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COFINITE MODULES AND COFINITENESS OF LOCAL
COHOMOLOGY MODULES

ALIREZA VAHIDI, AHMAD KHAKSARI, AND MOHAMMAD SHIRAZIPOUR

ABSTRACT. Let n be a non-negative integer, R a commutative Noetherian
ring, a an ideal of R, M a finitely generated R-module, and X an arbitrary
R-module. In this paper, we first prove that if dimg(M) < n + 2, then H: (M)
is an (FD<p, a)-cofinite R-module and {p € Assg(H:{(M)) : dim(R/p) > n}
is a finite set for all . As a consequence, it follows that Assp(H:(M))
is a finite set for all ¢ when R is a semi-local ring and dimg(M) < 3.
Then, we show that if dim(R/a) < n+1, then Ext(R/a,X) is an FD<p
R-module for all i whenever Ext%,(R/a,X) is an FD<, R-module for all
i < dimg(X) —n. Finally, in the case that dim(R/a) < 2, X is a-torsion,
and n > 0 or Suppg(X) N Var(a) N Max(R) is finite, we prove that X is an
(FD<n, a)-cofinite R-module when Ext’(R/a, X) is an FD<, R-module for
all ¢ < 2 — n. We conclude with some ordinary a-cofiniteness results for local
cohomology modules H? (X).

1. INTRODUCTION

Throughout, let R denote a commutative Noetherian ring with non-zero identity,
a an ideal of R, M a finite (i.e., finitely generated) R-module, X an arbitrary
R-module which is not necessarily finite, and n a non-negative integer. We refer
the reader to [9} (10, [26] for basic results, notations, and terminology not given in
this paper.

The following questions are two important problems in local cohomology (see
[17, First Question] and |20, Problem 4]). Recall that an a-torsion R-module X is
said to be a-cofinite if Ext’iz(R/a, X) is a finite R-module for all 4 [I7].

Question 1.1. Is HZu(M) an a-cofinite R-module for all i?
Question 1.2. Is Assg(H.(M)) a finite set for all i?

Hartshorne [I7, Section 3] and Singh |27, Section 4] have given counterexamples
to these questions. However, these questions have been studied by many authors
and they were shown to have an affirmtive answer in some situations (see e.g., [I7,
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Corollary 7.7], [2I, Theorem 4.1], [I3, Theorem 3|, [14, Theorem 1], [31, Theorem
1.1], [II, Theorem 1.4], [6l Theorem 2.3], [7, Theorem 2.6], [23], Theorem 8], and [2]
Theorem 3.4]). In [24], Theorem 7.10] and [25, Theorem 2.10], Melkersson provided
affirmative answers to these questions for the case that either dim(R) < 2 or a is
an ideal of R with dim(R/a) < 1. As a generalization of [24, Theorem 7.10], the
answer to these questions is also yes if dimg(M) < 2 by [12, Corollary 5.2].

Recall that X is said to be an FD.,, (or in dimension < n) R-module if there
exists a finite R-submodule X’ of X such that dimpg(X/X’) < n [2,[4]. The class
of FD.,, R-modules is a Serre subcategory of the category of R-modules from [32]
Theorem 2.3]. We say that X is an (FD<,,, a)-cofinite R-module if X is an a-torsion
R-module and Ext(R/a, X) is an FD., R-module for all i [3, Definition 4.1].
Note that X is a finite (resp. an a-cofinite) R-module if and only if X is an FD_q
(resp. (FD<g, a)-cofinite) R-module. Therefore, as generalizations of Questions
and we have the following questions (see [I, Question], [29, Questions 1.6 and
1.8], and [30, Questions 1.5 and 1.6]). In this paper, for a subset A of Spec(R), the
set {p € A: dim(R/p) > n} (resp. {p € A : dim(R/p) = n}) is denoted by A>,
(resp. A—p,).

Question 1.3. Is H, (M) an (FD_,, a)-cofinite R-module for all i?
Question 1.4. Is Assg(H.(M))s, a finite set for all i?

