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FAMILIES OF CONVEX TILINGS

RICHARD KENYON

Abstract. We study tilings of polygons R with arbitrary convex polygonal
tiles. Such tilings come in continuous families obtained by moving tile edges
parallel to themselves (keeping edge directions fixed). We study how the tile
shapes and areas change in these families. In particular we show that if R
is convex, the tile shapes can be arbitrarily prescribed (up to homothety).
We also show that the tile areas and tile “orientations” determine the tiling.
We associate to a tiling an underlying bipartite planar graph G and its corre-
sponding Kasteleyn matrix K. If G has quadrilateral faces, we show that K
is the differential of the map from edge intercepts to tile areas, and extract
some geometric and probabilistic consequences.

1. Introduction

In 1903 Dehn [2] showed that an a × b rectangle can be tiled with squares (of
not necessarily the same size) if and only if a/b is rational. Tutte [12] gave an anal-
ogous result for tilings of convex regions with equilateral triangles. These results
were generalized in [7] where we gave a correspondence between tilings with “hor-
izontal trapezoids” (trapezoids with two horizontal edges) and harmonic functions
on planar Markov chains. In a further generalization, with Scott Sheffield [8] we
discussed tilings with general convex polygons, relating them to Kasteleyn theory
and the Matrix-Tree Theorem.

In this paper we study families of tilings of polygonal regions with convex poly-
gons having fixed edge directions. We obtain new results regarding the space of
possible shapes of tiles and their possible areas. We also explore the connections
between tilings and the dimer model on the underlying bipartite graph.

1.1. Results. Our first result is illustrated in Figure 1. Given a convex tiling of
a convex polygon R and, for each tile t, a new copy t′ of t with the same edge
directions but of possibly different shape, we show (Theorem 3.1) that there is
a unique, up to homothety, “combinatorially equivalent” tiling (see below for the
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Figure 1. Combinatorially equivalent tilings in which one of the
tiles (shaded) has changed shape. The other tiles have changed
only by homothety. One can similarly change the shape of several,
or all, tiles, the remaining ones retaining their shape up to homo-
thety.

definition) of a new convex polygon R′, with homothetic1 copies of the new tiles.
A similar statement holds when R is not convex. This result is analogous to a
theorem about packings of strictly convex bodies due to Schramm [10]: see the
remarks after Corollary 3.3.

Another set of results involves the study of the tile areas and orientations for a
given tiling family. (We define “tile orientation” below—a tile has two orientations
and changes orientation if it undergoes a 180◦ rotation in the plane.) Figure 2
shows two combinatorially equivalent tilings with corresponding tiles having the
same areas. Notice that the small triangle has its orientation flipped from one
tiling to the next.

It is a remarkable fact about rectangle tilings of a rectangle that one can find for
any tiling a combinatorially equivalent rectangle tiling with any tuple of positive
areas [13]. Moreover, for prescribed areas the set of equivalent rectangle tilings is in
bijection with a set of st-orientations (acyclic orientations with a unique source and
sink) of a related graph; see [1]. These statements seem to hold only for rectangle
tilings; for other families of convex tilings, like the one illustrated in Figure 2, the
situation is more complicated. We show (Theorem 4.1) that for a given tuple of
areas and orientations there is at most one tiling. Furthermore, if the underlying
bipartite graph (see below) has quadrilateral faces, the set of feasible areas for a
given choice of orientations is either empty or topologically a ball of full dimension
d = (# of tiles)− 1 (see Corollary 4.3).

1Here and in the rest of the paper by homothety we mean scaling by a real number, allowing
positive and negative homotheties (which are positive homotheties followed by rotation by π),
and also, in degenerate cases, zero homotheties which scale a tile down to a point.
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Figure 2. Combinatorially equivalent tilings with corresponding
tiles of the same area.

