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ON FIBRATIONS AND MEASURES OF IRRATIONALITY
OF HYPER-KÄHLER MANIFOLDS

CLAIRE VOISIN

Abstract. We prove some results on the fibers and images of rational maps
from a hyper-Kähler manifold. We study in particular the minimal genus of
fibers of a fibration into curves. The last section of this paper is devoted to the
study of the rational map defined by a linear system on a hyper-Kähler fourfold
satisfying numerical conditions similar to those considered by O’Grady in his
study of fourfolds numerically equivalent to K3[2]. We extend his results to
this more general context.

1. Introduction

Bastianelli et al. [4] introduced and discussed two numerical birational invari-
ants of a projective variety X, the covering gonality covgon(X) and the degree of
irrationality irr(X). The former is defined as the minimal gonality of a curve C,
which is the general fiber of a family

ψ : C → B, φ : C → X

of curves covering X, that is, φ is dominant and nonconstant on the fibers of ψ.
The second number is defined as the minimal degree of a dominant rational map
X 99K Pn, n = dimX. Obviously, one has irr(X) ≥ covgon(X) but the inequality
is strict in many cases. For example, the covering gonality of a uniruled manifold
is 1, while its irrationality is 1 only if it is rational. One can similarly introduce
the covering genus covgen(X), namely the genus of a curve C, which is the general
fiber of a family

ψ : C → B, φ : C → X

of curves covering X.
There are several similarly defined numbers that can be studied, namely the

fibering gonality fibgon(X) and the fibering genus fibgen(X) defined as follows:

Definition 1.1. The fibering gonality of X is the minimal gonality of the general
fiber of a fibration X 99K B into curves. The fibering genus of X is the minimal
genus of the general fiber of a fibration X 99K B into curves.

2020 Mathematics Subject Classification. 14J42, 14E05.
The author is supported by the ERC Synergy Grant HyperK (Grant agreement no. 854361).

165

https://doi.org/10.33044/revuma.3319


166 CLAIRE VOISIN

Here, the general fiber of a rational map φ : X 99K B is defined as the general
fiber of a resolution of singularities φ̃ : X̃ → B. Instead of studying coverings of X
by varieties of a given type, we thus study fibrations, namely a dominant rational
map X 99K B with connected fibers and dimB < dimX, with fibers of a given
genus or gonality. There are obvious inequalities

covgon(X) ≤ fibgon(X), covgen(X) ≤ fibgen(X). (1.1)
Another simple comparison between the fibering genus and the fibering gonality of
a projective variety X introduced in (1.1) is

fibgon(X) ≤
⌈

fibgen(X)
2

⌉
+ 1,

which follows indeed from the Brill–Noether theory showing the existence of g1
k on

curves of genus ≤ 2k − 2. Note that, in the case of a surface, the fibering genus is
called the Konno invariant [19]. Ein and Lazarsfeld [11] studied a different higher
dimensional generalization of it, defined as the minimal geometric genus pg of a
fiber of a rational map to P1.

Ein and Lazarsfeld prove that the Konno invariant of a K3 surface with Picard
group of rank 1 generated by a line bundle of self-intersection h grows like

√
h.

This is in strong contrast with the covering genus which is always equal to 1. A
beautiful construction by Kollár [18] shows that a rationally connected smooth
projective manifold, hence of covering gonality 1 and covering genus 0, can be
nonruled, hence can have fiber gonality at least 2 and fiber genus at least 1, so
both inequalities in (1.1) are strict in general.

In the case of hyper-Kähler manifolds, the following question asked by Pacienza
(oral communication) is still open.

Question 1.2. Let X be a hyper-Kähler manifold which is projective and very
general in moduli. Is X swept-out by elliptic curves? Equivalently, is covgen(X) =
1?

Here the assumptions on X mean that X is equiped with a given polarization
(very ample line bundle) and, equipped with this polarization, is very general in
the corresponding moduli space of polarized hyper-Kähler manifolds. In particular,
we have ρ(X) = 1 by generalities on the period map. We expect that the answer
to this question is no in some examples, but were not able to prove or disprove it
even on some explicit examples like the Fano variety of lines on a cubic fourfold,
although we described in [30] some consequences of the existence of a covering by
elliptic curves. Note that, if ρ(X) = 2, the example of Hilbert schemes S[n] for any
projective K3 surface S shows that we may have many such coverings. Indeed, it
is well known that S itself has many coverings by 1-parameter families of elliptic
curves Et, and then z×Et ⊂ S[n] for any 0-dimensional subscheme z ⊂ S of length
n − 1 not intersecting E is an elliptic curve in S[n] and these elliptic curves cover
S[n].

In contrast, we will show in Section 2.1 that Question 1.2 has an easy negative
answer if the covering genus is replaced by the fibering genus:

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



RATIONAL FIBRATIONS OF HYPER-KÄHLER MANIFOLDS 167

Proposition 1.3. Let X be a hyper-Kähler manifold of dimension 2n. Then if
n > 1, one has

fibgen(X) ≥ 3, (1.2)
fibgon(X) ≥ 3. (1.3)

The proofs are elementary. The inequality (1.2) is a consequence of the inequality
fibgen(X) ≥ 2 and of (1.3). The inequality fibgen(X) ≥ 2 can be given several
proofs. One of them generalizes to the case of fibrations by varieties birational to
abelian varieties for which we prove the following result.

Theorem 1.4. Let X be a hyper-Kähler manifold of dimension 2n. Then if X
admits a fibration X 99K B with general fiber birational to an abelian variety of
dimension g, one has g = n, hence also dimB = n, and the fibration is Lagrangian.

Theorem 1.4 is wrong if we replace “fibrations” by “coverings”. A counterex-
ample is given by the variety S[n] above and its coverings by elliptic curves. In
Section 2, we will give examples with ρ(X) = 1 of very general hyper-Kähler va-
rieties of dimension 8 swept-out by varieties birational to abelian surfaces. Note
that, if instead of studying rational maps, we consider actual morphisms from X
to a smaller dimensional basis B, then we already know they are quite restricted
when X is a hyper-Kähler manifold. Indeed, if B is not a point, Matsushita [24, 25]
proves that they are given by Lagrangian fibrations and in particular the dimension
of B is n.

Concerning the fibering genus, we will prove

Theorem 1.5. Let X be a hyper-Kähler manifold of dimension 2n with n ≥ 3
and b2(X)tr ≥ 5. Assume that the Mumford–Tate group of the Hodge structure on
H2(X,Q)tr is maximal. Then if X admits a fibration φ : X 99K B, with dimB =
2n− 1, the general fiber of φ has genus g ≥ Inf(n+ 2, 2b

b2,tr−3
2 c). In other words,

fibgen(X) ≥ Inf(n+ 2, 2b
b2,tr−3

2 c).

Note that the bound in Theorem 1.5 is presumably not optimal. Looking at
the proof, we see that a more natural bound would be fibgen(X) ≥ Inf(2n −
1, 2b

b2,tr−3
2 c). (This is also the reason for the assumption n ≥ 3 in Theorem 1.5.)

For n = 2, we do not know what the correct bound is, but we can easily construct
an example where the bound g = n + 2 is achieved. Indeed, let Y be a smooth
cubic fourfold, and let YH ⊂ Y be a hyperplane section. Let X be the variety of
lines of Y . It admits a rational map

X 99K YH

which to a general point δ ∈ X parameterizing a line ∆ ⊂ Y associates the inter-
section point y := ∆∩YH ∈ YH . The fiber of this map over a general point y ∈ YH
is the curve of lines in Y passing through y, and this is well known (see [8]) to be
a genus 4 curve, complete intersection of a quadric and a cubic in P3.

Proposition 1.3 and the example above leave open the following
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Question 1.6. Are there hyper-Kähler fourfolds with fibgen = 3? Are there
hyper-Kähler sixfolds with fibgen = 5?

We now turn to the measure of irrationality irr(X) mentioned at the beginning
of this introduction. In the geometric context we are considering, namely hyper-
Kähler manifolds, which in any case are not rational, there are two natural variants
of this number, namely

RCirr(X) := Inf deg φ,
where φ runs through all the generically finite rational maps X 99K Y , with Y
smooth projective rationally connected, and

cohirr(X) := Inf deg φ, (1.4)
where φ runs through all the generically finite rational maps X 99K Y , with Y
smooth projective with H0(Y,ΩlY ) = 0 for l > 0.

Remark 1.7. When X is a hyper-Kähler fourfold, it is equivalent in (1.4) to
consider the smooth projective varieties Y with H0(Y,KY ) = 0, since the exis-
tence of a dominant generically finite rational map φ : X 99K Y then implies that
H0(Y,ΩlY ) = 0 for l > 0. Indeed, if Y has a holomorphic 2-form, it is gener-
ically nondegenerate since it pulls back to the holomorphic 2-form on X, hence
h0(Y,KY ) 6= 0.

Obviously cohirr(X) ≤ RCirr(X) ≤ irr(X). The invariant cohirr(X) has been
studied by Alzati and Pirola [2]. A particular case of their results is

Theorem 1.8. If X is a hyper-Kähler manifold of dimension 2n, then cohirr(X) ≥
n + 1. In particular, if dimX ≥ 4, one has cohirr(X) ≥ 3; if dimX ≥ 6, one has
cohirr(X) ≥ 4.

Combining Theorem 1.8 and Theorem 1.5, we will prove in Section 2.1

Corollary 1.9. Let X be a hyper-Kähler manifold of dimension ≥ 6. Assume that
b2(X)tr ≥ 9 and X is very general with given Picard number. Then fibgon(X) ≥ 4.

It is likely that a better lower bound for Theorem 1.8 can be found, maybe
depending on numerical data as in [23], which studies the case of abelian surfaces.
In the case of dimension 4, we leave this as

Question 1.10. Let X be a hyper-Kähler fourfold which is very general with fixed
Picard number. Is it true that cohirr(X) ≥ 4?

We prove one result in this direction in Section 3, namely Proposition 3.1 which
is used in the last section of the paper. We establish there a generalization of a
result of O’Grady (see [27] or Theorem 4.1). O’Grady studies the rational map
φL : X 99K P5 induced by the complete linear system |L|, for a line bundle L of top
self-intersection 12 on a compact Kähler fourfold X which is numerically equivalent
to K3[2]. Assuming X is very general with Picard number 1, O’Grady proves that
the image of φL is a hypersurface of degree ≥ 6. We prove a similar result (see
Theorem 4.2) under different assumptions. First of all, X is only known to have
the same Betti numbers, Chern numbers, and Fujiki constant as a hyper-Kähler
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fourfold of type K3[2]. Second, in our case, the line bundle is the sum L+M , where
both L and M are numerically effective and satisfy the intersection conditions

L4 = 0, M4 = 0, L2M2 = 2, (1.5)
which implies (L+M)4 = 12. Our result is

Theorem 1.11. Under the assumptions above, assuming X is very general with
Picard number 2 and h0(X,L) = 0, the image of φL+M : X 99K P5 is not rationally
connected.

