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ON CONFORMALLY COMPACT EINSTEIN MANIFOLDS

SUN-YUNG A. CHANG AND YUXIN GE

Abstract. We survey some of the recent developments in the study of the
compactness and uniqueness problems for some classes of conformally compact
Einstein manifolds.

1. Introduction

Let Xd be a smooth manifold of dimension d ≥ 3 with boundary ∂X = M .
A smooth conformally compact metric g+ on X is a Riemannian metric such that
g = r2g+ extends smoothly to the closure X for some defining function r to the
boundary ∂X in X. A defining function r is a smooth non-negative function on
the closure X such that ∂X = {r = 0} and the differential Dr ̸= 0 on ∂X.
A conformally compact metric g+ on X is said to be conformally compact Einstein
(CCE) if, in addition,

Ric[g+] = −(d − 1)g+,

where Ric denotes the Ricci curvature. The most significant feature of a CCE
manifold (X, g+) is that the metric g+ is canonically associated with the conformal
structure [ĝ] on the boundary at infinity ∂X, where ĝ = g|T ∂X . (∂X, [ĝ]) is called
the conformal infinity of a conformally compact manifold (X, g+). It is of great in-
terest in both the mathematics and theoretical physics communities to understand
the correspondences between conformally compact Einstein manifolds (X, g+) and
their conformal infinities (∂X, [ĝ]), especially in the study of the AdS/CFT corre-
spondence in theoretical physics (see Maldacena [31, 32, 33] and Witten [36]).

For a CCE manifold, given any conformal infinity h and for any defining func-
tion r, we always have |∇gr| ≡ 1 on M . In fact, it is known that the full Riemann
curvature tensor Rm[g+] of the metric g+ has the asymptotic expansion near the
infinity, for all 1 ≤ i, j, k, l ≤ d,

Rmijkl[g+] = −|∇r(x)|2g((g+)ik(g+)jl − (g+)il(g+)jk) + O(r−3),
which yields the above claim. A conformally compact metric g+ on X is called
asymptotically hyperbolic (AH) if, in addition, |∇gr| ≡ 1 on M ; thus any CCE
manifold is AH. Moreover, in any CCE manifold, given any conformal infinity h
there exists a special defining function r, which we call geodesic defining function,
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such that |∇gr| ≡ 1 in an asymptotic neighborhood M ×[0, ϵ) of M and r2g+|T M =
h.

Applying properties of the geodesic defining functions, we have nice asymptotic
expansions for the compactification metrics of CCE manifolds. It turns out the
asymptotic behaviors of the metrics are slightly different when the dimension d is
even or odd.

When d is even, the asymptotic behavior of the compactified metric g of a CCE
manifold (Xd, g+) with conformal infinity (Md−1, [h]) [18, 17] takes the form

g := r2g+ = dr2 + gr

= dr2 + h + g(2)r2 + · · · (even powers) + g(d−1)rd−1 + g(d)rd + · · ·
(1.1)

on an asymptotic neighborhood M × (0, ϵ), where r denotes the geodesic defining
function of g. The g(j) are tensors on M , and g(d−1) is trace-free with respect to
a metric in the conformal class on M . For j even and 0 ≤ j ≤ d − 2, the tensor
g(j) is locally formally determined by the conformal representative, but g(d−1) is a
non-local term which is not determined by the boundary metric h, subject to the
trace-free condition.

When d is odd, the analogous expansion is

g := r2g+ = dr2 + gr

= dr2 + h + g(2)r2 + · · · (even powers) + g(d−1)rd−1 + krd−1 log r + · · · ,
(1.2)

where now the g(j) are locally determined for j even and 0 ≤ j ≤ d − 2, k is
locally determined and trace-free, the trace of g(d−1) is locally determined, but the
trace-free part of g(d−1) is formally undetermined.

We remark that h together with g(d−1) determine the asymptotic behavior of g
[17, 2].

In this paper, we will first briefly survey some of the recent development in this
research area. We will then describe a series of joint works: one by the autors of this
paper [7], one by us and Jie Qing [8], and a third one by us, Jie Qing and X. Jin [9];
in them, we address the issues of compactness of sequences of CCE manifolds for
some classes of such manifolds, and we also address the unique filling-in problems
for the class of CCE manifolds constructed earlier by Lee and Graham [21].