If however we generalize the notion of tiling to “homology tiling” (which is
defined via a winding number condition), we have a cleaner statement: given any
tiling of a convex polygon R and a new tuple of areas, summing to the area of R,
there is a unique combinatorially equivalent homology tiling of R with the new
areas and the same tile orientations; see Theorem 4.4. Since for rectangles any
homology tiling is an actual tiling, this generalizes the above. We furthermore
conjecture that if no two interior edge directions are parallel, there is a unique
homology tiling of R for any choice of areas and orientations; see Conjecture 4.5
and Figure 8.

1.2. Definitions. By a tiling of a region R ⊂ R2 we mean a covering of R with
convex polygons, with nonintersecting interiors, as in Figure 1. We do not require
the tiles to line up edge-to-edge. In fact in this figure there are no interior vertices
where every tile which meets that vertex, meets at one of its corners: we will
consider such a vertex to be degenerate. We take the point of view that such a
vertex (if in the interior) is a degeneration of a tiling with one more tile, located
at that vertex, which has shrunk to a point, as in Figure 3. Similarly, if multiple
tiles meet at a corner of R, each tile meeting at one of its corners, then we consider
such a tiling to be a degeneration of a tiling of a polygon R′ having an extra edge
or edges at that corner, whose lengths have gone to zero, as in Figure 4. This point
of view on degeneracies is slightly unusual, but as we vary tilings in families such
degeneracies are natural. In a nondegenerate tiling, each vertex of a tile is at a
‘T’ (or a T with several legs, as for the lower middle vertex in the right panel of
Figure 6), except for the convex corners of R. These tilings are called “t-graphs”
in [8].

Associated to a (nondegenerate) tiling is a bipartite planar graph G. It has a
white vertex for each tile, a black vertex for each maximal line segment in the tile
boundaries, and an edge for an adjacency; see Figure 5. Note that some black
vertices correspond to edges of the boundary of the tiled region; we’ll call these
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Figure 3. A tiling with a degenerate tile, and a nearby nonde-
generate tiling.

Figure 4. A degenerate tiling, and a nearby nondegenerate tiling.

Figure 5. Bipartite graph (green) associated to a convex tiling.
Two tilings of R are combinatorially equivalent if they have the
same underlying bipartite graph with the same boundary identifi-
cations.
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boundary vertices. Each quad face of G corresponds to a ‘T’ in the tiling: two
segments meet, one of which ends in the interior of another. Bounded faces of
higher degree in G correspond to T’s with multiple legs: two or more segments end
at an interior point of another segment.

We call two tilings combinatorially equivalent if their graphs are isomorphic
respecting boundary vertices, that is, there is an isomorphism fixing the boundary
vertices pointwise, by which we mean fixing which edge of the boundary polygon
they correspond to.

To encode the tiling completely (up to translation), we can record, for each edge
e = wb of the bipartite graph G, the edge vector in C giving the counterclockwise
boundary edge of tile w as a subset of segment b. This turns G into a bipartite
network, that is, an edge-weighted bipartite graph, with complex weights.

1.3. Connections with dimers and the Kasteleyn matrix. As we vary the
shapes of tiles in the family of combinatorially equivalent tilings, we can record the
areas as functions of the edge intercepts. If bounded faces of G are quadrilateral,
we show (see Section 4.2) that the map Ψ from edge intercepts to tile areas has
differential DΨ = K, where K is a Kasteleyn matrix, a matrix whose maximal
minors count perfect matchings of the underlying graph G. This observation, along
with the reconstruction of a tiling from a graph given in [8] (Theorem 3.2 below)
allows us to realize the Kasteleyn matrix of a bipartite planar graph (with quad
faces), up to gauge equivalence, as the differential of a mapping. Some geometric
and probabilistic implications of this fact are given in Section 4.2 and Theorem 4.2.

Acknowledgments. We thank Aaron Abrams, Sebastien Franco, Gregg Musiker,
Jim Propp, David Speyer and Lauren Williams for comments and discussions on
this project.