Although this result may seem a bit specific, this statement is needed in order
to conclude the proof of the main result in [9], namely that a hyper-Kähler fourfold
X admitting two integral degree 2 cohomology classes l, m satisfying the condition
(1.5) has to be of K3[2] deformation type.

Theorem 1.11 is proved by a case-by-case analysis. As will be clear from the
proof, a positive answer to Question 1.10 and a negative answer to Question 1.6
would greatly simplify the proof, since by Lemmas 4.5, 4.6, 4.7, 4.9 and 4.8 and
Claim 4.11 the most difficult cases to exclude are those where X is fibered into
curves of genus 3, or φL+M has degree 3 on its image.

2. Fibrations of hyper-Kähler manifolds by curves and abelian
varieties

2.1. Some general inequalities. We start by establishing easy lower bounds for
the fibering genus and gonality, and various irrationality invariants of hyper-Kähler
manifolds.

Lemma 2.1 (See also [27]). Let X be a hyper-Kähler manifold of dimension 2n. If
there exists a dominant rational map φ : X 99K Y of degree 2, where Y is a smooth
projective variety, then h0(Y,Ω4k

Y ) = 1 for k ≤ n. In particular, the cohomologi-
cal measure of irrationality cohirr(X) of a hyper-Kähler 2n-fold is strictly greater
than 2 for n ≥ 2.

Proof. We observe that, as φ has degree 2, there is a rational involution ι on X
over Y . As h0(X,Ω2

X) = 1, one has ι∗σX = ±σX . It follows that ι∗σ2k
X = σ2k

X

for any integer k. Thus the (4k, 0)-form σ2k
X on X, which is nonzero for 2k ≤ n,

descends to Y , proving the inequality h0(Y,Ω4k
Y ) ≥ 1 for k ≤ n. The inequality

h0(Y,Ω4k
Y ) ≤ 1 for k ≤ n follows from the fact that φ∗ is injective on holomorphic

forms. �

We now apply this result to the proof of Proposition 1.3.

Proof of Proposition 1.3. We first prove

Lemma 2.2. Let X be a hyper-Kähler 2n-fold with n ≥ 2. Then X does not admit
a fibration φ : X 99K Y into elliptic curves, hence fibgen(X) ≥ 2.

Proof. Let τ : X̃ → X, φ̃ : X̃ → Y be a resolution of the indeterminacies of φ,
with X̃ smooth. Then, as the general fiber F of φ̃ is elliptic, one has K

X̃|F = OF .
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But K
X̃

has a section whose divisor has for support the exceptional divisor of τ .
It follows that F does not intersect the exceptional divisor of τ . In other words,
φ is quasiholomorphic. This contradicts a theorem of Matsushita [24] which says
that a quasiholomorphic map from a hyper-Kähler 2n-fold to a manifold of smaller
dimension has image of dimension ≤ n. �

Inequality (1.3) in Proposition 1.3 implies inequality (1.2) since curves of genus
≤ 2 have gonality ≤ 2. We now prove the inequality (1.3). Assume that X admits
a fibration φ : X 99K Y into hyperelliptic curves. By Lemma 2.2, the fibers have
genus at least 2. The smooth projective variety Y obviously satisfies h0(Y,ΩlY ) = 0
for l > 0. Furthermore, there exists a relative hyperelliptic involution ι on X such
that any smooth model Q of X/ι is a fibration into P1 over Y . Thus Q satisfies
h0(Q,Ω4

Q) = 0. This contradicts Lemma 2.1. �

Another easy result is the following

Lemma 2.3. Let X be a hyper-Kähler manifold of dimension ≥ 4. Then

RCirr(X) ≤ 2 fibgen(X)− 2.

Proof. Let f : X 99K B be a fibration realizing the fibering genus, so that the fibers
have genus g = fibgen(X), and let f̃ : X̃ → B be a resolution of the indeterminacies
of f . By Lemma 2.2, we know that g ≥ 2. By [22], the base B is rationally
connected. We now choose a rank 2 subsheaf F of the sheaf R0f̃∗KX̃/B

. The
variety P(F) is generically a P1-bundle over B, hence is rationally connected, and
there is a natural rational map

ψ : X̃ 99K P(F)

over B, which is of degree ≤ 2g − 2. �

Remark 2.4. By Theorem 1.8, Lemma 2.3 implies that, for any hyper-Kähler
fourfold X, one has fibgen(X) ≥ n+3

2 , a statement to be compared with Theo-
rem 1.5.

We finally combine the results above to prove

Proposition 2.5. Let X be a projective hyper-Kähler manifold of dimension ≥ 4.
Assume that the fibering gonality of X is 3. Then one of the following possibilities
holds:

(i) fibgen(X) = 3 and RCirr(X) ≤ 4.
(ii) fibgen(X) = 4 and RCirr(X) ≤ 6.
(iii) fibgen(X) > 4 and RCirr(X) = 3.

Proof. Let φ : X 99K B be a fibration realizing the fibering gonality, so that the
fibers of f are trigonal curves. We know by Proposition 1.3 that the genus of the
fibers is at least 3. If the genus of the fibers is 3 or 4, then we apply Lemma 2.3 and
get the inequalities in (i) and (ii). If the genus of the fibers is ≥ 5, we recall that a
curve of genus ≥ 5 which is trigonal admits a unique g1

3 , unless it is hyperelliptic,
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which is excluded by Proposition 1.3. It follows that there exists a fibration P 99K B
into P1’s and a rational map of degree 3

ψ : X 99K P
over B, which induces the trigonal map on the fibers of f . As B is rationally
connected, P is rationally connected and thus RCirr(X) = 3. �

2.2. Proof of Theorem 1.4. Let X be a hyper-Kähler manifold of dimension
2n admitting a fibration f : X 99K B with general fiber birational to an abelian
variety of dimension g. Let L be an ample line bundle on X. The restriction to
the general fiber X̃t of a resolution f̃ : X̃ → B of the indeterminacies of f has top
self-intersection D := degLg

|X̃t

. We will denote by Zt the 0-cycle Lg
|X̃t

∈ CH0(X̃t).

As X̃t is birational to its Albanese variety, there is a rational action by translation
X̃t ×Alb X̃t 99K X̃t

(x, u) 7→ x+ u

of Alb X̃t on X̃t.
For any integer k, we can construct a rational self-map

Ψk : X 99K X
preserving f , that is, acting fiberwise, and defined by

Ψk(x) = x+ k alb
X̃t

(Dx− Zt), x ∈ X̃t. (2.1)

Lemma 2.6. The degree of Ψk is (kD + 1)2g.

Proof. As Ψk acts in a fiberwise way with respect to f , its degree is equal to the
degree of its restriction to the fibers X̃t. By (2.1), this restriction is birationally
conjugate to the multiplication by kD+1 on a g-dimensional abelian variety, which
proves the result. �

We next have

Lemma 2.7. Let σX ∈ H0(X,Ω2
X) be a generator. We have either Ψ∗kσX =

(kD+ 1)σX or Ψ∗kσX = (kD+ 1)2σX . In the first case, the fibers X̃t are isotropic
for σX .

Proof. As Ψ∗kσX is a nonzero holomorphic 2-form on X, it must be a nonzero
multiple of σX , so Ψ∗kσX = µσX . As Ψk acts in a fiberwise way, we have

(Ψ∗kσX)|X̃t
= Ψ∗

k|X̃t
(σ
X|X̃t

). (2.2)

As Ψ∗
k|X̃t

acts as multiplication by (kD+ 1)2 on the transcendental degree 2 coho-

mology of X̃t, (2.2) implies that µ = (kD+ 1)2 if the fibers X̃t are not isotropic for
σX . If the fibers X̃t are isotropic for σX , then σX (or rather its pull-back τ∗σX on
a model X̃ where f is well defined) maps to an element σt of H0(X̃t,ΩX̃t

)⊗ ΩB,t
which is nonzero for generic t, as otherwise τ∗σX would be everywhere degenerate.
As Ψ∗

k|X̃t

acts as multiplication by kD + 1 on 1-forms on X̃t, we get in this case
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µ = kD + 1, using the fact that the action of Ψ∗k on σt is induced by the action of
Ψ∗
k|X̃t

on the space H0(X̃t,ΩX̃t
). �

Proof of Theorem 1.4. We have Ψ∗kσX = µσX , which we write in the form

Ψ̃∗k(σX) = µτ∗σX , (2.3)
where

τ : X̃ → X, Ψ̃k : X̃ → X

is a desingularization of Ψk : X 99K X. As we are now working with morphisms in
(2.3) and µ is a real number by Lemma 2.7, it follows that

Ψ̃∗k(σnX ∧ σXn) = µ2nτ∗(σnX ∧ σXn).

Integrating both sides over X̃, we get deg Ψ̃k = deg Ψk = µ2n. By Lemma 2.6, we
deduce that

µ2n = (kD + 1)2g, (2.4)
while by Lemma 2.7, we have µ = kD+1 or µ = (kD+1)2. If µ = (kD+1)2, we get
by (2.4) that 4n = 2g, which contradicts the fact that g < 2n. Hence µ = kD + 1,
which implies by (2.4) that n = g. Furthermore, the fibers are isotropic in this case
by Lemma 2.7. �

If instead of a fibration we consider a covering by varieties birational to abelian
varieties of dimension g, we can conclude that they are isotropic, assuming that
the Mumford–Tate group of the Hodge structure on H2(X,Q)tr is maximal and

g < 2b
b2,tr−3

2 c, (2.5)
by applying the result in [6] (or [29] if b2(X)tr ≥ 5). Indeed, these results say
that the Hodge structure on H2(X,Q)tr, which is simple, cannot be realized as a
Hodge substructure of H2(A) for any abelian variety of dimension g if g satisfies
(2.5). Note that, without the inequality (2.5), one can construct coverings by
abelian subvarieties which are not isotropic, as shows the example of the generalized
Kummer Kn(A) which is swept out by copies of surfaces birational to A.

Concerning the statement about the dimension, the following is an example
of a covering of a hyper-Kähler manifold of dimension 8 with ρ = 1 by varieties
birational to abelian surfaces.

Example 2.8. Let Y be a cubic fourfold, and let X be the LLSvS 8-fold of Y
(see [21]). This is an 8-fold which is deformation equivalent to K3[4] (see [1]).
Furthermore, if Y is very general, one has ρ(X) = 1. Let F1(Y ) be the variety of
lines in Y . There exists a dominant rational map (see [31])

ψ : F1(Y )× F1(Y ) 99K X.
Next, the hyper-Kähler manifold F1(Y ) is itself covered by surfaces birational to
abelian surfaces. Indeed, consider the surfaces of lines ΣYH

contained in a hyper-
plane section YH of Y . It is a classical fact that, when YH has one singular point y,
ΣH is birational to the symmetric product C(2)

y,H , where Cy,H is the curve of lines
contained in YH and passing through y. This curve is of genus 4 when YH has one

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



RATIONAL FIBRATIONS OF HYPER-KÄHLER MANIFOLDS 173

ordinary quadratic singularity at y and is smooth otherwise. When YH has two
more singular points y′ and y′′, the curve Cy,H becomes singular at these points,
and its geometric genus decreases to 2. It is clear that F1(Y ) is covered by these
surfaces Σy,H birational to the symmetric product C(2)

y,H of a curve of genus 2, hence
to abelian surfaces, and using the morphism ψ, it follows that X is covered by the
surfaces ψ(x× Σy,H), which are birational to abelian surfaces.