2. Basics and a short survey

Some basic examples.
Example 1. A model case of a CCE manifold is the hyperbolic ball Bd with the
Poincaré metric gH := 4

(1−|x|2)2

∑d
i=1 dx2

i , where |x| :=
√∑d

i=1 x2
i is the usual

euclidean norm of x = (x1, . . . , xd) ∈ Bd = {y ∈ Rd : |y| < 1}. In this case, when
the metric in the conformal infinity is h = 1

4 gc, where gc denotes the standard metric
on the (d−1)-dimensional sphere Sd−1, the associated geodesic defining function is
r(x) = 1−|x|

1+|x| . The metric gr in the expansion (1.1) above is gr(x) = (1 − r(x)2)2h.
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Example 2. Another class of examples of CCE manifolds was constructed by Gra-
ham and Lee in 1991 [21], where they proved that metrics in a small C2,α neigh-
borhood of the standard metric gc on Sd−1 are allowed as the conformal infinity of
some CCE metrics on the unit ball Bd when d ≥ 4.

Example 3. The AdS-Schwarzschild space (R2 × S2, g+
m), where m is any positive

number and

g+
m = V dt2 + V −1dr2 + r2gc,

with V = 1 + r2 − 2m
r , t ∈ S1(λ), gc the surface measure on S2, r ∈ [rh, +∞),

and rh the positive root of 1 + r2 − 2m
r = 0. It turns out that in this case there

are two different values of m such that both g+
m are conformal compact Einstein

fillings for the same boundary metric S1(λ) × S2. This is the famous non-unique
filling-in example of Hawking and Page [26].

Existence and non-existence results.
The most important existence result is the ambient metric construction by Fef-

ferman and Graham [15, 17]. As a consequence of their construction, for any given
compact manifold (Md−1, h) with an analytic metric h, some CCE metric exists
on some tubular neighborhood Mn × (0, ϵ) of M . This result was later extended
to manifolds with smooth metrics by Gursky and Székelyhidi [25].

As we have mentioned before, a perturbation result of Graham and Lee [21]
asserts that in a neighborhood of the standard metric gc on Sd−1, there exists a
conformal compact Einstein metric on Bd with any given conformal infinity h.

Recent results of Gursky and Han [23] and of Gursky, Han and Stolz [24] showed
that when X is spin and of dimension 4k ≥ 8, and when the Yamabe invariant
Y (M, [h]) > 0, there are topological obstructions to the existence of a CCE metric
g+ defined in the interior of X with conformal infinity given by [h]. The basic idea
is to adapt the classical Lichnerowicz result on the vanishing of the Â-genus for
spin manifolds of positive scalar curvature. Indeed, suppose g+ is a CCE filling-in
of [h]; then one can use the compactification of Lee to obtain a metric g = r2g+ with
positive scalar curvature which is smooth up to the boundary, and such that M is
totally geodesic with respect to g. It follows that the index of the Dirac operator
(with respect to APS boundary conditions) is zero. However, using well-known
properties of the index, it is possible to construct examples of spin manifolds with
boundary M and conformal classes [h] of positive Yamabe invariant on M such
that the index of the Dirac operator (with respect to any extension of any metric
in [h]) has non-vanishing index. For example, on the round sphere S4k−1 with
k ≥ 2, there are infinitely many such conformal classes.

The results in [23] and [24] were based on a key fact pointed out earlier by
J. Qing [35], which in turn relies on previous work by J. Lee [28].

Lemma 2.1. On a CCE manifold (Xd, g+), assuming Y (∂X, [h]) > 0, there exists
a compactification of g+ with positive scalar curvature; hence the relative Yamabe
invariant Y (X, ∂X, [r2g+]) > 0.
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Uniqueness and non-uniqueness results.
Under the assumption of the positive mass theorem, J. Qing [35] has established

(Bd, gH) as the unique CCE manifold with (Sd−1, [gc]) as its conformal infinity.
The proof of this result was later refined and established without using the positive
mass theorem by Li, Qing and Shi [30] (see also Dutta and Javaheri [14]). Later
in Sections 4 and 5 we will also prove the uniqueness of the CCE extension of the
metrics constructed by Graham and Lee [21] for all d ≥ 4.