2. Background on dimers

We recall here background on the dimer model; see further details in [6]. A dimer
cover, or perfect matching, of a graph G is a collection of edges with the property
that each vertex is the endpoint of a unique edge in the collection. If ν = {νe}e∈E
is a positive edge weight function on G, we can associate to each dimer cover m a
weight ν(m) =

∏
e∈m νe.

Kasteleyn [4] showed how to compute the weighted sum of dimer covers of any
planar graph. When G is bipartite and planar, this sum is the determinant of a
Kasteleyn matrix for G, defined as follows. Let K = (Kw,b)w∈W, b∈B be a matrix
with rows indexing white vertices and columns indexing black vertices and

Kw,b =
{
cwbνwb if w ∼ b,
0 otherwise,

where cwb is a complex number of modulus 1 with the property that the alternating
product of c’s around a bounded face of length 2` is (−1)`+1. Here by alternating
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product around a face w1, b1, w2, . . . , w`, b` we mean the first, divided by the second,
times the third, and so on:

cw1b1cw2b2 . . . cw`,b`

cw2b1 . . . cw1b`

= (−1)`+1.

Theorem 2.1 (Kasteleyn [4]). Let K be a Kasteleyn matrix for a planar bipartite
network G. Then

Z :=
∑

dimer covers m
ν(m) = |detK|.

Any two choices K,K ′ of Kasteleyn matrix for G are diagonally equivalent:
K ′ = DWKDB , where DB , DW are diagonal matrices with diagonal entries of
modulus 1. In Kasteleyn’s original formulation the complex signs were just ±1;
any Kasteleyn matrix with complex signs is diagonally equivalent to one with real
signs.

Given two edge weight functions ν, ν′ on G we say they are gauge equivalent if
there is a (nonzero) function f on vertices such that ν′wb = νwbf(w)f(b). Gauge
equivalent weights give rise to the same probability measure on dimer covers, where
a dimer cover has probability proportional to its weight (under a gauge equivalence,
the constant of proportionality will change but not the probability).

Edge weight functions ν, ν′ are gauge equivalent if their Kasteleyn matrices
are diagonally equivalent (with diagonal matrices DB , DW with diagonal entries
f(b), f(w) respectively). Edge weight functions ν, ν′ are gauge equivalent if and
only if they have the same face weights, where the face weight Xf of a (bounded)
face f with vertices w1, b1, . . . , b` is

Xf = νw1b1νw2b2 . . . νw`,b`

νw2b1 . . . νw1b`

.

Given an arbitrary set of positive face weights Xf , it is easy to construct a
corresponding edge weight function giving rise to those face weights. So the set of
equivalence classes of edge weights is globally parameterized by (R+)F , where F is
the set of bounded faces of G.

We note that the gauge transformations for the edge weights and edge signs
are essentially the same operation: multiplying on the left and right by either a
positive real diagonal matrix or a diagonal matrix of complex numbers of modulus 1.
Therefore we can combine these two operations into a single one. We say two
Kasteleyn matrices K,K ′ are gauge equivalent if they are diagonally equivalent
via (nonsingular) complex-valued diagonal matrices. Gauge equivalent Kasteleyn
matrices correspond to the same probability measure on dimer covers.

3. All shapes are possible

3.1. Space of shapes of a tile. Given a convex polygon t, let Ct be the space of
convex polygons with the same number of edges and the same edge directions (in
the same cyclic order), up to a global sign, and up to translation. The space Ct
naturally has a linear structure: if t has edges z1, . . . , zn in counterclockwise order
then any other tile in Ct will have edges a1z1, . . . , anzn for reals ai, all of the same
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sign: all positive or all negative, subject to the linear condition
∑
aizi = 0. If we

parameterize Ct with the n-tuple (a1, . . . , an), it is naturally the interior of a cone
in an (n − 2)-dimensional real vector space Vt. More precisely, Ct is the union of
two open convex cones which are negatives of each other: C+

t consists of those tiles
in which ai > 0, and C−t of those in which ai < 0. These two cones are called the
two orientations of t. For convenience we also add the origin to Ct since as we vary
tiles in families we sometimes have to deal with the case where a tile shrinks to a
point and then moves into the other orientation.