2.3. Proof of Theorem 1.5. Let X be a hyper-Kähler 2n-fold and let

f : X̃ → B, τ : X̃ → X, (2.6)

where τ is birational and X̃ is smooth projective, be a fibration into curves of genus
g over a base B of dimension 2n− 1. We have h0(B,ΩlB) = 0 for any l > 0 and in
fact B is rationally connected (see [22]). Let b ∈ B be a general point so that the
fiber X̃b is smooth. Consider the natural morphism

σb : TB,b → H0(X̃b,ΩX̃b
)

induced by the vector bundle morphism

T
X̃b
→ f∗ΩB,b

defined by contraction with the holomorphic 2-form τ∗σX along X̃b.

Lemma 2.9. The morphism σb has rank ≥ n.

Proof. Over the open set B0 of B of regular values of f , we have the relative
Albanese (or Jacobian) fibration Jf → B0. The (2, 0)-form σX on X̃0 induces a
(2, 0)-form

σJ := P∗σX
on Jf , where P ⊂ Jf ×B0 X̃0 is a universal divisor, satisfying the assumption that,
for some nonzero integer d,

alb
X̃b

(Py) = dy

for any y ∈ Jf,b = Pic0(X̃b).
We also have the Albanese embedding (up to isogeny)

albf : X̃0 → Jf ,

which maps x ∈ X̃t to alb
X̃t

((2g − 2)x−K
X̃t

). We have

alb∗f σJ = d(2g − 2)σ
X̃

(2.7)

since by definition of σJ , alb∗f σJ = Γ∗σX , where Γ is the self-correspondence

x 7→ d((2g − 2)x−K
X̃t

), t = f(x)

of X over B, which induces multiplication by d(2g − 2) on CH0(X)hom because B
is rationally connected. It follows from (2.7) that we have the inequality of generic
ranks

rank σJ ≥ rank σ
X̃
,
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that is,
rank σJ ≥ 2n. (2.8)

By construction, the (2, 0)-form σJ vanishes identically on the fibers Jb = J(X̃b)
of π : J → B0, hence induces a contraction map σJ,b : TB0,b → H0(Jb,ΩJb

), and,
by (2.7), we clearly have a commutative diagram

TB0,b
σJ,b→ alb∗

X̃b
ΩJb

‖ a ↓
TB0,b

σb→ Ω
X̃b

of morphisms of vector bundles on X̃b, where a := 1
d(2g−2) alb∗

X̃b
. Taking global

sections, we get
TB0,b

σJ,b→ H0(Jb,ΩJb
)

‖ a ↓
TB0,b

σb→ H0(X̃b,ΩX̃b
),

(2.9)

where the second vertical map is an isomorphism. We now have

Claim 2.10. We have the equality of rank along Jb
rank σJ = 2 rank σJ,b. (2.10)

Proof. The torsion points of Jb are dense in Jb for the Zariski or Euclidean topology,
so it suffices to prove the equality at a torsion point y ∈ Jb. Through such a point,
there is a torsion multisection Zy ⊂ J , which is transverse to the fiber Jb. The
(2, 0)-form σJ vanishes on Zy, because torsion points are rationally equivalent (up
to torsion) in the fibers to the origin 0b ∈ Jb and all points in the 0-section are
rationally equivalent in X̃ since the base B is rationally connected. It follows that
the matrix of σJ at y in a basis adapted to the decomposition TJ,y = TZy,y⊕TJb,y,
where TZy,y

∼= TB,b, takes the block form(
0 MσJ,b

−tMσJ,b
0

)
,

where MσJ,b
is the matrix of σJ,b. �

Using the identifications (2.9), Lemma 2.9 follows from (2.8) and (2.10). �

Corollary 2.11. One has g ≥ n.

Proof. Indeed, this follows from Lemma 2.9 since the rank of σb is not greater than
g = dimH0(X̃b,ΩX̃b

). �

Remark 2.12. For n = 2, this gives a third proof of Lemma 2.2.

Let ∇b : TB,b → Hom(H0(X̃b,ΩX̃b
), H1(X̃b,OX̃b

)) be the infinitesimal variation
of Hodge structure of the family of curves (2.6) at b. We will use the following
classical symmetry result due to Donagi and Markman [10] (see also [3]).
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Lemma 2.13. The bilinear map TB,b ⊗ TB,b → H1(X̃b,OX̃b
),

(u, v) 7→ ∇u(σb(v))

is symmetric in u and v.

Proof of Theorem 1.5. In the situation above, assume that n ≥ 3 and g = n or
g = n + 1. Then 2n − 1 > n + 1 ≥ g. It follows that, at a general point b ∈ B,
the morphism σb has a nontrivial kernel Kb ⊂ TB,b. Moreover, by Lemma 2.9, the
morphism σb is either surjective or has for image a hyperplane in H0(X̃b,KX̃b

).

Case g = n or n+ 1 and σb is surjective. We first prove

Lemma 2.14. The kernel Kb of σb is contained in the kernel of the Kodaira–
Spencer map ρb : TB,b → H1(X̃b, TX̃b

).

Proof. We apply Lemma 2.13. It thus follows that for u ∈ Kb, and any v ∈ TB,b,
we have

∇u(σb(v)) = ∇v(σb(u)) = 0.
As σb is surjective, this implies that ∇u : H0(X̃b,KX̃b

) → H1(X̃b,OX̃b
) is identi-

cally 0. However, we know by Proposition 1.3 that the fibers X̃b are not hyperel-
liptic, hence the map

H1(X̃b, TX̃b
)→ Hom(H0(X̃b,KX̃b

), H1(X̃b,OX̃b
))

is injective. Therefore ρb(u) = 0. �

Let m : B 99KMg be the moduli map, which to a general point b ∈ B associates
the isomorphism class of the curve X̃b. By Lemma 2.14, the vector space Kb is
tangent to the fiber of m, hence it follows that the map m has positive dimensional
fibers. We thus have, after Stein factorization, a fibration m′ : B 99K B′ with
connected positive dimensional fibers, having the property that, restricted to a
general fiber of m′, the fibration f becomes isotrivial. Denoting by f ′ : X̃ 99K B′
the composition m′ ◦ f , we can assume by modifying X̃ that f ′ is a morphism, and
prove

Lemma 2.15. Assume that X is very general with fixed Picard number, that
b2(X)tr ≥ 5 and that g < 2b

b2,tr−3
2 c. Then the general fiber of f ′ is isotropic

for τ∗σX .

Remark 2.16. Lemma 2.15 says in particular that Ker ρb ⊂ Kb, hence Ker ρb =
Kb by Lemma 2.14. In particular, dimB′ = g.

Proof of Lemma 2.15. As the fibration f is isotrivial after restriction to the general
fiber Bb′ ⊂ B of m′, the fiber X̃b′ := f ′

−1(b′) is rationally dominated by a product
Cb′× B̃b′ , where B̃b′ is a generically finite cover of Bb′ , and Cb′ is isomorphic to the
fibers of the restricted family, so in particular has genus g. The fact that X is very
general with fixed Picard group implies that the Mumford–Tate group of the Hodge
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structure on H2(X,Q)tr is the orthogonal group of the Beauville–Bogomolov form,
and as proved in [29], this implies that, if the composite map

H2(X,Q)tr → H2(X̃b′ ,Q)→ H1(Cb′ ,Q)⊗H1(B̃b′ ,Q)
is nontrivial, then the Hodge structure on H1(Cb′ ,Q) contains a simple factor
of the Kuga–Satake weight 1 Hodge structure of H2(X,Q)tr, hence in particular
g ≥ 2b

b2,tr−3
2 c. This is excluded by assumption and it follows that the form τ∗σ

X|X̃b′

is either 0 or the pull-back of a holomorphic 2-form τb′ on the fiber Bb′ . In the
first case, the lemma is proved. In the second case, there is a nonzero locally con-
stant holomorphic 2-form ηb′ ∈ H2,0(Bb′) whose pull-back to X̃b′ is τ∗σ

X|X̃b′
and

Deligne’s global invariant cycle theorem then implies that there is a holomorphic
2-form η on B whose restriction to Bb′ is ηb′ . This is impossible, since otherwise
f∗η would provide a nonzero holomorphic 2-form on X of rank < 2n. �

Let B′0 be the Zariski open set of B′ over which the morphism f ′ : X̃ → B′ is
smooth and let A→ B′0 be the Albanese fibration of f ′. There is a rational map

ψ : X̃ 99K A,
which is constructed as follows: we define ψ as the composition of the relative Abel
or Albanese map up to isogeny

alb: X̃ 99K J(X̃/B), (2.11)

which we used previously and which to c ∈ X̃b associates alb
X̃b

((2g − 2)c−K
X̃b

),
and the natural rational map

ψab : J(X̃/B) 99K A,
inducing over a general b ∈ B the morphism

ψab,b : J(X̃b) = Alb(X̃b)→ Alb(X̃b′), b′ = m′(b) (2.12)
of abelian varieties.

Remark 2.17. The rational map ψ might be different from any relative Albanese
map for f ′ constructed using a multisection of f ′. More precisely, it may differ
from it by translation by a rational section of A over B, that is, a rational map
B 99K A over B′.

We have

Lemma 2.18. The assumptions being as in Lemma 2.15, the image Y := Imψ ⊂ A
has dimension dimB′ + 1 and there is a holomorphic 2-form η on any smooth
projective birational model of Y , whose pull-back to X under ψY : X 99K Y is a
nonzero multiple of σX .

Proof. We first claim that for general b ∈ B, with m′(b) = b′, the morphism of
abelian varieties (2.12) is an isogeny on its image. By Lemma 2.15, the general
fibers of f ′ : X̃ → B′ are isotropic for τ∗σX , hence there is a morphism

σ′b′ : TB′,b′ → H0(X̃b′ ,ΩX̃b′
)
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of contraction with τ∗σX . By Remark 2.16, the morphism

σb : TB,b → H0(X̃b,ΩX̃b
)

(which is surjective by assumption in the case we are considering) factors through
an isomorphism

σb : TB′,b′ → H0(X̃b,ΩX̃b
).

It is immediate to check that the following diagram is commutative:

TB′,b′
σ′

b′→ H0(X̃b′ ,ΩX̃b′
)

‖ ψ∗ab,b ↓
TB′,b′

σb→ H0(X̃b,ΩX̃b
).