As we mentioned in Example 3 above, when the conformal infinity is S1(λ)×S2

with the product metric, Hawking and Page [26] constructed non-unique CCE
filling-ins.

In a recent series of joint works [7, 8, 9], we address the compactness issue
of sequences of metrics on CCE manifolds. The question is as follows. Given a
sequence of CCE manifolds (Xd, g+), with M = ∂X and {gi} = {r2

i g+
i } a sequence

of compactified metrics, set hi = gi|T M ; assuming that {hi} forms a compact
family of metrics in M , when is it true that some representatives ḡi ∈ [gi] with
{ḡi|M = hi} also form a compact family of metrics in X̄? One main difficulty in
addressing the compactness problem is the existence of some non-local term in the
asymptotic expansion of the metric near the conformal infinity. For example, in
the case d = 4 the g(3) term in the asymptotic expansion of g = r2g+ in (1.1) is
non-local, as it depends on both h = g|M and g+.

One application of compactness is the uniqueness result of the CCE extension
of Graham and Lee for the metrics on Sd−1 close to the standard canonical metric
on Sd−1. As we have mentioned before, in the model case—the hyperbolic space
form—it was proved in [35] (see also [14] and a later different proof in [30]) that
(Bd, gH) is the unique CCE manifold with the standard canonical metric on Sd−1 as
its conformal infinity. The compactness result permits us to generalize the global
uniqueness in the above setting. Such result could be considered also as a stability
result for the hyperbolic space.

In this work, if there is no confusion, we drop the argument g for the various
curvature tensors Ric, Rm, etc.

3. Compactness result in high dimensions, d ≥ 5

In this section, we consider a general d-dimensional CCE manifold (Xd, g+), with
d ≥ 5. A general consideration is what is a “good” choice of the compactification
of g+ one should use. A most natural consideration is the compactication of the
Yamabe metric (i.e., the metric which minimizes the L1 norm of the scalar curvature
in the compactified conformal class of metrics [g+] with fixed volume, which we
know exists). The problem with that choice is that we do not see how to control
the corresponding boundary metric of the Yamabe metric. Instead, in [9] and in
the earlier works [7] and [8], we consider a special choice of compactification with
some given boundary metric to start with. In the case when d ≥ 5, the metric we
choose and denote by g∗ is the metric that was considered in a paper by Case and
Chang [6] and called adapted metric.
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Given (Xd, g+) a CCE manifold and a representative metric h in its conformal
infinity, we can solve the PDE

−∆g+v − (d − 1)2 − 9
4 v = 0 on Xd

and define our adapted metric g∗ as g∗ := v
4

d−4 g+ = ρ2g+, with g∗|M = h, the
fixed metric on the conformal infinity of (Xd, g+). We now describe some special
properties of the metric g∗.

Recall that the fourth-order Paneitz operator is given by (see [34, 5, 20])

P4 = (−∆)2 + δ

(
4A − d − 2

2(d − 1)R

)
∇ + d − 4

2 Q4, (3.1)

where A = 1
d−2

(
Ric − R

2(d−1) g
)

is the Schouten tensor, δ is the dual operator of the
differential ∇, R denotes the scalar curvature and Q4 is a fourth-order Q-curvature.
More precisely, let σk(A) denote the k-th symmetric function of the eigenvalues of
A and set Q4 := −∆σ1(A) + 4σ2(A) + d−4

2 σ1(A)2. For an Einstein metric with
Ricg+ = −(d − 1)g+, we have

P4[g+] =
(

−∆g+ − (d − 1)2 − 1
4

)
◦

(
−∆g+ − (d − 1)2 − 9

4

)
.

Therefore,
Q4[g∗] = 2

d − 4P4[g∗]1 = 2
d − 4v

d+4
d−4 P4[g+]v = 0.

Moreover, g∗ is totally geodesic on the boundary (see [9, Lemma 2.6]).
We now recall some basic calculations for curvatures under conformal changes.

Write g+ = r−2g for some defining function r and calculate
Ric[g+] = Ric[g] + (d − 2)r−1∇2r + (r−1∆r − (d − 1)r−2|∇r|2)g,

so that
R[g+] = r2

(
R[g] + 2d − 2

r
∆r − d(d − 1)

r2 |∇r|2
)

.