The vector space Vt in which Ct sits has another natural linear coordinate sys-
tem, using the intercepts of the lines defining the edges of t; see Section 4.2 below.

3.2. Space of shapes of a tiling. Given a convex tiling T = ∪w∈W tw of a
polygon R, let us consider the set CT = CT (R) of combinatorially equivalent tilings,
in which each tile has the same edge directions, up to sign, as the corresponding tile
of T . Note that CT also has a linear structure: an element of CT is determined by
the shapes of its individual tiles, so CT lies inside the product

∏
w Ctw ⊂

∏
w Vtw ,

and is defined by the linear conditions that certain sums of edge vectors are zero:
around each interior black vertex of G there is one such condition, and for each
boundary edge the sum of tile edge vectors equals the vector of the corresponding
edge of R.

The space CT has a natural subdivision into regions CT (σ) where the individual
tiles have fixed orientations: σ ∈ {−1, 1}k corresponds to a choice of orientation for
each tile. Each subset CT (σ) is either empty or a convex polytope: given any two
tilings T1, T2 ∈ CT (σ) then any convex combination of T1 and T2 is also a tiling of
CT (σ). The full space CT is not typically convex, however. These polytopes CT (σ)
are glued in CT along parts where one or more tiles degenerate to points.

3.3. Kasteleyn matrix. Let T = ∪w∈W tw be a tiling of a convex polygon R, and
let G be the associated bipartite network. We note that G has n − 1 more black
vertices than white vertices, where n is the number of edges of R. This fact follows
from an Euler characteristic argument: the tiling divides R into |W | open 2-cells,
|B| open line segments and n vertices. By the Euler characteristic,

χ(R) = 1 = |W | − |B|+ n.

We let Bint be the interior black vertices, and B∂ the boundary vertices. Thus
|W | = |Bint|+ 1.

Let K be the weighted bipartite adjacency matrix of G; K has rows indexing
the white vertices (tiles of T ) and columns indexing the black vertices (maximal
segments in the tile boundaries). The entry Kw,b is the complex number giving the
vector of the edge of tile w in direction b, oriented counterclockwise around the tile
boundary.

Note that K is a Kasteleyn matrix for G, in the sense that the alternating
product of edge weights around any face of G is real with sign (−1)`+1, where 2`
is the degree of the face (the number of edges on its boundary). See Figure 6 for
the proof of this fact.
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Figure 6. In the first panel, the lower central vertex in blue cor-
responds to the green quadrilateral face of G, with edge weights
a, b, c, d. We have ac

bd < 0, since a, d point in the same direction and
b, c in opposite directions. Similarly, in the second panel the lower
central vertex corresponds to a hexagonal face; we have ace

bdf > 0.

It is a bit harder to see that K has full rank |W |, but this is important. That
K has full rank follows from Kasteleyn’s theorem, Theorem 2.1. We simply need
to show that, once we remove all but one of the black boundary vertices from G,
the new graph G′ has at least one dimer cover. This is a surprising fact since it
relates a geometric property (of being a convex tiling) to a combinatorial one. We
can prove this is as follows. Rotate R so that one boundary edge b0 is horizontal.
Rotate further by a very small positive amount so that each tile w has a unique
vertex vw with lowest y-value. Since vw is a ‘T’, exactly one of the two edges of
face w meeting at vw has vw as its lower endpoint; match w to the black vertex
corresponding to this edge. The leftmost face containing b0 along one of its edges
is matched to b0. This concludes the proof that K has maximal rank |W |.