The first author and Morsali, in [29, Corollary 4.5], provided affirmative answers
to Questions [1.3|and [I.4] for the case that dim(R/a) < n+ 1, which is a generaliza-
tion of Melkersson’s result [25, Theorem 2.10] (see also [I, Theorems 2.5 and 2.10]).
Also, the first author and Papari-Zarei, in [30, Corollary 3.2], proved that the an-
swer to Questions and is yes if dim(R) < n + 2, which is a generalization
of Melkersson’s result [24, Theorem 7.10]. In the first main result of this paper,
as generalizations of [12, Corollary 5.2] and [30, Corollary 3.2], we show that the
answer to Questions and is yes if dimg(M) < n + 2. As a consequence, we
provide an affirmative answer to Question [I.2 for the case that R is a semi-local
ring and dimpg(M) < 3.

By [8, Corollary 2.6], Exth(R/a,X) is a finite R-module for all i when
dim(R/a) = 1 and Extz(R/a, X) is a finite R-module for all i < dimg(X). In the
second main result, we generalize and improve [8, Corollary 2.6] by showing that if
H!(X)is an FD_,,;» R-module for all i < dimg(X)—n (e.g., dim(R/a) < n+1) and
Ext»(R/a, X) is an FD_,, R-module for all i < dimp(X) — n, then Exth(R/a, X)
is an FD.,, R-module for all i. As a consequence, it follows that if Extlé(R/ a, X)
is an FD.,, R-module for all ¢ < dimp(X) — n, then the i-th Bass number and the
i-th Betti number of X with respect to p are finite for every integer ¢ and every
prime ideal p of Var(a)>,. Here, we denote Var(a) = {p € Spec(R) : p 2 a}.

From [8, Theorem 3.5], X is an a-cofinite R-module whenever R is a local ring
with dim(R/a) < 2 and X is an a-torsion R-module such that Exts(R/a, X) is a
finite R-module for all ¢ < 2 (see also [22, Theorem 2.6] and [19, Theorem 3.3]).
Assume that dim(R/a) < 2, ¢ is a non-negative integer, and n > 0 or Suppr(X) N
Var(a) N Max(R) is a finite set. In the third main result, as a generalization and
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improvement of [8, Theorem 3.5], we prove that if X is an a-torsion R-module such
that Ext’(R/a, X) is an FD_,, R-module for all i < 2 —n, then X is an (FD,, a)-
cofinite R-module. This result shows that when Ext%(R/a, X) is a finite R-module
for all i < t+1, then Homp(R/a, H. (X)) is a finite R-module for all i < t if and only
if H.(X) is an a-cofinite R-module for all i < ¢, which improves [8, Theorem 3.7].
It also shows that if Ext(R/a, X) is a finite R-module and H2(X) (or H* (X))
is an a-cofinite R-module for all i, then H:(X) is an a-cofinite R-module for all 4,
which improves [8, Theorem 3.8].

2. MAIN RESULTS

In 24 Theorem 7.10], Melkersson proved that Questions and have af-
firmative answers in the case that dim(R) < 2. As a generalization of this re-
sult, in [I2 Corollary 5.2] it is shown that the answer to these questions is yes if
dimg(M) < 2. The first author and Papari-Zarei, in [30, Corollary 3.2], proved
that Questions and have affirmative answers if dim(R) < n + 2, which is
a generalization of Melkersson’s result [24, Theorem 7.10]. In the first main result
of this paper, we generalize [12, Corollary 5.2] and improve [30, Corollary 3.2] by
showing that the answer to Questions and is yes if dimp(M) < n+2. Note
that, for an ideal b of R with bX =0, X is an FD.,, R-module if and only if X is
an FD.,, R/b-module.

Theorem 2.1. Suppose that M is a finite R-module such that dimg(M) < n+ 2.
Then Hy (M) is an (FD<,, a)-cofinite R-module for all i.