This implies that ψ∗ab,b is surjective, thus proving the claim. It follows from the
claim that the image Imψab is a family of abelian varieties J ′ → B′ over B′ which
descends up to isogeny the family J(X̃/B)→ B. The image of the curve X̃b in J ′b′
via ψ obviously does not depend on the point b in the fiber m′−1(b′) ⊂ B, since by
construction of ψ this is, up to isogeny, the curve X̃b canonically embedded via the
Abel map (2.11). This proves that dimY = dimB′ + 1. It remains to construct
a nonzero holomorphic 2-form η on Yreg satisfying the desired property. Recall
that Y ⊂ A := Alb(X̃/B′). Using a multisection of X̃ 99K B′, we get a relative
Albanese map (or rather a multiple, depending on the degree of the multisection)
a
X̃/B′

: X̃ 99K A. Furthermore, by Lemma 2.15, using [3] or [30], the relative
Albanese variety A admits a holomorphic 2-form σA (which extends to a smooth
projective compactification of A) with the property that

a∗
X̃/B′

σA = σ
X̃
. (2.13)

Let η := σA|Yreg . This (2, 0)-form clearly extends to a smooth projective compact-
ification of Yreg. It remains to prove that the pull-back ψ∗Y η, which by definition
of η equals ψ∗σA, is nonzero on X̃. This follows in fact directly from (2.13), by
observing that the (2, 0)-forms

ψ∗σA, a∗
X̃/B′

σA

on X̃ differ by a holomorphic (2, 0)-form on B (see Remark 2.17) and B has no
nonzero holomorphic 2-form. �

Lemma 2.18 provides us with a contradiction, since dim Y = dimB′+1 = g+1 ≤
n+ 2 < 2n because n ≥ 3 and thus the pull-back of η to X̃ provides a holomorphic
2-form on X̃ which is everywhere degenerate. This case is thus excluded.

Case g = n + 1 and σb has for image a hyperplane in H0(X̃b,ΩX̃b
). We use

the same notation as before, that is, Kb ⊂ TB,b is the kernel of the contraction
map σb : TB,b → H0(X̃b,ΩX̃b

). In this case, we first have the following variant of
Lemma 2.14:
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Lemma 2.19. At a general point b ∈ B, the rank of the map
ρb : Kb → H1(X̃b, TX̃b

)
is at most 1.

Proof. By the same arguments as in the proof of Lemma 2.14, we find that ρb(Kb)
is orthogonal with respect to Serre duality to H0(X̃b,KX̃b

)·Im σb ⊂ H0(X̃b, 2KX̃b
).

As we know by Proposition 1.3 that the general fiber X̃b is not hyperelliptic, and
by assumption Im σb ⊂ H0(X̃b,KX̃b

) is a hyperplane, H0(X̃b,KX̃b
) · Im σb has

codimension at most 1 in H0(X̃b, 2KX̃b
), which proves the lemma. �

As rank σb = n, we have dimKb = n − 1 ≥ 2, and it follows from Lemma 2.19
that Ker ρb 6= 0, that is, the moduli map has positive dimensional general fiber.
The rest of the proof works as in the previous case, except that the morphism of
abelian varieties ψab,b of (2.12) can now have a 1-dimensional kernel, so that only
a (g − 1)-dimensional quotient of the Jacobian fibration descends to B′. �

We conclude this section with the proof of Corollary 1.9.

Proof of Corollary 1.9. Let X be a very general hyper-Kähler 2n-fold with n ≥ 3
and b2(X)tr ≥ 9. By Theorem 1.3, one has fibgen(X) ≥ 5 and by Theorem 1.8,
one has cohirr(X) ≥ 4, hence a fortiori RCirr(X) ≥ 4. It thus follows from Propo-
sition 2.5 that fibgon(X) ≥ 4. �

3. Measure of irrationality

We do not know if (maybe under some assumptions on b2,tr(X)) the cohomo-
logical irrationality of a hyper-Kähler fourfold X is at least 4, which would greatly
simplify the proof of Theorem 4.2, but we can prove a weaker statement that will
be used in the next section.

Proposition 3.1. Let X be a hyper-Kähler fourfold such that any big divisor on X
is ample. Then there exists no quasifinite morphism f : X → Y of degree 3, where
Y is projective, normal and −KYreg is the restriction to the regular locus Yreg of a
big line bundle on Y .

Here, by a “big line bundle on Y ” we mean the sum of an ample line bundle
and an effective divisor. Our assumptions on KYreg thus mean that there exists an
ample line bundle L on Y , and an effective divisor E in Y , such that

KYreg = L−1(−E)|Yreg . (3.1)

Proof. We argue by contradiction. We first observe that, under our assumptions,
h0(Ỹ ,K

Ỹ
) = 0 for any desingularization Ỹ of Y . Indeed, using (3.1), we get that

H0(Yreg,KYreg) ⊂ H0(Yreg,L−1
|Yreg

)

and the right hand side is zero, since Y is normal and L is ample. This fact also
implies that h2,0(Ỹ ) = 0, since otherwise the 2-form on X would be pulled back
from Y , hence also its (4, 0)-form, while we know that h4,0(Ỹ ) = 0.
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The ramification divisor R of f , which is well defined on f−1(Yreg), belongs to
the linear system |f∗(−KY )|, hence is big on f−1(Yreg). There is a second effective
divisor R′ in f−1(Yreg) ⊂ X, namely f−1(f(R))−2R. The divisor R′ is not empty,
since its image in Yreg is equal to f(R). We now prove

Lemma 3.2. The locus defined as the intersection
S := R ∩R′ (3.2)

in X0 := X \ f−1(Ysing) is isotropic for the 2-form σX .

Proof. We observe that, due to the fact that the map f is quasifinite (hence finite
over the smooth locus of Y ), the locus (3.2) consists of points x ∈ X such that the
length of the fiber f−1(f(x)) at x is at least 3, hence equal to 3 since the degree
of f is 3. For all these points x ∈ X0, the class 3x ∈ CH0(X) is thus the inverse
image of a 0-cycle of Y . It follows from Mumford’s theorem [26] that the restriction
of σX to any desingularization of S is the pull-back of a 2-form defined on Yreg,
and in fact on a desingularization Ỹ of Y . However, as mentioned above, we have
h2,0(Ỹ ) = 0. �

In order to finish the proof, we have to see what happens along the singular
locus Ysing of Y .

Lemma 3.3. Any 2-dimensional component of f−1(Ysing) is also Lagrangian for
σX .

Proof. Let Σ2 be the union of the 2-dimensional components of Σ := Sing Y and
let y ∈ Σ2 be a general point. We claim that f−1(y) consists of a single point.
By flattening, after blowing up Y to a smooth variety Ỹ , the exceptional fiber of
τ : Ỹ → Y has connected fiber over y, because Y is normal, and it parameterizes
schemes z of finite length with support the fiber f−1(y). The local multiplicities
of z at any of its points x ∈ f−1({y}) cannot be 1, as otherwise the local degree of
f near the point x would be 1 and, by normality, f would be a local isomorphism,
contradicting the fact that Y is singular at y. This implies that f−1({y}) contains
at most one point, since the sum of the local degrees over Yreg is 3. The argument
above shows that points of Ỹ over y ∈ Ysing parameterize subschemes of length 3
supported at a single point x ∈ X over y. It thus follows again by Mumford’s
theorem [26] that the restriction of σX to f−1(Σ2) is the restriction of a 2-form
on Ỹ , hence 0 by the argument already used. �

We now consider the Zariski closures R of R and R′ of R′.

Corollary 3.4. The intersection R ∩ R′ is isotropic for σX . In particular, it has
dimension 2, since there is no divisor in X which is isotropic for σX .

Indeed, this is true away from f−1(Ysing) by Lemma 3.2 and over Ysing by
Lemma 3.3.

The contradiction now comes from the fact that R′ is a nonempty divisor in X,
so that the restriction σ of σX to R′, or rather its pull-back to a desingularization
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τ : R̃′ → R′ of R′, is nonzero. As the ramification divisor R is a big divisor on
X since it is linearly equivalent to f∗(−KY ) over Yreg, it is an ample divisor by
our assumptions, hence its pull-back τ ′

∗
R to R̃′ is big, where τ ′ : R̃′ → X is the

composition of τ and the inclusion map R′ ↪→ X. This contradicts the fact that the
surface R ∩ R′ ⊂ R′, hence also its inverse image in R̃′ is isotropic for the 2-form
σ on R̃′. This concludes the proof of Proposition 3.1. �

4. Rational maps from hyper-Kähler fourfolds: a variant of a
theorem of O’Grady

In the paper [27], O’Grady proves the following result.

Theorem 4.1. Let X be a hyper-Kähler fourfold which is numerically equivalent
to K3[2]. Assume that ρ(X) = 1 and Pic(X) is generated by one positive line bundle
H with qX(H) = 2, or equivalently, H4 = 12. Then the rational map

φH : X 99K P5

is either birational to a hypersurface of degree 12 ≥ d ≥ 6, or of degree 2 over a
hypersurface of degree 6 whose desingularization has pg 6= 0.

Here, “numerically equivalent” means that the lattice (H2(X,Z), qX) is isomor-
phic to the corresponding lattice for K3[2]. As explained in [27], Theorem 4.1 is
equivalent to excluding the possibilities where the image of φH is of dimension < 4
or a hypersurface of degree < 6. In these two cases, the image would be rationally
connected by [22].

In this section, we are going to extend Theorem 4.1 to the situation studied in [9].
The hyper-Kähler fourfold X is only supposed to be very general with ρ(X) = 2
and to admit two line bundles L and M satisfying

L4 = M4 = 0, L2M2 = 2, (4.1)
which gives (L+M)4 = 12 since this implies, by [5], that

L3M = LM3 = 0. (4.2)
It is proved in [9, Theorem 1.7] that such an X has b2(X) = 23 and the same Chern
numbers and Fujiki constant as K3[2], and that the Riemann–Roch polynomial
χ(X, kL + k′M) coincides with the similarly defined polynomial on K3[2] equiped
with line bundles L, M satisfying (4.1); however, we do not know a priori that X
is numerically equivalent to K3[2]. The following result is in fact needed in order
to prove that X as above is deformation equivalent to K3[2] so that, a posteriori,
X is numerically equivalent to K3[2] (see [9, Theorem 1.5]).

Theorem 4.2. Assume that X, L, M are as above, with L, M nef and X very
general with ρ(X) = 2, and that h0(X,L) = 0. Then φL+M : X 99K P5 does not
have rationally connected image.

Remark 4.3. The conditions L, M nef and h0(X,L) = 0 imply that no divisor
in |L+M | is reducible. Indeed, if L and M are nef, any effective divisor D on X
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satisfies q(L,D) ≥ 0 and q(M,D) ≥ 0, so that D is a combination with integral
nonnegative coefficients of L and M .

Note that [9, Proposition 6.3] proves that φL+M : X 99K P5 has rationally con-
nected image, so that, in fact, an X as above, with L and M nef satisfying (4.1)
and h0(X,L) = 0, does not exist.