3.4. From tiling to tiling.

Theorem 3.1. Given a tiling T = ∪tw of a convex polygon R and, for each tile tw,
a new tile t′w in Ctw , there is a unique (up to homothety) combinatorially equivalent
tiling S = ∪sw of a convex polygon R′ ∈ CR, where sw = awt

′
w is a homothetic

copy of t′w, and where each aw ∈ R can be positive, zero or negative.

Proof. In order to make a tiling out of the tiles awt′w, the reals {aw} must satisfy
a linear relation around each interior segment, that is, at each non-boundary black
vertex b ∈ Bint. More precisely, let K be the Kasteleyn matrix associated to T ,
and let K ′ be the matrix obtained from K by replacing the row for tw by the
corresponding row for t′w (that is, the row with the same nonzero entries, but these
corresponding to the edge vectors of t′w instead of tw). The equation on the {aw} is∑
w awK

′
wb = 0 for non-boundary vertices b. Since K ′ still has full rank |W |, and

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



FAMILIES OF CONVEX TILINGS 95

|Bint| = |W |− 1, there is a unique solution vector (aw)w∈W up to scale. Since each
column of K ′ has a constant argument, the unique solution can be chosen real.

It remains to see that this solution defines a tiling. Let G∗ be the dual graph
of G, without the external vertex. We glue in a disk for each bounded face of G∗
(each non-boundary vertex of G) to make a topological disk D in which G∗ is
embedded. The initial tiling defines a continuous map from D to R which collapses
each black face of G∗ to a segment, and maps each white face to the corresponding
tile in an orientation-preserving fashion. We can deform the tiles tw continuously
from their initial values (since the space of shapes C̄t of each tile is connected);
along the deformation the map from D remains orientation-preserving, sending
the boundary of D homeomorphically to the boundary of R′ and preserving the
boundary orientation. The orientation of the mapping is preserved even if the
individual tiles change their tile-orientation (which rotates a tile by π, but preserves
its orientation as a map), and the mapping is surjective to R′, so defines a tiling. �

If R is initially not convex, the same argument works, but since each boundary
edge of R will have its length adjusted to make R′, this might result in R′ being
self-intersecting; nonetheless there is at least a locally injective tiling of R′.

3.5. From a graph to a tiling. Suppose we are just given the planar bipartite
graph G with positive edge weights {νwb}, and a convex polygon R, along with a
cyclic identification of the black boundary vertices of G with the edges of R. Then
under a certain nondegeneracy condition there is an associated tiling. We say G
is 2-nondegenerate if every pair of edges having distinct endpoints (at most one of
the four of which is a boundary vertex) can be completed to a dimer cover of G
using exactly one of the boundary vertices. For example, if G has a degree-2 vertex
it is not 2-nondegenerate. See Figure 7 for another 2-degenerate example. There
exists a tiling under these conditions:

Theorem 3.2 ([8]). Suppose G, R are as above and G is 2-nondegenerate. Then
there is a unique gauge equivalent choice of edge weights and a unique tiling of R
with those edge weights.

Proof. See [8] for the complete proof. We’ll give the construction (and prove
uniqueness) here. Let q1, . . . , qn ∈ C be the counterclockwise boundary edges of R.
Let K be a Kasteleyn matrix for G. We need to find diagonal matrices DW , DB so
that K ′ = DWKDB defines the tiling, that is, K ′1B = 0 and 1WK ′ is the vector
which is zero on internal black vertices and qi on the ith boundary black vertex.
(Here 1B and 1W are the “all-1s” vectors.) The solution is given in three linear
algebraic steps.

First, find a nonzero vector vW so that vWK is zero on Bint. Since K restricted
to Bint has full rank and has one more row than column, there is a unique solution
up to scale. Define DW to be the diagonal matrix with entries of vW .