Proof. Set R = R/Amg(M) and @ = (a + Anng(M))/Anng(M). Since
dimg(M) < n+2, we have dim(R) < n+ 2 and so Hg(M) is an (FD<,,, @)-cofinite
R-module for all i from [30, Corollary 3.2]. That is, ExtZ-(R/(a+Anng(M)), Hg(M))
is an FD_,, R-module for all j and all . Assume that i and j are two integers.
There exists a spectral sequence

ED? := Extl (Tor/ (R, R/a), Hy(M)) = Ext? (R /a, H&(M))

by |26, Theorem 10.74]. Forallk, 0 < k < j, ngk’k is an FD.,, R-module from [18,
Proposition 3.4 (i)] and so EZZ%* is an FD_,, R-module because E/JF* = E;;Sk

and E;I_gk is a subquotient of Eg_k’k. There is a finite filtration
0=¢""H/ C¢/H) C -+ C ¢'H C ¢"H’ = Ext}y(R/a, HL(M))

such that for all k, 0 < k < j, EI7FF o @i=*Fi jpi=F+1[7 For all k, 0 < k < 7,
by the short exact sequence

00— ¢ Fgi 5 gi=Fgi 5 BISRF 0,
pRHI is an FD, R-module whenever ¢?**t1H7 is an FD_,, R-module. There-
fore Exty,(R/a, Hg(M)) is an FD, R-module and so an FD_,, R-module. Thus
Ext},(R/a,H,(M)) is an FD.,, R-module. Hence H%(M) is an (FD,, a)-cofinite
R-module for all i, as we desired. O
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Corollary 2.2. Suppose that M is a finite R-module such that dimp(M) < n +2.
Then Assp(Hy(M))>n is a finite set for all i.

Proof. For all ¢, by Theorem Homp(R/a, H.(M)) is an FD., R-module and
so the set Assgp(Homp(R/a,H; (M)))>y, is finite. Thus Assg(H;(M))>, is a finite
set for all ¢ form [10, Exercise 1.2.28]. O

Corollary 2.3 (see [12 Corollary 5.2]). Suppose that M is a finite R-module such
that dimp (M) < 2. Then Hi (M) is an a-cofinite R-module and Assgp(Hy(M)) is
a finite set for all i.

Proof. Put n = 0 in Theorem [2.1] and Corollary O

The next result shows that Question has an affirmative answer in the case
that R is a semi-local ring and dimp(M) < 3. Recall that X is said to be a weakly
Laskerian R-module if the set of associated prime ideals of any quotient module
of X is finite [I5, Definition 2.1]. Also, we say that X is an a-weakly cofinite
R-module if X is an a-torsion R-module and Ext%(R/a, X) is a weakly Laskerian
R-module for all ¢ [I6], Definition 2.4].

Corollary 2.4. Suppose that R is a semi-local ring and that M is a finite R-module
such that dimp(M) < 3. Then Hy(M) is an a-weakly cofinite R-module and
Assp(H,(M)) is a finite set for all i.

Proof. Consider [5, Theorem 3.3] and take n = 1 in Theorem [2.1]and Corollary [2.2]
O

If dim(R/a) = 1 and Exty(R/a,X) is a finite R-module for all i < dimp(X),
then Ext(R/a, X) is a finite R-module for all ¢ from [8 Corollary 2.6]. We gen-
eralize and improve this result in the second main result of this paper.

Theorem 2.5. Suppose that X is an arbitrary R-module such that HZ‘(X) is
an FD 12 R-module for all i < dimg(X) — n and Exth(R/a, X) is an FD_,,
R-module for all i < dimp(X) —n. Then Ext%(R/a,X) is an FD,, R-module for
all 7.

Proof. We first prove that for a non-negative integer ¢, Hﬁ(X) is an FD qim p(x)—t41
R-module. Suppose, on the contrary, that H’(X) is not an FD Cdimp (X)—t+1
R-module. Then dimg(H,(X)) > dimgr(X) — ¢ and so there is a prime ideal p
of Suppy(H, (X)) such that dim(R/p) > dimg(X) — t. Thus Hst (Xp) # 0 and
t > dimp, (X,), which contradicts [9, Theorem 6.1.2]. To prove that Extj(R/a, X)
is an FD.,, R-module for all i, by [3| Theorem 4.2], it is enough to show that
H!(X) is an (FD.,, a)-cofinite R-module for all 4. From the first part of the proof,
H!(X) is an FD., R-module and so is an (FD_,,a)-cofinite R-module for all
i > dimp(X) — n. Also, by [29, Theorem 4.2 (i)], H,(X) is an (FD_,, a)-cofinite
R-module for all ¢ < dimg(X) —n. Thus Homg(R/a, HgimR(X)_"(X)) isan FD_,,
R-module from [3, Theorem 2.3]. On the other hand, again by the first part of
the proof, HI™r(X)=" (X is an FD_, 1 R-module. Hence HI™#X)="(X) is an
(FD<,,, a)-cofinite R-module from [29, Lemma 2.1]. O
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As immediate applications of the above theorem, we have the following corol-
laries.