The proof of Theorem 4.2 will be done in several steps. Although the statement
is very similar to that of Theorem 4.1, we cannot use O’Grady’s strategy, which
proves first that any surface which is the complete intersection of two members
of |L + M | is reduced and irreducible, a statement that is a priori not true in
our situation. Nevertheless, using the fact that (L + M)4 = 12, and under the
assumption that no divisor in |L+M | is reducible, a number of his arguments go
through in our situation where ρ(X) = 2 and L, M are nef.

The following lemma will be very much used in the proof. We denote l = c1(L) ∈
Hdg2(X,Z), m = c1(M) ∈ Hdg2(X,Z).

Lemma 4.4. Assume X is as above, very general with ρ(X) = 2. Then there is no
surface Σ ⊂ X such that the class (l+m)2 − 3[Σ] ∈ Hdg4(X,Z) is pseudoeffective.

Proof. We argue as in the proof of [9, Claim 6.2]. Any integral cohomology class
η ∈ H4(X,Z) has an associated matrix

Mη =
(
a b
b c

)
,

with a = 〈η, l2〉X , b = 〈η,ml〉X , c = 〈η,m2〉X . If η is the class of a surface in X,
this matrix is nonzero, since L + M is ample and has nonnegative coefficients as
L and M are nef. We follow some computations and arguments of [27], which
we can do as we are in a very similar numerical situation, namely our X has by
[9, Theorem 1.7] the same Chern numbers, Betti numbers and Fujiki constant as
Hilb2(K3). As b2(X) = 23, one has an isomorphism given by cup-product (see
[5, 13])

Sym2H2(X,Q) ∼= H4(X,Q),
which induces a decomposition

H4(X,Q) = Sym2H2(X,Q)tr ⊕H2(X,Q)tr ⊗NS(X)Q ⊕ Sym2 NS(X)Q. (4.3)

AsX is very general, the Mumford–Tate group of the Hodge structure onH2(X,Q)tr
is the orthogonal group of the Beauville–Bogomolov form qX , so that the only
Hodge classes in Sym2H2(X,Q)tr ⊂ H4(X,Q) are multiples of the class c in-
ducing the Beauville–Bogomolov form. By (4.1) and (4.2), the classes l2 and m2

satisfy

Ml2 =
(

0 0
0 2

)
, Mm2 =

(
2 0
0 0

)
,

while the integral Hodge classes lm and c2(X) satisfy

Mlm =
(

0 2
2 0

)
, Mc2(X) =

(
0 λ
λ 0

)
,
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with λ = 30 as for a hyper-Kähler fourfold of K3[2] deformation type. It is indeed
a general fact that the Beauville–Bogomolov form for hyper-Kähler fourfolds is a
nonzero multiple of the quadratic form qc2(X)(α, β) = 〈αβ, c2(X)〉X on H2(X,Q).
The computation of the coefficient λ is as in the case of K3[2], since it is determined
by the Riemann–Roch polynomial and the Fujiki constant. It follows from (4.3)
that the space of rational Hodge classes on X is generated by Sym2 NS(X)Q and c,
and the kernel of the map η → Mη on Hdg4(X,Q) is of rank 1, generated by
c2(X)− 15ml.

Let f = [Σ] and e = (l+m)2−3f ∈ H4(X,Z) be the two pseudoeffective classes
considered. The corresponding matrices Me and Mf thus satisfy

3Mf +Me =
(

2 4
4 2

)
,

and as both matrices are nonzero, with integral nonnegative coefficients, we must
have

Mf =
(

0 1
1 0

)
, Me =

(
2 1
1 2

)
. (4.4)

Note that (
0 1
1 0

)
= M 1

2ml
,

(
2 1
1 2

)
= Ml2+m2+ 1

2ml
. (4.5)

It follows from (4.4) and (4.5) that for some coefficient η ∈ Q we have

f = 1
2ml + η(c2(X)− 15ml), e = l2 +m2 + 1

2ml − 3η(c2(X)− 15ml). (4.6)

We now compute the self-intersection of these integral cohomology classes and
conclude that

f2 = 1
2 + η2(c2(X)− 15ml)2 = 1

2 + 378η2.

We thus conclude that 2 · 378η2 is an integer, and as 378 = 27 · 2 · 7, it follows that
6η is an integer. From the first equation in (4.6), with f effective, we now conclude
that η < 0, since otherwise η ≥ 1

6 and 1
2 − 15η < 0, so

ηc2(X) = f +
(

15η − 1
2

)
lm,

with all coefficients positive and f effective. This is equation (32) in [9, Proof of
Claim 6.2], which is proved there to be impossible.

From the second equation in (4.6), we now deduce that

−3ηc2(X) = e− l2 −m2 +
(
−45η − 1

2

)
ml. (4.7)

We claim that this implies η ≥ − 1
18 . This is proved by integrating against both

terms of (4.7) a class α2, where α ∈ H1,1(X)R is in the boundary of the Kähler
cone and satisfies q(α) = 0. We get

0 = 〈e, α2〉X − 〈l2, α2〉X − 〈m2, α2〉X +
(
−45η − 1

2

)
〈lm, α2〉X . (4.8)
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Using the Fujiki relations (with Fujiki constant equal to 3), we have
〈βγ, α2〉X = 2qX(α, γ)qX(α, β)

for any α, β, γ ∈ H2(X,C) such that qX(α) = 0. Thus (4.8) gives

0 = 〈e, α2〉X − 2qX(l, α)2 − 2qX(m,α)2 + 2
(
−45η − 1

2

)
qX(l, α)qX(m,α)

and, as e is pseudoeffective, 〈e, α2〉X ≥ 0 when α is in the boundary of the Kähler
cone, which by [15, Proposition 3.2] is satisfied once qX(l, α) ≥ 0, qX(m,α) ≥ 0.
In conclusion, we proved that

qX(l, α)2 + qX(m,α)2 +
(

45η + 1
2

)
qX(l, α)qX(m,α) ≥ 0

once qX(l, α) ≥ 0, qX(m,α) ≥ 0. It follows that 45η + 1
2 ≥ −2, which proves the

claim.
As we know that 6η is an integer and η < 0, the claim gives a contradiction,

proving the lemma. �

The proof of Theorem 4.2 will be obtained by a case-by-case study. Assuming
φL+M has rationally connected image, we have, by adapting arguments of [27],
the following three possibilities (the case where the image is a curve being directly
excluded by the fact that no divisor in |L+M | is reducible):

(1) Y = φL+M (X) ⊂ P5 is a surface of degree d ≥ 4.
(2) Y = φL+M (X) is a 3-fold of degree 3 ≤ d ≤ 6. In the case of

degree d = 6, the indeterminacy locus of φL+M has dimension 0.
(3) Y = φL+M (X) is a 4-fold of degree 2 ≤ d ≤ 4 and the degree of

φL+M : X 99K Y is at least 3.
The bound on the degree d in (1) follows from the fact that the image Y is

linearly nondegenerate in P5.
The bound on the degree d in (2) follows from the fact that the image Y is

linearly nondegenerate in P5 and that the general fiber is a curve F such that
d[F ] + e = (m + l)3 in Hdg6(X,Z) for some pseudoeffective class e (we use the
ampleness of L+M here). Indeed, as we assumed ρ(X) = 2, the group Hdg6(X,Q)
is generated by l2m and m2l. An integral pseudoeffective curve class in X can thus
be written as αl2m + βm2l. By intersecting with l and m, we find that 2α and
2β are integers, and furthermore, they are nonnegative since L and M are nef.
Applying this argument to [F ] and e, and using (m + l)3 = 3m2l + 3ml2, the
equality d[F ] + e = (m+ l)3, with [F ] and e pseudoeffective, implies that d ≤ 6.

The bound on the degree d in (3) follows from ampleness of L+M and the fact
that (l+m)4 = 12. Furthermore, as in [27] (see also Lemma 2.1), one uses the fact
that the degree of X over Y is at least 3 since pg(Ỹ ) = 0. Here and in what follows
we denote by Ỹ a desingularization of Y and by φ̃ : X̃ → Ỹ a desingularization of
φ : X 99K Ỹ .

We thus have to exclude each of these possibilities. Let us start by excluding a
few easy cases.
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Lemma 4.5. The image Y ⊂ P5 of φL+M is not a surface of degree d ≥ 4.

Proof. Otherwise, the general fiber F would be a surface in X such that (l +
m)2 − d[F ] = e, where e is the class of a surface (which is a union of irreducible
components of the base-locus of |L+M |), and this is excluded by Lemma 4.4. �

Lemma 4.6. The image Y ⊂ P5 of φL+M is not a threefold of degree 3.

Proof. By [12], a linearly normal 3-fold Y of degree 3 in P5 is a cone over a rational
normal scroll. Such a Y is fibered into linear spaces over P1 and has many reducible
hyperplane sections, in the sense that it is swept-out by reducible hyperplane sec-
tions, with at least two mobile irreducible components. In that case, X would thus
have, by taking pull-back under φL+M , reducible divisors in |L+M |, contradicting
our assumption that h0(X,L) = 0 (see Remark 4.3). �

Lemma 4.7. The image Y ⊂ P5 of φL+M is not a fourfold of degree 4.

Proof. By item (3) above, the rational map φL+M : X 99K Y has degree ≥ 3. As
(L+M)4 = 12 and L+M is ample, the case where dimY = deg Y = 4 is possible
only if φL+M is a morphism of degree 3 (see [27, Corollary 4.7]). As L+M is ample,
the morphism φL+M is quasifinite to its image and the same is true for the induced
morphism φL+M : X → Yn, where Yn is the normalization of Y . The big divisors
are ample on X since, by Remark 4.3, the pseudoeffective cone of X is generated
by two nef line bundles, and the regular locus of Yn has a big anticanonical bundle,
hence this would contradict Proposition 3.1. �

Lemma 4.8. If the image Y ⊂ P5 of φL+M is a hypersurface of degree 3, the
degree of φL+M : X 99K Y is 3.

Proof. The rational map φL+M is of degree ≥ 3 by item (3) above, and it cannot
be of degree ≥ 5 since (L+M)4 = 12 ≥ deg Y deg φL+M , because L+M is ample
(see [27]). So we have to exclude the case where deg φL+M = 4 and deg Y = 3,
where the equality (L + M)4 = 12 = deg Y deg φL+M holds, implying that φL+M
is a morphism (see [27, Corollary 4.7]). Let C ⊂ Y be a general plane section and
let CX ⊂ X be its inverse image in X. We observe that Y cannot be singular in
codimension 1, as otherwise it would have reducible hyperplane sections; hence, by
taking the inverse images under the morphism φL+M , X has reducible members in
|L + M |. It follows that the curve C is a smooth elliptic curve. We use now the
results proved in the course of the proof of Proposition 6.4 and in [9, Lemma 6.8].
They imply that, under our assumptions on X, L, M , the rational map φ2L+M |CX

factors through the degree 4 rational map φL+M |CX
: CX → C. Note that the

linear systems |L+M | and |2L+M | on X have no fixed components. Indeed, this
is clear for the first one as |L+M | has no reducible divisors; for the second one, as
we assumed h0(X,L) = 0, and we have h0(X, 2L + M) = 10, h0(X,L + M) = 6,
the only fixed component could be in |2L| and we would then have h0(X,M) = 10,
or it could be in |M | and we would then have h0(X, 2L) = 10. Both possibilities
are easily ruled out, using [9, Lemma 5.1] and [16] (see [9, Subsection 5.1] for the
complete argument). As the curve CX is mobile, it follows that the linear systems
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|L+M | and |2L+M | have no base points along CX , hence the factorization of the
morphisms mentioned above shows that the linear systems H0(X,L+M)|CX

and
H0(X, 2L + M)|CX

are pulled back from linear systems on C. A fortiori, we get
that the line bundle (2L + M)|CX

is pulled back from a line bundle on C, hence
the degree of (2L+M)|CX

is divisible by 4. This contradicts the fact that

deg(2L+M)|CX
= (2L+M)(L+M)3 = 3(2L+M)(L2M +ML2) = 18,

which is obtained by using the equalities L2M2 = 2, L3M = 0, LM3 = 0 of (4.1)
and (4.2). �

Lemma 4.9. The image Y ⊂ P5 of φL+M is not a fourfold of degree 2.