Second, for b ∈ B∂ , the sum of the bth column of DWKDB needs to add to qi;
this determines (DB)b,b.
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Figure 7. A graph which contains a subgraph as shown (which is
connected to the rest of the graph only via the three black corner
vertices) is 2-degenerate; for example, no dimer cover contains
both blue edges, since the three black vertices have among them
only two remaining neighbors. In any tiling with this graph the
tiles for the three white vertices will be reduced to segments. If
we swap the colors W ↔ B, however, then a nondegenerate tiling
may exist, but in any such tiling the tiles for the four white vertices
will have convex union.

Finally, the remaining |Bint| entries of DB are determined by the linear equations
KDB1B = 0. (Here there is one more equation than variable, but since the sum of
each column is zero the last equation is a consequence of the previous ones).

The fact that K ′ determines an actual tiling is a consequence of the maximum
principle: we refer the reader to [8]. The 2-nondegeneracy implies that white tiles
do not degenerate to segments. �

Since the edge weights modulo gauge are described by the face weights {Xf},
we have the following.

Corollary 3.3. For fixed convex R and 2-nondegenerate G, the space of (G, R)-
tilings is homeomorphic to RF+, with global coordinates provided by the face weights.

A somewhat stronger variant of Theorem 3.1 above is as follows. Let G be a bi-
partite graph satisfying the conditions of Theorem 3.2, and for each white vertex w
choose a convex k-gon tw (where k is the degree of w), under the constraint that if
two white vertices have a black neighbor in common then the corresponding edges
(corresponding to the adjacencies with the black vertex) have the same direction
up to sign. Suppose moreover that the directions of the boundary black vertices
can be oriented so that as one moves counterclockwise around the boundary of G,
they turn once around, that is, there is a convex polygon with those edge directions
in cyclic order. Then there is a tiling of a convex polygon with the combinatorics
of G in which for each white vertex w the corresponding tile is homothetic to tw.
This is a tiling analog of the theorem of Schramm [10]: Schramm’s result gives
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a packing of given strictly convex sets (up to homothety) with a given adjacency
graph; our theorem gives a tiling with given convex polygons (up to homothety) and
given underlying graph. The analogy is not perfect, however, since the underlying
adjacency graphs play different roles.

4. Areas and the Kasteleyn matrix

4.1. The area form. Recall the cone Ct ⊂ Vt of convex polygons with edge
directions in the directions of a convex polygon t. On Ct there is a quadratic
form qt giving the area of the polygon. It is a homogeneous quadratic function of
the edge lengths, which can be defined on all of Vt. By a theorem of Thurston [11], it
has signature (1, n−3) when t is a (convex) n-gon. In particular, if we consider the
subset of Ct of polygons of fixed area A > 0, it consists of two disjoint hyperboloid
components H+ and H−, one for each of the two different orientations of t.

Theorem 4.1. Let T be a nondegenerate convex tiling of a convex polygon R and
consider the space of combinatorially equivalent tilings of R with the same edge
directions and the same tile orientations. Then for a given set of tile areas there
is at most one tiling.

Proof. Suppose there are two combinatorially equivalent tilings T1, T2 of R having
the same tile orientations σ and the same tile areas. Recall that CT (σ) is convex.
Consider the tiling sT1 + (1 − s)T2, where T1, T2 ∈ CT (σ) and s ∈ [0, 1]. If tiles
t1, t2 ∈ Ct have the same area and orientation then a convex combination st1 +
(1− s)t2 has area which is a strictly concave function of s (the line segment joining
t1 and t2 lies on one side of the hyperboloid component H). In particular, the area
for s ∈ (0, 1) is larger than the area at the endpoints. It is impossible that all tile
areas increase, since the boundary is fixed. Therefore the areas of corresponding
tiles of T1 and T2 cannot be all equal, unless T1 = T2. Thus the areas are uniquely
determined by R and σ. �

4.2. The Kasteleyn matrix as differential. For a line ax+ by = c let us define
the intercept to be the signed distance from the line to the origin: ±c/

√
a2 + b2,

with the sign depending on which side the origin is on (chosen arbitrarily).
Let T be a tiling of a convex polygon R, whose underlying graph has quad faces.

