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq t+1$, then $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^i_\mathfrak{a}(X))$ is a finite R-module for all $i \leq t$ if and only if $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i < t, which improves [8, Theorem 3.7]. It also shows that if $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is a finite R-module and $\operatorname{H}^{2i}_\mathfrak{a}(X)$ (or $\operatorname{H}^{2i+1}_\mathfrak{a}(X)$) is an \mathfrak{a} -cofinite R-module for all i, then $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i, then $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i, then $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i, then $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i, then $\operatorname{H}^i_\mathfrak{a}(X)$ is an \mathfrak{a} -cofinite R-module for all i.

2. Main results

In [24, Theorem 7.10], Melkersson proved that Questions 1.1 and 1.2 have affirmative answers in the case that $\dim(R) \leq 2$. As a generalization of this result, in [12, Corollary 5.2] it is shown that the answer to these questions is yes if $\dim_R(M) \leq 2$. The first author and Papari-Zarei, in [30, Corollary 3.2], proved that Questions 1.3 and 1.4 have affirmative answers if $\dim(R) \leq n+2$, which is a generalization of Melkersson's result [24, Theorem 7.10]. In the first main result of this paper, we generalize [12, Corollary 5.2] and improve [30, Corollary 3.2] by showing that the answer to Questions 1.3 and 1.4 is yes if $\dim_R(M) \leq n+2$. Note that, for an ideal \mathfrak{b} of R with $\mathfrak{b}X = 0$, X is an $\mathrm{FD}_{< n} R$ -module if and only if X is an $\mathrm{FD}_{< n} R/\mathfrak{b}$ -module.

Theorem 2.1. Suppose that M is a finite R-module such that $\dim_R(M) \le n+2$. Then $\operatorname{H}^i_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite R-module for all i.

Proof. Set $\overline{R} = R/\operatorname{Ann}_R(M)$ and $\overline{\mathfrak{a}} = (\mathfrak{a} + \operatorname{Ann}_R(M))/\operatorname{Ann}_R(M)$. Since $\dim_R(M) \leq n+2$, we have $\dim(\overline{R}) \leq n+2$ and so $\operatorname{H}^i_{\overline{\mathfrak{a}}}(M)$ is an $(\operatorname{FD}_{< n}, \overline{\mathfrak{a}})$ -cofinite \overline{R} -module for all *i* from [30, Corollary 3.2]. That is, $\operatorname{Ext}^j_{\overline{R}}(R/(\mathfrak{a}+\operatorname{Ann}_R(M)), \operatorname{H}^i_{\overline{\mathfrak{a}}}(M))$ is an $\operatorname{FD}_{< n} \overline{R}$ -module for all *j* and all *i*. Assume that *i* and *j* are two integers. There exists a spectral sequence

$$\mathbf{E}_{2}^{p,q} := \mathrm{Ext}_{\overline{R}}^{p} \left(\mathrm{Tor}_{q}^{R}(\overline{R}, R/\mathfrak{a}), \mathrm{H}_{\overline{\mathfrak{a}}}^{i}(M) \right) \Longrightarrow \mathrm{Ext}_{R}^{p+q}(R/\mathfrak{a}, \mathrm{H}_{\overline{\mathfrak{a}}}^{i}(M))$$

by [26, Theorem 10.74]. For all $k, 0 \le k \le j, \mathbb{E}_2^{j-k,k}$ is an $\mathrm{FD}_{< n} \overline{R}$ -module from [18, Proposition 3.4 (i)] and so $\mathbb{E}_{\infty}^{j-k,k}$ is an $\mathrm{FD}_{< n} \overline{R}$ -module because $\mathbb{E}_{\infty}^{j-k,k} = \mathbb{E}_{j+2}^{j-k,k}$ and $\mathbb{E}_{j+2}^{j-k,k}$ is a subquotient of $\mathbb{E}_2^{j-k,k}$. There is a finite filtration

$$0 = \phi^{j+1} H^j \subseteq \phi^j H^j \subseteq \dots \subseteq \phi^1 H^j \subseteq \phi^0 H^j = \operatorname{Ext}_R^j(R/\mathfrak{a}, \operatorname{H}_{\overline{\mathfrak{a}}}^i(M))$$

such that for all $k, 0 \le k \le j$, $\mathbf{E}_{\infty}^{j-k,k} \cong \phi^{j-k} H^j / \phi^{j-k+1} H^j$. For all $k, 0 \le k \le j$, by the short exact sequence

$$0 \longrightarrow \phi^{j-k+1} H^j \longrightarrow \phi^{j-k} H^j \longrightarrow \mathcal{E}_\infty^{j-k,k} \longrightarrow 0,$$