Proof. If Y is a quadric, the general plane section C of Y , defined by a 3-dimensional
vector subspace W3 ⊂ H0(P5,OP5(1)) = H0(X,L+M), is a smooth conic, as other-
wise Y would be singular in codimension 1, hence reducible. We thus have C ∼= P1

and denote by OP1(1) the degree 1 line bundle on C. We recall from [9, Proof of
Proposition 6.4] that, under our assumptions on X, L, M , assuming that Y is a
fourfold, and given a general plane section C of Y , the mobile part XC of φ−1

L+M (C),
or equivalently the Zariski closure of the locus in X \BL(L+M) which is defined
by W3, is an irreducible curve with the following properties (we denote below by
φL+M,C : XC → C the restriction of φL+M to XC):

(1) dimH0(X,L+M)|XC
= 3.

(2) dimH0(X, 2L+M)|XC
= 5 or 4, and in the second case, φ2L+M (XC)

is a rational cubic curve in P3.
(3) dimH0(X, 3L+ 2M)|XC

≤ 8.
(a) If dimH0(X, 2L + M)|XC

= 5, denoting by W5 the space H0(X, 2L + M)|XC

and by W3 ∼= Sym2W2 the space H0(X,L + M)|XC
, with W2 := H0(C,OP1(1)),

we study the multiplication maps

µ : W2 ⊗W5 → H0(XC , (2L+M)|XC
⊗ φ∗L+M,COP1(1))

with image W ′, and

µ′ : W2 ⊗W ′ → H0(X, 3L+ 2M)|XC

with rankµ′ ≤ 8. We get by the Hopf lemma applied to both multiplication maps
that dimW ′ = 6 or dimW ′ = 7. In the first case, the equality in the Hopf lemma
is satisfied by µ, and in the second case, the equality in the Hopf lemma is satisfied
by µ′. In both cases, we conclude that

W5 = φ∗L+MH
0(C,OP1(4)) = φ∗L+MH

0(C,OC(2)). (4.9)

It follows that the rational morphism φ2L+M : X 99K P9 factors rationally through
Y . Furthermore, the linear system |2L+M | has no fixed component, as we already
explained in the previous proof. We also observe that the quadric Y must be of
rank at least 5, as otherwise it would have many reducible hyperplane sections, and
X would contain reducible divisors in |L + M |. It follows that Pic(Y \ Sing Y ) =
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ZOY (1). These facts, together with the equality (4.9), imply that we have an
equality of divisors in X,

2L+M = 2(L+M)− E,

where E is an effective divisor in X contracted by φL+M . Thus E belongs to |M |
and must be irreducible and contracted by φL+M to an irreducible subvariety W
of Y . Furthermore, this equality induces an equality of spaces of sections,

H0(X, 2L+M) = H0(Y,OY (2)⊗ IW ).

As H0(X, 2L+M) is of dimension 10 (see [9]), W imposes at most 11 conditions to
the quadrics. On the other hand, W must generate linearly at least a P4. Otherwise,
W ⊂ P3 and Y is swept-out by linear sections containing W . Thus there would be
reducible divisors in |L+M |, namely inverse images of general hyperplane sections
of Y containing W , which contain E and a mobile component, contradicting our
assumptions. Finally W cannot be a curve. Otherwise this curve would have degree
at least 4 and the map E →W would have 2-dimensional fibers of class F ; choosing
three general points on the curve W and two general hyperplanes in P5 containing
these three points, we would conclude that (l +m)2 − 3F is effective in X, which
is excluded by Lemma 4.4. An irreducible linearly nondegenerate surface W in P4

or P5 imposes at least 12 conditions to quadrics (as the only irreducible linearly
nondegenerate surface in P4 contained in three quadrics is a cubic scroll, residual
of a plane in the complete intersection of two quadrics, see [14, p. 50]), and this is
a contradiction.

(b) The other case, where dimH0(X, 2L + M)|XC
= 4, and φ2L+M (XC) is a

rational cubic curve in P3, is still easier. Indeed, we prove as above (see [9]) that
the rational map φ2L+M factors through φL+M , and thus there is a linear system
on Y which is of degree 3 on the plane sections C of Y . This is impossible under
our assumptions since, as we argued above, the quadric Y has rank at least 5, hence
Y has cyclic Picard group generated by OY (1). �

Lemma 4.10. The image Y ⊂ P5 of φL+M is not a threefold of degree 6.

Proof. First of all we prove

Claim 4.11. Assume PicX is generated by L and M , with L and M nef isotropic,
and the image Y ⊂ P5 of φL+M is a threefold of degree d = 4, 5 or 6. Then the
general fiber F of φL+M is a curve of class 1

2 (L2M + M2L), and it is of genus 3
when d = 6.

As before, by “general fiber of φL+M” we mean “general fiber of a desingular-
ization φ̃L+M : X̃ → Y of φL+M”.

Proof of Claim 4.11. Using the fact that L + M is ample, and arguing as in [27],
the image f of F in the group of 1-cycles of X modulo numerical equivalence (or
in H2(X,Z)) satisfies

df = (l +m)3 − e = 3(l2m+m2l)− e, (4.10)
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where the class e is the class of a pseudoeffective 1-cycle. Under our assumptions
on L, M , the group of pseudoeffective 1-cycles is contained in the cone generated
over Q by l2m and lm2. Furthermore, the classes 1

2 l
2m and 1

2 lm
2 are integral and

any integral cohomology class in 〈l2m,m2l〉Q is an integral combination of 1
2 l

2m

and 1
2 lm

2 as one sees by intersecting them with L and M . It now follows from
(4.10) with d ≥ 4 that one of the following possibilities holds:

f = 1
2
(
l2m+m2l

)
, f = 1

2 l
2m, f = 1

2m
2l.

Next we observe that the image of F in X is an irreducible component of the
intersection of three members of |L+M |, and it follows by adjunction that

degKF ≤ 3(l +m)f. (4.11)
If f = 1

2 l
2m or f = 1

2m
2l, we get from (4.11) that degKF ≤ 3, that is, F is

of genus 0, 1 or 2, which contradicts Proposition 1.3. Hence we conclude that
f = 1

2 (l2m+m2l), which proves the first statement. When d = 6, we have e = 0 by
the inequality (4.10) and it follows as in [27] that the base locus of |L+M | consists
of isolated points. The equality in (4.11) would imply that the holomorphic Euler–
Poincaré characteristic χ(Z̃,O

Z̃
) equals the holomorphic Euler–Poincaré character-

istic χ(Z,OZ), where Z is the complete intersection of three members of |L + M |
and Z̃ is its normalization. This is not possible, since the normalization map Z̃ → Z

is nontrivial because Z is connected and Z̃ is not connected; hence we conclude
that the inequality is strict in (4.11). Therefore we get in this case degKF < 6 and
so the genus of F is at most 3, hence equal to 3 by Proposition 1.3. �

We now concentrate on the case of degree d = 6. As noted above, the indeter-
minacy locus of φL+M consists of isolated points. We first prove

Claim 4.12. There is a single indeterminacy point x ∈ X.

Proof. Let τ : X̃ → X, φ̃L+M : X̃ → Y be a resolution of indeterminacies of φL+M .
As we know that τ has rank at most 1 over the indeterminacy points x1, . . . , xN ,
each irreducible component of the canonical divisor K

X̃
of X̃, defined as the zero-

locus of the form τ∗σ4
X , appears with multiplicity at least 3. If F ⊂ X̃ is a general

fiber, we know by Claim 4.11 that K
X̃
· F = 4, hence it follows that F meets a

single irreducible component of K
X̃

. This implies that N = 1, as the image of F
in X passes through all indeterminacy points xi. �

We now examine the order of vanishing of sections of L+M at x.

Claim 4.13. (i) There is no section of L+M vanishing at x to order 3 or more.
(ii) There exists a section of L + M whose zero set is nonsingular at x. The

rank of the evaluation map ex : H0(X,L+M)→ ΩX,x ⊗ (L+M) is exactly 1.
(iii) Let Vx ⊂ TX,x be the hyperplane defined by any linear form in Im ex. Then

the rank of the evaluation map H0(X,L+M)→ Sym2 V ∗x ⊗ (L+M) is 5.

Proof. (i) We have τ∗(L+M) ·F = 2 by Claim 4.11. If a section of L+M vanishes
to order ≥ 3, it thus vanishes on all the curves τ(F ), hence on X.
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(ii) If all sections of L+M vanish to order ≥ 2 at x, the local intersection number
at x of 4 sections of L+M forming a regular sequence is at least 16, contradicting
the fact that (L + M)4 = 12. Suppose now that there are two sections s, s′ of
L + M with independent differentials at x. Choosing them general, they define a
smooth surface S ⊂ X passing through x. This surface is swept out by curves τ(F )
contained in it, hence it follows by the same argument as before that a nonzero
section in H0(X,L + M)|S cannot vanish at order ≥ 3 at x. There cannot be a
complete intersection of three sections of L+M which is smooth at x (since there
are at least 6 curves Fi passing through x in such complete intersection), hence any
section in H0(X,L+M)|S vanishes to order ≥ 2 at x. The space H0(X,L+M)|S
is 4-dimensional and the evaluation map

ex,S : H0(X,L+M)|S → Sym2 ΩS,x ⊗ (L+M)
has rank at most 3. Hence ex,S has a nontrivial kernel providing a section whose re-
striction to S is nonzero and vanishes to order 3 at x. This contradiction proves (ii).