The space CT can be uniquely parameterized by the intercepts {ib} for b ∈ Bint,
that is, CT ⊂ RBint .

Let us consider a slightly larger space: fix the outer polygon R except for one
edge b0 of R, whose intercept we allow to vary. Let B0 = Bint ∪ {b0}. As noted
earlier, |B0| = |W |. We can redefine CT ⊂ RB0 to be this larger space. Let
CT (σ) ⊂ CT be the corresponding subset with fixed tile orientations.

Let Ψ: CT → RW be the map from intercepts {ib}b∈B0 to tile areas {Aw}w∈W .
It is a quadratic function, that is, each area is a quadratic function of the intercepts.
From our definition of intercepts, the differential DΨ satisfies ∂Aw/∂ib = ±|Kw,b|,
that is, plus or minus the length of the edge of face w in direction b. The sign here
depends on which side of the edge the face is on. This matrix DΨ = (±|Kw,b|) is
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in fact gauge equivalent to K: Kw,b = ±eiθb(DΨ)w,b, where θb is the direction of
edge b and the sign depends only on b.

Thus we see that KΨ := DΨ is a Kasteleyn matrix for G which is also the
differential of the map Ψ.

The inverse K−1
Ψ is the differential of the map Ψ−1 from areas to intercepts. Let

G0 be the graph obtained from G by removing all black boundary vertices except b0.
Dimer covers of G0 are counted by |detKΨ|. We can use K−1

Ψ to relate the tiling
geometry to the edge probabilities of a random dimer covering of G0, as follows.
The probability of edge wb is K(w, b)K−1(b, w) (and this quantity is independent
of choice of gauge); see [5]. The fact that the probability is positive means that
∂Aw

∂ib
and ∂ib

∂Aw
have the same sign. This implies that if we increase the area of a

tile t by a small amount, keeping the other tile areas fixed, then each edge of t
moves outward, as if we were blowing air into the tile. The probability pwb is the
relative proportion of area along b which swept out as Aw increases (and ib moves
outwards).

For multiple edges we can also draw a geometric conclusion. Given two edges
w1b1 and w2b2 of G, suppose the signs of the intercepts are chosen so that Kw1,b1 ,
Kw2,b2 > 0. The probability of the pair of edges w1b1 and w2b2 is (see [5])

K(w1, b1)K(w2, b2) det
(
K−1(b1, w1) K−1(b2, w1)
K−1(b1, w2) K−1(b2, w2)

)
.

The fact that this is positive implies that if we vary only the areas Aw1 , Aw2 , keeping
other areas fixed, the map from those areas to the intercepts ib1 , ib2 is orientation-
preserving. This is because the above determinant is the Jacobian of the map from
areas Aw1 , Aw2 to intercepts iw1 , iw2 . Consequently, for example, if dAw1 + βdAw2

is a perturbation of areas which fixes ib1 , and β > 0, then it increases ib2 (and if
β < 0, it decreases ib2).

Here is another application.

Theorem 4.2. Ψ is a diffeomorphism from CT (σ) onto its image.

Proof. The differential of the map from intercepts to areas is the Kasteleyn matrix
KΨ and thus has nonzero determinant. Therefore Ψ is locally a diffeomorphism.
Injectivity follows from Theorem 4.1 above. �

Since CT (σ) is an open polytope, we have:

Corollary 4.3. For a family of tilings with fixed tile orientations σ, and whose
underlying graph G has quad faces, the set of possible areas Ψ(CT (σ)) is homeo-
morphic to a ball of dimension d = # tiles− 1.

Without the hypothesis on quad faces the dimension of CT is smaller, so it is
not clear what the corresponding statement should be.