 $\phi^{j-k}H^j$ is an $\operatorname{FD}_{< n} \overline{R}$ -module whenever $\phi^{j-k+1}H^j$ is an $\operatorname{FD}_{< n} \overline{R}$ -module. Therefore $\operatorname{Ext}^j_R(R/\mathfrak{a}, \operatorname{H}^i_{\overline{\mathfrak{a}}}(M))$ is an $\operatorname{FD}_{< n} \overline{R}$ -module and so an $\operatorname{FD}_{< n} R$ -module. Thus $\operatorname{Ext}^j_R(R/\mathfrak{a}, \operatorname{H}^i_{\mathfrak{a}}(M))$ is an $\operatorname{FD}_{< n} R$ -module. Hence $\operatorname{H}^i_{\mathfrak{a}}(M)$ is an $(\operatorname{FD}_{< n}, \mathfrak{a})$ -cofinite R-module for all i, as we desired. \Box **Corollary 2.2.** Suppose that M is a finite R-module such that $\dim_R(M) \le n+2$. Then $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))_{\ge n}$ is a finite set for all i.

Proof. For all i, by Theorem 2.1, $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^i_\mathfrak{a}(M))$ is an $\operatorname{FD}_{<n} R$ -module and so the set $\operatorname{Ass}_R(\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^i_\mathfrak{a}(M)))_{\geq n}$ is finite. Thus $\operatorname{Ass}_R(\operatorname{H}^i_\mathfrak{a}(M))_{\geq n}$ is a finite set for all i form [10, Exercise 1.2.28].

Corollary 2.3 (see [12, Corollary 5.2]). Suppose that M is a finite R-module such that $\dim_R(M) \leq 2$. Then $\operatorname{H}^i_{\mathfrak{a}}(M)$ is an \mathfrak{a} -cofinite R-module and $\operatorname{Ass}_R(\operatorname{H}^i_{\mathfrak{a}}(M))$ is a finite set for all i.

Proof. Put n = 0 in Theorem 2.1 and Corollary 2.2.

The next result shows that Question 1.2 has an affirmative answer in the case that R is a semi-local ring and $\dim_R(M) \leq 3$. Recall that X is said to be a *weakly Laskerian* R-module if the set of associated prime ideals of any quotient module of X is finite [15, Definition 2.1]. Also, we say that X is an \mathfrak{a} -weakly cofinite R-module if X is an \mathfrak{a} -torsion R-module and $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is a weakly Laskerian R-module for all i [16, Definition 2.4].

Corollary 2.4. Suppose that R is a semi-local ring and that M is a finite R-module such that $\dim_R(M) \leq 3$. Then $\operatorname{H}^{i}_{\mathfrak{a}}(M)$ is an \mathfrak{a} -weakly cofinite R-module and $\operatorname{Ass}_{R}(\operatorname{H}^{i}_{\mathfrak{a}}(M))$ is a finite set for all *i*.

Proof. Consider [5, Theorem 3.3] and take n = 1 in Theorem 2.1 and Corollary 2.2.

If $\dim(R/\mathfrak{a}) = 1$ and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite *R*-module for all $i \leq \dim_{R}(X)$, then $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite *R*-module for all *i* from [8, Corollary 2.6]. We generalize and improve this result in the second main result of this paper.

Theorem 2.5. Suppose that X is an arbitrary R-module such that $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $\operatorname{FD}_{< n+2}$ R-module for all $i < \dim_{R}(X) - n$ and $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all $i \leq \dim_{R}(X) - n$. Then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all i.