(iii) The argument is the same as before, since, denoting by Xs ⊂ X the zero
locus of a general section s of L+M (so that Vx = TXs,x), any element of H0(X,
L + M)|Xs

has 0 differential at x but cannot vanish to order ≥ 3 at x. The
conclusion thus follows from the fact that H0(X,L+M)|Xs

has dimension 5. �

A contradiction arises as follows: the 5-dimensional space of quadrics on P(Vx)
given by Claim 4.13 (iii) either has no base point, or is the space of quadrics van-
ishing at a point u ∈ P(Vx). In both cases, if we take three general sections of
H0(X,L + M)|Xs

, they provide a rational map Xs 99K P2 that is undefined only
at x, at which the three sections vanish at order 2. Blowing up x in Xs, and denot-
ing by Ex,s the exceptional divisor over x, we get sections of (L+M)|Xs

(−2Ex,s).
The restricted rational map φL+M |Ex,s

: Ex,s 99K P2 is given by a general linear
system of quadrics vanishing at one point in the second case, or by a linear system
of quadrics without base points in the first case. It is thus generically finite of
degree ≤ 4. However, this contradicts the fact that it factors as the composition
of the dominant rational map

Ex,s 99K Ys → P2,

where Ys is the hyperplane section of Y defined by s and the second map is a
general linear projection, hence has degree 6. �

Combining Lemmas 4.5, 4.6, 4.7, 4.9 and 4.10 we find that, in order to prove
Theorem 4.2, we only have to prove the following Proposition 4.14, which eliminates
the case where the image is a cubic hypersurface, and Proposition 4.20, which
excludes the cases where Y is a 3-fold of degree 4 or 5 in P5.

Proposition 4.14. The image Y = φL+M (X) ⊂ P5 cannot be a cubic hypersur-
face.

We establish a few lemmas in order to prove Proposition 4.14. We first prove

Lemma 4.15. If Y is a cubic hypersurface, it cannot be singular in codimension 1.
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Proof. If the singular locus of Y has dimension 3, it must be a P3, and either Y is
a cone over a cubic surface or the equation of Y takes the form

fY = x2
0x2 + x0x1x3 + x2

1x4, (4.12)
for an adequate choice of coordinates xi, x0 = x1 = 0 being the equations defining
the P3 contained in Sing Y . The first case is excluded as follows: If Y is a cone
over a cubic surface S, the linear projection π : Y 99K S from the vertex composes
with φL+M to give a dominant rational map

ψ = π ◦ φL+M : X 99K S
with general fiber Fx, x ∈ S. For any general set {x1, x2, x3} of three collinear
points in S, the three surfaces Fxi

are homologous in X and satisfy [Fx1 ] + [Fx2 ] +
[Fx3 ] + e = (l +m)2 in H4(X,Z), where e is the class of an effective surface in X,
which contradicts Lemma 4.4. In the second case, where Y is defined by an equation
fY as in (4.12), Y has many reducible hyperplane sections. Indeed, in the above
coordinates the hyperplane section {x2 = 0} is the union of the two components
{x1 = x2 = 0} ⊂ Y and {x0x3 + x1x4 = x2 = 0} ⊂ Y . Using the natural SO(3)
(or SL(2)) action on Y , it is easy to see that both components are mobile. Thus X
would have reducible members in |L+M |, which is excluded by assumption. �

By Lemma 4.15, if Y is a cubic hypersurface, the general plane sections C :=
P ∩Y are smooth elliptic plane curves. We now choose a desingularization Ỹ of Y ,
so that Yreg ⊂ Ỹ , and prove

Lemma 4.16. If Y is a cubic hypersurface, there exists a line bundle L on Ỹ such
that degL|C = 5 and the pull-back φ∗L+ML of L to X satisfies

2L+M = φ∗L+ML(−E) (4.13)

for some effective divisor E in X which is contracted by φL+M : X 99K Ỹ . Fur-
thermore, the sections of 2L + M are pulled back from sections of L on Ỹ . In
particular,

h0(Yreg,Lreg) ≥ h0(X, 2L+M) = 10, (4.14)
where Lreg := L|Yreg .

Proof. Denote by D ⊂ X the curve φ−1
L+M (C) (that is, the mobile part of the

closed algebraic subset defined by the three equations α, β, γ of L + M on X
corresponding to the three sections of OY (1) defining C). We recall from [9, Proof
of Proposition 6.4] that, under our assumptions, the linear systems
W3 := H0(X,L+M)|D, W5 := H0(X, 2L+M)|D, W8 := H0(X, 3L+ 2M)|D
are of respective dimension 3, ≥ 5, ≤ 8. Then [9, Lemma 6.8] proves, using the
multiplication map

µ : W3 ⊗W5 →W8,

that these three linear systems are pulled back from linear systems W ′3, W ′5, W ′8 on
the curve C. By removing the base points, we may assume that the linear systems
W ′3, W ′5 and W ′8 have no base points on C. This defines a line bundle LC on C such
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that W ′5 ⊂ H0(C,LC) and has no base points. Note that W ′3 gives the embedding
of C as a plane curve.

Claim 4.17. One has W ′5 = H0(C,LC); equivalently, the line bundle LC on C has
degree 5.

Proof. We have a base-point-free not necessarily complete linear system W ′5 ⊂
H0(C,LC) of dimension ≥ 5 on C such that the image of the multiplication map

W ′3 ⊗W ′5 → H0(C,LC(1))

has rank ≤ 8. Up to taking a general vector subspace, we can assume dimW ′5 = 5.
Let x, y, z be three general points of C. Then the linear system W ′2,x,y,z of elements
of W ′5 vanishing on x, y and z has dimension 2 and the rank of the multiplication
map

W ′3 ⊗W ′2,x,y,z → H0(C,LC(1)(−x− y − z))
is at most 5, hence has a nontrivial kernel. By the base-point-free pencil trick, one
has H0(C,L−1

C (x + y + z)(1)) 6= 0, hence degL−1
C (x + y + z)(1) > 0 since x, y, z

are arbitrary. It follows that degLC < 6, hence degLC = 5 and the linear system
W ′5 is complete. �

We now conclude the proof of Lemma 4.16. As the rational map φ2L+M on
each curve D ⊂ X as above factors through the corresponding curve C ⊂ Y , there
exists a line bundle L on the chosen desingularization Ỹ of Y such that |L| has
no fixed components and φL ◦ φL+M = φ2L+M . As we already explained in the
proof of Lemma 4.8, the 10-dimensional linear system H0(X, 2L+M) has no fixed
component. This implies formula (4.13); the divisor E appears because a divisor
contracted by φL+M can appear in the fixed part of the linear system φ∗L+M |L|.
Equality (4.14) follows. Finally, as H0(Ỹ ,L) has no fixed component and C ⊂ Ỹ

is in general position, H0(Ỹ ,L)|C has no base point, hence L|C = LC , where LC
appears in Claim 4.17. It thus follows from Claim 4.17 that degL|C = 5. �

Lemma 4.16 indicates that if Y is a cubic hypersurface, it has a singular locus
which is of dimension at least 1. Indeed, if Sing Y is isolated, the general hyperplane
section Y ′ of Y is smooth, hence has Picard number 1 and thus any line bundle on
Yreg has degree divisible by 3 on the plane sections of Y ′. Going farther, we now
prove

Lemma 4.18. If Y is a cubic hypersurface, the singular locus of Y has dimension
at least 2.

Proof. Assume by contradiction that the singular locus of the cubic hypersurface
Y has dimension ≤ 1. The notation Lreg ∈ PicYreg being as in Lemma 4.16, we
prove

Claim 4.19. There exists a divisor D ⊂ Y which is a linear P3 ⊂ Y ⊂ P5 such
that

Lreg = OYreg(2)(−D).
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Proof. Let S ⊂ Y and H ⊂ Y be general linear sections of Y , with dimS = 2,
dimH = 3 and S ⊂ H. The surface S is thus smooth by our assumption and
contained in Yreg. Assume c1(L|S)2 ≥ 7. Then, denoting L′ := OYreg(2)⊗L−1

reg, the
line bundle L′S := L′|S satisfies

c1(L′S) ·KS = −1, c1(L′S)2 ≥ 7 + 12− 20 = −1; (4.15)

hence we have χ(S,L′S) ≥ 1 and it follows from the first equality in (4.15) that
h2(S,L′S) = 0, hence h0(S,L′S) 6= 0. Thus L′S = OS(∆S) for some line ∆S ⊂ S.
We now show that the lines ∆S for all S ⊂ Yreg fill-in only a divisor D in Yreg.
To see this, we observe that if C ⊂ S is a smooth plane section, the intersection
∆S ∩ C is a point x ∈ C that satisfies

OC(x) = L′|C .

It follows that x does not depend on S containing C. Fixing x and moving C
containing x, we finally conclude that, if a point x ∈ ∆S for some S, then x ∈ ∆S

for any S containing x. This proves the existence of the divisor D. This divisor
is then a P3, since it contains at least a 4-dimensional family of lines (indeed,
a given line is contained in a 4-dimensional family of surfaces S and there is an
8-dimensional family of surfaces S). Finally, we found that the divisor D ∼= P3 ⊂ Y
satisfies

L|S = ID(2)|S
for any smooth surface S ⊂ Yreg. It easily follows that Lreg = ID(2).

We next assume that c1(L|S)2 ≤ 5. Then, as |L|S | has no fixed part, it is nef
and we have h1(S,L|S) = 0, h2(S,L|S) = 0, since −KS is ample. Hence we have
in this case

h0(S,L|S) = 1 +
c1(L|S)2 − c1(L|S) ·KS

2 ≤ 6.

Comparing with (4.14), we get h0(Yreg,Lreg ⊗IS) ≥ 4, and considering as above a
general pair S ⊂ H ⊂ Y , we conclude that either

(1) h0(Yreg,Lreg(−1)) ≥ 2, or
(2) h0(Hreg,Lreg(−1)|Hreg) ≥ 3.

In the case (1), the divisor of a general section of Lreg(−1) has degree 2, hence
it is reduced by Bertini and there are two possibilities:

(a) The divisor of this section is the intersection Q3∩Yreg for some 3-dimensional
quadric Q3 ⊂ Y such that Q3 ∩ Yreg ∈ |Lreg(−1)|. There is then a residual P3 ⊂ Y
such that P3 + Q3 is a hyperplane section of Y and the lemma is also proved in
this case.

(b) The divisor of this section is the intersection with Yreg of the union D1 ∪D2
of two P3’s contained in Y such that (D1∪D2)∩Yreg ∈ |L(−1)| and dimD1∩D2 =
1. In fact, this case is impossible because the intersection of D1 ∪ D2 with a
general cubic surface S ⊂ Y as above is the disjoint union of two lines, hence is a
rigid divisor. It follows immediately that h0(Yreg,Lreg(−1)) ≤ 1, contradicting the
inequality (1).
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The case (2) is excluded as follows. We get that the divisor of a general section
of Lreg(−1)|Hreg has degree 2, hence it is reduced by Bertini and there are two
possibilities:

(a) There is a 2-dimensional quadric Q2 ⊂ H such that Q2∩Hreg ∈ |L|Hreg(−1)|.
But then h0(Hreg,Lreg(−1)|Hreg) ≤ 2, contradicting the inequality (2).

(b) There are two planes P, P ′ ⊂ H such that (P+P ′)∩Hreg ∈ |L|Hreg(−1)|. But
then we find as above h0(Hreg,L(−1)|Hreg) ≤ 1, contradicting the inequality (2).