4.3. Homology tilings. For a convex tile t recall that Vt ∼= Rn−2 is the vector
space of closed polygonal paths with edges in the direction (up to sign) of the edges
of t. We call such closed paths “homology tiles”; they may be self-intersecting. On
Vt let qt be the area form: the integral of x dy over the closed path. Recall that
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qt has signature (1, n− 3). We let V +
t , V

−
t be the two disjoint subsets of Vt where

qt > 0. These are interiors of cones; each V ±t contains one of the two components
of Ct.

Let T be a convex tiling of a convex polygon R, whose underlying graph has
quad faces. We can parameterize CT = CT (R) using the intercepts ib ∈ R. In
order for a tiling to exist the ib must satisfy certain inequalities. If the ib fail to
satisfy those inequalities we say we have a homology tiling. That is, the space of
homology tilings is just the space RBint allowing the intercepts to take arbitrary
real values.

A homology tiling can be characterized in terms of winding numbers: for a
point p in general position inside R, the sum of winding numbers of the homology
tiles t around p is 1, and for a point p in general position outside R, the sum of
winding numbers is 0. (This can be proved by showing that the sum of winding
numbers for a point remains constant when an intercept line passes across the
point.)

We define VT ⊂ RBint to be those homology tilings whose tiles have positive
area. On RBint , a choice of orientation σ for the tiles cuts out a convex region
VT (σ) ⊂ VT , where individual homology tiles have fixed orientation.

Theorem 4.4. Let T be a convex tiling of a convex polygon R, whose underlying
graph has quad faces. Let (A1, . . . , A|W |) be a collection of positive reals summing
to the area of R. Then there is a unique combinatorially equivalent homology tiling
of R such that tile w has area Aw and the same tile orientation as the original tile.

Proof. VT (σ) is a convex set cut out by a finite number of cones. If VT (σ) is
nonempty, it is bounded: if it were unbounded then by going to ∞ along a line
parallel to the boundary, some tile area would tend to∞, contradicting the property
that the sum of the areas equals the area of R.

For fixed positive {Aw}, the function Q({ib}) =
∑
w Aw log qw is a concave and

analytic function on VT (σ) and tends to −∞ on the boundary, and so has a unique
critical point. At the critical point,∑

w

Aw
qw

∂qw
∂ib

= 0,

that is ∑
w

Aw
qw

Kw,b = 0

or (
Aw
qw

)
∈ kerK∗,

the left kernel of K restricted to Bint. But recalling that kerK∗ contains 1W , if
the kernel is of dimension 1 then qw = sAw (for a global scale factor s) and we are
done.

Generically in RBint , kerK∗ is of dimension 1: this is true for the original tiling
and nearby, so true on a Zariski dense set. So kerK∗ is of dimension strictly larger
than 1 only on a hypersurface X defined by detKw0 = 0, the determinant of K
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Figure 8. The 8 homology tilings of a triangle R (the triangle in
blue) with areas equal to those of the first tiling.

when we remove row w0 (since 1W is in the left kernel of K, all maximal minors
are equal, so X has no dependence on the choice of w0.) For generic areas kerK∗
is thus one-dimensional. The proof now follows by compactness of VT , taking a
limit of solutions with generic areas. �

Conjecture 4.5. Let T be a convex tiling of a convex polygon R, with the prop-
erty that no two internal edges are parallel, and the underlying graph has quad
faces. Then for any choice of tile orientations σ ∈ {1,−1}W there exists a unique
homology tiling of R or −R such that tile w has positive area and orientation σw.

In Figure 8 we can see 8 out of the 16 possible solutions for a given set of areas
(the other 8 are obtained by rotation of these by π).

If some edges are parallel, then apparently some of these solutions “go to infinity”
and we have fewer than 2W tilings. For example in the rectangle tiling case, we
get significantly fewer, as discussed previously and in [1].

If all tiles are quadrilaterals, VT is defined by a hyperplane arrangement; in this
case bounded regions in the complement of the hyperplanes correspond bijectively
to orientations for which there is a homology tiling.
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