Proof. We first prove that for a non-negative integer t, $H^t_{\mathfrak{a}}(X)$ is an $FD_{<\dim_R(X)-t+1}$ *R*-module. Suppose, on the contrary, that $H^t_{\mathfrak{a}}(X)$ is not an $FD_{<\dim_R(X)-t+1}$ *R*-module. Then $\dim_R(H^t_{\mathfrak{a}}(X)) > \dim_R(X) - t$ and so there is a prime ideal \mathfrak{p} of $\operatorname{Supp}_R(H^t_{\mathfrak{a}}(X))$ such that $\dim(R/\mathfrak{p}) > \dim_R(X) - t$. Thus $H^t_{\mathfrak{a}R_\mathfrak{p}}(X_\mathfrak{p}) \neq 0$ and $t > \dim_{R_\mathfrak{p}}(X_\mathfrak{p})$, which contradicts [9, Theorem 6.1.2]. To prove that $\operatorname{Ext}^i_R(R/\mathfrak{a}, X)$ is an $FD_{<n}$ *R*-module for all *i*, by [3, Theorem 4.2], it is enough to show that $H^i_{\mathfrak{a}}(X)$ is an $FD_{<n}$ *α*-module and so is an $(FD_{<n}, \mathfrak{a})$ -cofinite *R*-module for all *i*. From the first part of the proof, $H^i_{\mathfrak{a}}(X)$ is an $FD_{<n}$ *R*-module and so is an $(FD_{<n}, \mathfrak{a})$ -cofinite *R*-module for all *i* and so is an $(FD_{<n}, \mathfrak{a})$ -cofinite *R*-module for all *i* and $FD_{<n}$ *R*-module for all *i* and $FD_{<n}$ *R*-module for all *i* and $FD_{<n}, \mathfrak{a}$ -cofinite *R*-module for all *i* and $FD_{<n}, \mathfrak{a}$ -cofinite *R*-module for all *i* and $FD_{<n}, \mathfrak{a}$. Thus $FD_{<n}, \mathfrak{a}$ -cofinite *R*-module for all *i* and $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$. Thus $FD_{<n}, \mathfrak{a}$ -cofinite *R*-module for all *i* and $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$. Thus $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$. Thus $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$. Theorem 2.3]. On the other hand, again by the first part of the proof, the proof, $F^{\dim}_{\mathfrak{a}}(X) = n$. Thus $FD_{<n+1}$ *R*-module. Hence $F^{\dim}_{\mathfrak{a}}(X) = n$ and $FD_{<n}, \mathfrak{a}$ and $FD_{<n}, \mathfrak{a}$. Theorem 2.3]. \Box As immediate applications of the above theorem, we have the following corollaries.

Corollary 2.6. Suppose that X is an arbitrary R-module such that $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $\operatorname{FD}_{\leq 2}$ R-module for all $i < \dim_{R}(X)$ and $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq \dim_{R}(X)$. Then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all i.

Proof. Put n = 0 in Theorem 2.5.

Corollary 2.7. Suppose that $\dim(R/\mathfrak{a}) \leq n+1$ and X is an arbitrary R-module such that $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all $i \leq \dim_{R}(X) - n$. Then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n}$ R-module for all i.

Proof. This follows from Theorem 2.5.

Corollary 2.8 (see [8, Corollary 2.6]). Suppose that $\dim(R/\mathfrak{a}) \leq 1$ and X is an arbitrary R-module such that $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq \dim_{R}(X)$. Then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is a finite R-module for all i.

Proof. Take n = 0 in Corollary 2.7.

Corollary 2.9. Suppose that X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{\leq n} R$ -module for all $i \leq \dim_{R}(X) - n$. Then, for every integer i and every prime ideal \mathfrak{p} of $\operatorname{Var}(\mathfrak{a})_{\geq n}$, the i-th Bass number and the i-th Betti number of X with respect to \mathfrak{p} are finite.

Proof. Let $\mathfrak{p} \in \operatorname{Var}(\mathfrak{a})_{\geq n}$. Then $\operatorname{Ext}_{R}^{i}(R/\mathfrak{p}, X)$ is an $\operatorname{FD}_{< n} R$ -module for all $i \leq \dim_{R}(X) - n$ by [18, Proposition 3.4 (i)] and so $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, X_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for all $i \leq \dim_{R_{\mathfrak{p}}}(X_{\mathfrak{p}})$. Thus $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, X_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for all i from Corollary 2.8. Hence $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, X_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for all i from [24, Theorem 2.1].

Corollary 2.10 (see [8, Corollary 2.7]). Suppose that X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq \dim_{R}(X)$. Then, for every integer i and every prime ideal \mathfrak{p} of $\operatorname{Var}(\mathfrak{a})$, the *i*-th Bass number and the *i*-th Betti number of X with respect to \mathfrak{p} are finite.

Proof. Put n = 0 in Corollary 2.9.