Corollary 2.6. Suppose that X is an arbitrary R-module such that Hf1 (X) is an
FD<2 R-module for all i < dimg(X) and Extyp(R/a, X) is a finite R-module for
all i < dimp(X). Then Exti(R/a,X) is a finite R-module for all i.

Proof. Put n =0 in Theorem O

Corollary 2.7. Suppose that dim(R/a) < n+ 1 and X is an arbitrary R-module
such that Extip(R/a, X) is an FD<, R-module for all i < dimp(X) —n. Then
Ext%w(R/a, X) is an FD.,, R-module for all i.

Proof. This follows from Theorem [2.5] O

Corollary 2.8 (see [8, Corollary 2.6]). Suppose that dim(R/a) < 1 and X is
an arbitrary R-module such that Extp(R/a, X) is a finite R-module for all i <
dimp(X). Then Exth(R/a,X) is a finite R-module for all i.

Proof. Take n =0 in Corollary 2.7 O

Corollary 2.9. Suppose that X is an arbitrary R-module such that Ext’é(R/a, X)
is an FD<,, R-module for all i < dimg(X)—n. Then, for every integer i and every
prime ideal p of Var(a)s,, the i-th Bass number and the i-th Betti number of X
with respect to p are finite.

Proof. Let p € Var(a)s,. Then Exth(R/p, X) is an FD.,, R-module for all i <
dimp(X) — n by [18, Proposition 3.4 (i)] and so Exty_(R,/pRy, Xp) is a finite R,-
module for all i < dimg, (X,). Thus Extzép (Rp/pRy, X,) is a finite Ry-module for

all ¢ from Corollary Hence Torfp (Rp/pRy, X,) is a finite Ry-module for all 4
from [24, Theorem 2.1]. O

Corollary 2.10 (see [8, Corollary 2.7]). Suppose that X is an arbitrary R-module
such that Ext'y(R/a, X) is a finite R-module for all i < dimg(X). Then, for every
integer i and every prime ideal p of Var(a), the i-th Bass number and the i-th Betti
number of X with respect to p are finite.

Proof. Put n = 0 in Corollary O
If R is a local ring with dim(R/a) < 2 and X is an a-torsion R-module such that
ExtRh(R/a, X) is a finite R-module for all ¢ < 2, then X is an a-cofinite R-module

by [8, Theorem 3.5] (see also [22, Theorem 2.6] and [I9, Theorem 3.3]). In the
third main result of this paper, we improve and generalize this result.
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Theorem 2.11. Suppose that a is an ideal of R with dim(R/a) < 2 and X is an
a-torsion R-module such that Ext’z(R/a, X) is an FD ., R-module for alli < 2—n.
Suppose also that one of the following conditions holds:

(a) n =0 and Ming(Exth(R/a, X)/Y;)=o is a finite set for alli > 2 and for all
finite R-submodules Y; of Ext’iz(R/a, X) (e.g., Supp (X )N Var(a)"Max(R)
is a finite set);

(b) n > 0.

Then X is an (FD<y, a)-cofinite R-module.