The claim is thus proved. �

We now conclude the proof of Lemma 4.18. Let D ∼= P3 ⊂ Y be as in
Claim 4.19. We have h0(Yreg, ID(2)) = 11, while h0(X, 2L+M) = 10. The inclu-
sion H0(X, 2L + M) ⊂ H0(Yreg, ID(2)) given by Lemmas 4.16 and Claim 4.19 is
thus the inclusion of a hyperplane. Let HX ⊂ X be a general member of |L+M |,
that is, the inverse image φ−1

L+M (HY ), where HY ⊂ Y is a general hyperplane
section. Then H0(Yreg, IHY

⊗ ID(2)) = H0(Yreg, ID(1)) has dimension 2, hence it
intersects nontrivially the hyperplane H0(X, 2L+M) ⊂ H0(Yreg, ID(2)), providing
a nonzero section of the line bundle

(2L+M)⊗ IHX
= L

on X, which is excluded by the hypotheses of Theorem 4.2. The lemma is thus
proved. �

Proof of Proposition 4.14. Using Lemmas 4.18 and 4.15, the singular locus of a
cubic hypersurface Y = Imφ has dimension 2. We observe now that the arguments
in Lemma 4.18 involving smooth cubic surfaces appearing as general linear sections
of Y when dim(Sing Y ) ≤ 1 extend in a straightforward way if the general cubic
surface section has Duval singularities, which happens if the order of vanishing of
the defining equation fY of Y along any 2-dimensional component of its singular
locus is not 3 (see [7]). Indeed, we can work in that case with a crepant resolution
of singularities of these surfaces. However, if dim(Sing Y ) = 2 and fY vanishes to
order 3 along a component of Sing Y , Y is a cone over an elliptic curve in P2. This
case is excluded since Y would then have many reducible hyperplane sections. This
concludes the proof of Proposition 4.14. �

Proposition 4.20. Let X, L, M be as above. Then the image Y = φL+M (X)
cannot be a linearly nondegenerate threefold of degree 4 or 5 in P5.

Assuming by contradiction that Y is a threefold of degree 4 or 5, we first prove
the following lemmas.

Lemma 4.21. The threefold Y cannot be a cone π : Y 99K S over a surface S in
P4.

Proof. As in the proof of Lemma 4.5, this would indeed contradict Lemma 4.4 by
considering the composite map π ◦ φL+M : X 99K S. �
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Lemma 4.22. The threefold Y ⊂ P5 is not contained in a quadric of rank ≤ 4.

Proof. Indeed, Y would have otherwise many reducible hyperplane sections, con-
tradicting the fact that all members of |L+M | are irreducible. �

We now exclude the case of degree 4.

Lemma 4.23. The threefold Y cannot be of degree 4.

Proof. As Y is not a cone and is linearly nondegenerate, linearly normal in P5,
the Swinnerton-Dyer classification [28] tells us that Y is the complete intersection
of two quadrics in P5. In particular, Y contains a line through any of its points.
Furthermore, if Y is smooth, its family of lines is smooth and connected and Y
contains four lines through a general point y ∈ Y . Let ∆1, . . . ,∆4 be the four lines
through y. Then the ∆i are contained in the projectivized tangent space P3

y of Y
at y, and P3

y ∩Y k ∪i∆i, while by smoothness of Y , P3
y ∩Y has dimension 1; hence

we have in fact P3
y ∩ Y = ∪i∆i. The inverse images Si := φ−1

L+M (∆i) are then
cohomologous in X and their common class f satisfies

4f + e = (l +m)2

for some pseudoeffective class in X. This contradicts again Lemma 4.4. We now
consider the case where Y is singular and try to extend the argument above. We
still know that Y is swept-out by lines and that there exist at least four lines passing
through a general point of Y . Unfortunately, we do not know that the lines are
homologous or algebraically equivalent in Y , so the above argument fails. However,
we have the following

Sublemma 4.24. If Y = ImφL+M is the intersection of two quadrics in P5, there
are at most two algebraic equivalence classes of mobile lines in Y .

Proof. We first claim that the family of conics in Y has at most two irreducible
4-dimensional components whose general point parameterizes a conic passing
through the general point of Y . Indeed, Y is not swept-out by planes, as otherwise
it would have many reducible hyperplane sections, which is excluded. Hence we
can consider only the family of conics in Y which are not contained in a plane con-
tained in Y . But these conics are in bijection with planes contained in one quadric
Qt containing Y and not contained in Y . By Lemma 4.22, Y is not contained
in any quadric of rank ≤ 4. The family of planes in Qt thus has two irreducible
components of dimension 3 if Qt is smooth and only one, also of dimension 3, if Qt
is singular of rank 5. Thus the family of planes contained in one of the Qt has one
or two components, according to whether the double cover of the projective line
parameterizing the quadrics Qt containing Y determined by the choice of a ruling
is reducible or not. This proves the claim. Let now y ∈ Y be a general point. There
are (at least) four lines l1, . . . , l4 in Y passing through y, and the union of any two
of these lines is a conic in Y passing through y. Hence the cycles li + lj belong to
only two algebraic equivalence classes of 1-cycles in Y , and it follows immediately
that these four lines belong to at most two algebraic equivalence classes of 1-cycles
in Y . �
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Corollary 4.25. (i) There exists an algebraic equivalence class C of 1-cycles on Y
such that, through a general point y ∈ Y , there pass at least two lines of the class C.

(ii) There exist chains of three lines ∆1,∆2,∆3 ⊂ Y , ∆1∩∆2 6= ∅, ∆2∩∆3 6= ∅,
such that the ∆i pass through the general point of Y and the three lines ∆i are in
the class C.

Proof. Statement (i) immediately follows from Sublemma 4.24, since there pass
four lines through a general point of Y .

(ii) Given a general point y of Y , there are two lines ∆1, ∆2 in the algebraic
equivalence class C and passing through y. Choosing another point y′ ∈ ∆2, we
can choose a deformation ∆3 of ∆1 (hence also in the class C) passing through y′.
This gives the desired chain. �

Corollary 4.25 leads to a contradiction as follows: indeed the three lines ∆i

forming a connected chain are all contained in a mobile P3
∆• . Assume first that

P3
∆• ∩ Y is 1-dimensional; then we get, by taking inverse images in X, an equality

of codimension 2 cycles in X,

φ∗L+M (P3
∆• ∩ Y ) = T1 + T2 + T3 + T in A2(X), (4.16)

where T is the class of an effective surface in X and Ti = φ−1
L+M (∆i). As the three

lines ∆i are algebraically equivalent in Y , the three surfaces Ti are numerically
equivalent in X, and thus (4.16) contradicts Lemma 4.4. It remains to analyze
the case where P3

∆• ∩ Y has a 2-dimensional component for general ∆•. If this
component is mobile, then Y has many reducible hyperplane sections, which is
excluded. If this component is fixed, it must be a plane P ⊂ Y since it is contained
in the intersection of at least two P3’s, and this plane has the property that any
mobile line in Y in the algebraic equivalence class C intersects P . In that case, under
the linear projection πP : Y 99K P2 from P , Y maps to a curve of degree > 1 in P2,
since the fiber of the projection πP passing through the general point y contains at
least two lines and hence must be of dimension at least 2. Therefore Y has many
reducible hyperplane sections, which gives again a contradiction. Lemma 4.23 is
thus proved, hence also Proposition 4.20 in the case of degree 4. �

Proof of Proposition 4.20. By Lemma 4.23, we only have to exclude the case where
Y is a threefold of degree 5.

Claim 4.26. Y is not contained in a quadric.

Proof. If Y is contained in a quadric Q ⊂ P5, Q must have rank at least 5 by
Lemma 4.22. The general hyperplane section QH := Q ∩H of Q is then a smooth
quadric of dimension 3 which contains a surface of degree 5, contradicting the fact
that PicQH is generated by OQ(1). �

Denote by n : Yn → Y the normalization of Y . Thus Yn is smooth in codimen-
sion 1. For a general P3 ⊂ P5, the general section Cn := n−1(C), C := Y ∩ P3, of
Yn is a smooth connected curve. We denote by S a general hyperplane section of
Y , Sn ⊂ Yn its inverse image in Yn, and consider the inclusions Cn ⊂ Sn ⊂ Yn.
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Claim 4.27. The curve C ⊂ P3 is a smooth genus 2 curve of degree 5 (in particular
it is isomorphic to Cn). It is thus contained in a quadric.

Proof. The second statement follows from the first one, since it implies that
h0(C,OC(2)) = 9. Let τ : Ỹ → Yn be a desingularization, and let τ ′ := n ◦ τ . We
have

H0(Ỹ , τ ′∗OY (1)) ∼= H0(Yn, n∗OY (1)) ∼= H0(Y,OY (1)). (4.17)
Indeed, via the dominant rational map

τ ′
−1 ◦ φL+M : X 99K Ỹ ,

sections of τ ′∗OY (1) on Ỹ pull back to sections of L+M on X, while by construc-
tion, the pull-back map φ∗L+M : H0(Y,OY (1))→ H0(X,L+M) is an isomorphism.
We have

H1(Ỹ ,O
Ỹ

) = 0, (4.18)

since Ỹ is rationally dominated by X. Let S̃ := τ ′
−1(S) ⊂ Ỹ , so that S̃ ∈

|τ ′∗OY (1)|. By the vanishing (4.18), and using the relation (4.17), we conclude
that h0(S̃, τ ′∗OS(1)) = 5. Furthermore, we also have H1(S̃,O

S̃
) = 0, using (4.18)

and the fact that S̃ ⊂ Ỹ is big and nef. As Cn ⊂ S̃ belongs to |τ ′∗OS(1)|, we
conclude as before that, denoting OCn(1) := τ ′

∗OC(1),

h0(Cn,OCn
(1)) = h0(S̃, τ ′∗OS(1))− 1 = 4,

which implies that h1(Cn,OCn
(1)) = 0, hence g(Cn) = 2, since we know that the

line bundle OCn
(1) on Cn has degree 5. It follows that OCn

(1) is very ample on
Cn, hence Cn is isomorphic to C. �

We get a contradiction from Claims 4.26 and 4.27 by observing that both re-
striction maps

H0(P5, IY (2))→ H0(P4, IS(2)),

H0(P4, IS(2))→ H0(P3, IC(2))
are surjective. Indeed, the surjectivity in both cases is implied by the respective
vanishings H1(P5, IY (1)) = 0 and H1(P4, IS(1)) = 0, that come from the fact
that both Y ⊂ P5 and S ⊂ P4 are linearly normal (for the surface S, this follows
indeed from the arguments given in the previous proof). This concludes the proof
of Proposition 4.20. �
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[22] H.-Y. Lin, Lagrangian constant cycle subvarieties in Lagrangian fibrations, Int. Math. Res.
Not. IMRN 2020, no. 1, 14–24. MR 4050560.

[23] O. Martin, The degree of irrationality of most Abelian surfaces is 4, Ann. Sci. Éc. Norm.
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