If R is a local ring with $\dim(R/\mathfrak{a}) \leq 2$ and X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq 2$, then X is an \mathfrak{a} -cofinite R-module by [8, Theorem 3.5] (see also [22, Theorem 2.6] and [19, Theorem 3.3]). In the third main result of this paper, we improve and generalize this result.

.

Theorem 2.11. Suppose that \mathfrak{a} is an ideal of R with $\dim(R/\mathfrak{a}) \leq 2$ and X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{< n} R$ -module for all $i \leq 2-n$. Suppose also that one of the following conditions holds:

(a) n = 0 and $\operatorname{Min}_{R}(\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)/Y_{i})=_{0}$ is a finite set for all i > 2 and for all finite R-submodules Y_{i} of $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ (e.g., $\operatorname{Supp}_{R}(X) \cap \operatorname{Var}(\mathfrak{a}) \cap \operatorname{Max}(R)$ is a finite set);

(b) n > 0.

Then X is an $(FD_{< n}, \mathfrak{a})$ -cofinite R-module.

Proof. We first assume that n = 0. Let t be a non-negative integer such that $t \geq 3$ and set $Y := \operatorname{Ext}_{R}^{t}(R/\mathfrak{a}, X)$. We prove that Y is a finite R-module. From [28, Lemma 2.1], it is enough to show that $\operatorname{Min}_{R}(Y/Y_{t})$ is a finite set for all finite R-submodules Y_{t} of Y and $Y_{\mathfrak{p}}$ is a finite $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Since $\dim(R/\mathfrak{a}) \leq 2$ and X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is (a finite and so) an FD_{<1} R-module for all $i \leq 1, Y$ is an FD_{<1} R-module by putting n = 1 in Corollary 2.7. Thus Y/Y_{t} is an FD_{<1} R-module and so $\operatorname{Min}_{R}(Y/Y_{t})_{\geq 1}$ is a finite set. Hence the set $\operatorname{Min}_{R}(Y/Y_{t})$ is finite by assumption. Let \mathfrak{p} be a prime ideal of R. We have $\dim(R_{\mathfrak{p}}/\mathfrak{a}R_{\mathfrak{p}}) \leq 2$ and $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/\mathfrak{a}R_{\mathfrak{p}}, X_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for all $i \leq 2$. Thus, from [8, Theorem 3.5], $Y_{\mathfrak{p}} \cong \operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/\mathfrak{a}R_{\mathfrak{p}}, X_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module.

Now, assume that n = 1 (resp. n = 2). Since $\dim(R/\mathfrak{a}) \leq 2$ (resp. $\dim(R/\mathfrak{a}) \leq 3$) and X is an \mathfrak{a} -torsion R-module such that $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1}$ (resp. $\operatorname{FD}_{<2}$) R-module for all $i \leq 1$ (resp. $i \leq 0$), $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<1}$ (resp. $\operatorname{FD}_{<2}$) R-module for all i from taking n = 1 (resp. n = 2) in Corollary 2.7. For n > 2, since $\dim(R/\mathfrak{a}) \leq 2$, $\dim_R(\operatorname{Ext}_R^i(R/\mathfrak{a}, X)) \leq 2$ and so $\operatorname{Ext}_R^i(R/\mathfrak{a}, X)$ is an $\operatorname{FD}_{<n}$ R-module for all i.

With respect to Question 1.1, we have the following two results which improve [8, Theorems 3.7 and 3.8] to the rings which are not necessarily local and to the modules which are not necessarily finite.

Corollary 2.12. Suppose that \mathfrak{a} is an ideal of R with $\dim(R/\mathfrak{a}) \leq 2$, X is an arbitrary R-module, and t is a non-negative integer such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all $i \leq t+1$. Suppose also that $\operatorname{Min}_{R}(\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{j}(X))/Y_{ij})_{=0}$ is a finite set for all i > 2, for all j < t, and for all finite R-submodules Y_{ij} of $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{j}(X))$ (e.g., $\operatorname{Supp}_{R}(X) \cap \operatorname{Var}(\mathfrak{a}) \cap \operatorname{Max}(R)$ is a finite set). Then the following statements are equivalent:

- (i) $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^{\mathfrak{I}}_{\mathfrak{a}}(X))$ is a finite *R*-module for all $j \leq t$;
- (ii) $H^j_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite R-module for all j < t.