Proof. We first assume that n = 0. Let ¢ be a non-negative integer such that
t > 3 and set Y := Ext(R/a, X). We prove that Y is a finite R-module. From
[28, Lemma 2.1], it is enough to show that Ming(Y/Y}) is a finite set for all finite
R-submodules Y; of Y and Y}, is a finite Ry-module for all p € Spec(R). Since
dim(R/a) <2 and X is an a-torsion R-module such that Ext%(R/a, X) is (a finite
and so) an FD.; R-module for all ¢ < 1, Y is an FD.; R-module by putting n = 1
in Corollary Thus Y/Y, is an FD.; R-module and so Ming(Y/Y;)>1 is a finite
set. Hence the set Ming(Y/Y;) is finite by assumption. Let p be a prime ideal
of R. We have dim(R,/aR,) < 2 and Extzép (Rp/aRy, X,) is a finite Ry-module
for all ¢ < 2. Thus, from [8, Theorem 3.5], ¥, = Extﬁ%p (Rp/aR,, X,) is a finite
Ry-module.

Now, assume that n = 1 (resp. n = 2). Since dim(R/a) < 2 (resp. dim(R/a) < 3)
and X is an a-torsion R-module such that Ext’(R/a, X) is an FD~; (resp. FD )
R-module for all i < 1 (resp. i < 0), Exth(R/a,X) is an FD_; (resp. FD)
R-module for all ¢ from taking n = 1 (resp. n = 2) in Corollary For n > 2,
since dim(R/a) < 2, dimg(Exth(R/a, X)) < 2 and so Extiy(R/a, X) is an FD_,,
R-module for all i. O

With respect to Question [T} we have the following two results which improve
[8, Theorems 3.7 and 3.8] to the rings which are not necessarily local and to the
modules which are not necessarily finite.

Corollary 2.12. Suppose that a is an ideal of R with dim(R/a) < 2, X is an
arbitrary R-module, and t is a non-negative integer such that Ext}(R/a,X) s a
finite R-module for alli < t+1. Suppose also that Ming(Ext’sz(R/a, H2(X))/Yi;)=0
is a finite set for all i > 2, for all j < t, and for all finite R-submodules Y;; of
Ext%(R/a,H (X)) (e.g., Suppg(X) N Var(a) N Max(R) is a finite set). Then the
following statements are equivalent:

(i) Homg(R/a,HI(X)) is a finite R-module for all j < t;

(ii) HI(X) is an a-cofinite R-module for all j < t.

Proof. (i) = (ii). We use induction on ¢. There is nothing to prove in the case that
t = 0. Assume that ¢ = 1. From [I8, Corollary 2.4 (i) (c)] and the short exact
sequence

0 —Te(X) — X — X/Te(X) —0,
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we get the exact sequence
0 — Exti(R/a,T4(X)) — Exti(R/a, X) — Hompg(R/a, H:(X))
— Exth(R/a,T(X)) — ExtR(R/a, X) — Exth(R/a, X/T4(X)),

which shows that Exth(R/a,Tq(X)) and Ext%(R/a,[q(X)) are finite R-modules.
Thus I'y(X) is an a-cofinite R-module by Theorem Now, suppose that ¢t > 1
and that ¢ — 1 is settled. It is enough to show that H, '(X) is an a-cofinite
R-module. Since H(X) is an a-cofinite R-module for all j < t — 1, we have
that Exty(R/a, H ' (X)) and Ext®(R/a, H, ' (X)) are finite R-modules from [3]
Theorem 2.3]. Thus H, ' (X) is an a-cofinite R-module by Theorem

(ii) = (i). Follows from [3| Theorem 2.3]. O

Corollary 2.13. Suppose that a is an ideal of R with dim(R/a) <2 and X is an
arbitrary R-module such that Exth(R/a, X) is a finite R-module for alli. Suppose
also that Ming (Ext; (R/a, H! (X)) /Y;;)=o is a finite set for allt > 2, for all j, and
R a vy ' J
for all finite R-submodules Y;; of Extz(R/a,H. (X)) (e.g., Suppr(X) N Var(a) N
Max(R) is a finite set). Then the following statements hold true:
(i) HZ(X) ds an a-cofinite R-module for all j when H2 (X) is an a-cofinite
R-module for all j; _
(i) HI(X) is an a-cofinite R-module for all j whenever H2T(X) is an a-cofinite
R-module for all j.

Proof. This follows by [3l Theorem 2.3], Theorem [2.11] and using an induction
argument on j. O
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