Proof. (i) \Rightarrow (ii). We use induction on t. There is nothing to prove in the case that t = 0. Assume that t = 1. From [18, Corollary 2.4 (i) (c)] and the short exact sequence

$$0 \longrightarrow \Gamma_{\mathfrak{a}}(X) \longrightarrow X \longrightarrow X/\Gamma_{\mathfrak{a}}(X) \longrightarrow 0,$$

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)

we get the exact sequence

$$0 \longrightarrow \operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(X)) \longrightarrow \operatorname{Ext}^{1}_{R}(R/\mathfrak{a}, X) \longrightarrow \operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}^{1}_{\mathfrak{a}}(X)) \\ \longrightarrow \operatorname{Ext}^{2}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(X)) \longrightarrow \operatorname{Ext}^{2}_{R}(R/\mathfrak{a}, X) \longrightarrow \operatorname{Ext}^{2}_{R}(R/\mathfrak{a}, X/\Gamma_{\mathfrak{a}}(X)),$$

which shows that $\operatorname{Ext}^1_R(R/\mathfrak{a},\Gamma_\mathfrak{a}(X))$ and $\operatorname{Ext}^2_R(R/\mathfrak{a},\Gamma_\mathfrak{a}(X))$ are finite *R*-modules. Thus $\Gamma_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite *R*-module by Theorem 2.11. Now, suppose that t > 1and that t-1 is settled. It is enough to show that $H^{t-1}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite *R*-module. Since $H^j_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite *R*-module for all j < t - 1, we have that $\operatorname{Ext}^1_R(R/\mathfrak{a}, \operatorname{H}^{t-1}_{\mathfrak{a}}(X))$ and $\operatorname{Ext}^2_R(R/\mathfrak{a}, \operatorname{H}^{t-1}_{\mathfrak{a}}(X))$ are finite *R*-modules from [3, Theorem 2.3]. Thus $H_{\mathfrak{a}}^{t-1}(X)$ is an \mathfrak{a} -cofinite *R*-module by Theorem 2.11.

(ii) \Rightarrow (i). Follows from [3, Theorem 2.3].

Corollary 2.13. Suppose that \mathfrak{a} is an ideal of R with dim $(R/\mathfrak{a}) \leq 2$ and X is an arbitrary R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, X)$ is a finite R-module for all i. Suppose also that $\operatorname{Min}_R(\operatorname{Ext}^i_R(R/\mathfrak{a}, \operatorname{H}^j_\mathfrak{a}(X))/Y_{ij})_{=0}$ is a finite set for all i > 2, for all j, and for all finite R-submodules Y_{ij} of $\operatorname{Ext}^i_R(R/\mathfrak{a}, \operatorname{H}^j_\mathfrak{a}(X))$ (e.g., $\operatorname{Supp}_R(X) \cap \operatorname{Var}(\mathfrak{a}) \cap$ Max(R) is a finite set). Then the following statements hold true:

- (i) $\mathrm{H}^{j}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite R-module for all j when $\mathrm{H}^{2j}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite *R*-module for all j;
- (ii) $\operatorname{H}^{j}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite R-module for all j whenever $\operatorname{H}^{2j+1}_{\mathfrak{a}}(X)$ is an \mathfrak{a} -cofinite *R*-module for all *j*.

Proof. This follows by [3, Theorem 2.3], Theorem 2.11, and using an induction argument on j. П

Acknowledgments

The authors would like to thank the referee for the invaluable comments on the manuscript.

References

- [1] N. ABAZARI and K. BAHMANPOUR, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 no. 1 (2015), 211-220. DOI MR Zbl
- [2] M. AGHAPOURNAHR and K. BAHMANPOUR, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) no. 4 (2014), 347-356. MR Zbl
- [3] M. AGHAPOURNAHR, A. J. TAHERIZADEH, and A. VAHIDI, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 no. 3 (2011), 117-134. MR Zbl
- [4] D. ASADOLLAHI and R. NAGHIPOUR, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 no. 3 (2015), 953–958. DOI MR Zbl
- [5] K. BAHMANPOUR, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 no. 1 (2014), 62-68. DOI MR Zbl
- [6] K. BAHMANPOUR and R. NAGHIPOUR, On the cofiniteness of local cohomology modules, *Proc.* Amer. Math. Soc. 136 no. 7 (2008), 2359-2363. DOI MR Zbl
- [7] K. BAHMANPOUR and R. NAGHIPOUR, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra **321** no. 7 (2009), 1997–2011. DOI MR Zbl

- [8] K. BAHMANPOUR, R. NAGHIPOUR, and M. SEDGHI, Cofiniteness with respect to ideals of small dimensions, Algebr. Represent. Theory 18 no. 2 (2015), 369–379. DOI MR Zbl
- M. P. BRODMANN and R. Y. SHARP, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998. DOI MR Zbl
- [10] W. BRUNS and J. HERZOG, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. MR Zbl
- [11] G. CHIRIACESCU, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 no. 1 (2000), 1–7. DOI MR Zbl
- [12] N. T. CUONG, S. GOTO, and N. VAN HOANG, On the cofiniteness of generalized local cohomology modules, *Kyoto J. Math.* 55 no. 1 (2015), 169–185. DOI MR Zbl
- [13] D. DELFINO, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 no. 1 (1994), 79–84. DOI MR Zbl
- [14] D. DELFINO and T. MARLEY, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 no. 1 (1997), 45–52. DOI MR Zbl
- [15] K. DIVAANI-AAZAR and A. MAFI, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 no. 3 (2005), 655–660. DOI MR Zbl
- [16] K. DIVAANI-AAZAR and A. MAFI, Associated primes of local cohomology modules of weakly Laskerian modules, *Comm. Algebra* 34 no. 2 (2006), 681–690. DOI MR Zbl
- [17] R. HARTSHORNE, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164. DOI MR Zbl
- [18] S. H. HASSANZADEH and A. VAHIDI, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 no. 7 (2009), 2290–2299. DOI MR Zbl
- [19] E. HATAMI and M. AGHAPOURNAHR, Abelian category of weakly cofinite modules and local cohomology, Bull. Iranian Math. Soc. 47 no. 6 (2021), 1701–1714. DOI MR Zbl
- [20] C. HUNEKE, Problems on local cohomology, in *Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990)*, Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108. MR Zbl
- [21] C. HUNEKE and J. KOH, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 no. 3 (1991), 421–429. DOI MR Zbl
- [22] H. KARIMIRAD and M. AGHAPOURNAHR, Cominimaxness with respect to ideals of dimension two and local cohomology, J. Algebra Appl. 20 no. 5 (2021), Paper No. 2150081, 12 pp. DOI MR Zbl
- [23] K.-I. KAWASAKI, On a category of cofinite modules which is Abelian, Math. Z. 269 no. 1-2 (2011), 587–608. DOI MR Zbl
- [24] L. MELKERSSON, Modules cofinite with respect to an ideal, J. Algebra 285 no. 2 (2005), 649–668. DOI MR Zbl
- [25] L. MELKERSSON, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459–462. DOI MR Zbl
- [26] J. J. ROTMAN, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009. DOI MR Zbl
- [27] A. K. SINGH, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 no. 2-3 (2000), 165–176. DOI MR Zbl
- [28] A. VAHIDI, M. AGHAPOURNAHR, and E. MAHMOUDI RENANI, Finiteness dimensions and cofiniteness of local cohomology modules, *Rocky Mountain J. Math.* **51** no. 3 (2021), 1079– 1088. DOI MR Zbl

- [29] A. VAHIDI and S. MORSALI, Cofiniteness with respect to the class of modules in dimension less than a fixed integer, *Taiwanese J. Math.* 24 no. 4 (2020), 825–840. DOI MR Zbl
- [30] A. VAHIDI and M. PAPARI-ZAREI, Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer, *Rev. Un. Mat. Argentina* 62 no. 1 (2021), 191–198. DOI MR Zbl
- [31] K.-I. YOSHIDA, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. DOI MR Zbl
- [32] T. YOSHIZAWA, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 no. 7 (2012), 2293–2305. DOI MR Zbl

 $Alireza \ Vahidi ^{\boxtimes}$ Department of Mathematics, Payame Noor University, Tehran, Iran vahidi.ar@pnu.ac.ir

Ahmad Khaksari Department of Mathematics, Payame Noor University, Tehran, Iran a_khaksari@pnu.ac.ir

Mohammad Shirazipour Department of Mathematics, Payame Noor University, Tehran, Iran m_shirazipour@pnu.ac.ir

Received: August 14, 2022 Accepted: November 29, 2022