Here the covariant derivatives are calculated with respect to the metric g (or
adapted metrics g∗ in the following). Therefore, for adapted metrics g∗ of a con-
formally compact Einstein metric g+, one has

R[g∗] = 2(d − 1)ρ−2(1 − |∇ρ|2),
which in turn gives

Ric[g∗] = −(d − 2)ρ−1∇2ρ + 4 − d

4(d − 1)R[g∗]g∗

and
R[g∗] = −4(d − 1)

d + 2 ρ−1∆ρ.

Given (Xd, g+) a CCE manifold with the conformal infinity (∂X, [h]) of non-
negative Yamabe type, an important property of the g∗ metric (proved in the
earlier work of Case and Chang [6, Lemma 4.2]) is that g∗ = ρ2g+, the adapted
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metrics associated with the metric h with positive scalar curvature in the conformal
infinity, have positive scalar curvature R[g∗] > 0 on X, which implies, in particular,
that

∥∇ρ∥[g∗] ≤ 1.

This property is one of the main ingredients in our blow-up analysis.
Another important property in the blow-up analysis is the non-collapsing result

for adapted metrics g∗ when the conformal infinity (∂X, [h]) is of positive Yamabe
type (see [8, Lemma 3.3] and [9, Lemma 2.11]). That is, the volume of any geodesic
ball with radius equal to 1 is uniformly bounded below by some positive constant
when the curvature tensor is bounded.

We recall that the Yamabe invariant of the conformal infinity (∂X, [h]) is defined
as

Y (∂X, [h]) = inf
h̃∈[h]

∫
∂X

R[h̃] dvol[h̃]
Vol(∂X, h̃)(d−3)/(d−1)

.

We now split the discussion into two cases.
Case I, when d is even

We first consider the case when d is even. In this case, due to the vanishing
obstruction tensor [17, 19] for CCE manifolds, the curvature tensor satisfies an
elliptic system. More precisely, let Rikjl, Rij and Wikjl be the Riemann, Ricci and
Weyl curvature tensors, respectively. We recall the definition of the fourth-order
Bach tensor B on d-dimensional manifolds (Xd, g) as

Bij := 1
d − 3∇k∇lWkijl + 1

d − 2WkijlR
kl. (3.2)

Recall also that the Cotten tensor C is defined as
Cijk = Aij,k − Aik,j ,

where A is the Schouten tensor. It turns out there is a relation between the
divergence of the Weyl tensor and the Cotton tensor, namely

∇lWijkl = (d − 3)Ckij .

Applying this relation, we can write the Bach tensor into the following equations:

(d − 2)Bij = ∆Rij − d − 2
2(d − 1)∇i∇jR − 1

2(d − 1)∆Rgij + Q1(Rm), (3.3)

where Q1(Rm) is some quadratic term on the Riemann curvature tensor,

Q1(Rm) := 2WikjlR
kl − d

d − 2Ri
kRjk + d

(d − 1)(d − 2)RRij

+
(

1
d − 2RklR

kl − R2

(d − 1)(d − 2)

)
gij .

We recall that the adapted metric g∗ has flat Q4-curvature, i.e., Q4[g∗] = 0, which
can be rewritten into the following form:

−∆R = −d3 − 4d2 + 16d − 16
4(d − 2)2(d − 1) R2 + 4(d − 1)

(d − 2)2 | Ric |2. (3.4)
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We will now incorporate the Q4-flat property of g∗ to the Bach equation of g∗ to
derive estimates of the curvature of g∗.

Recall that it follows from [17, 19, 27] that when d is even, the metrics conformal
to Einstein ones have the vanishing obstruction tensor Oij . That is,

Oij = (∆)(d−4)/2 1
d − 3∇j∇lWijkl + lower order terms

= (∆)(d−4)/2Bij + lower order terms
= 0.

(3.5)

For example, when d = 6, we can rewrite (3.5) as
∆Bij = Bij,k

k = 2WkijlB
kl + 4Ak

kBij − 8AklC(ij)k,l

+ 4Cki
lClj

k − 2Ci
klCjkl − 4Ak

k,lCij
l + 4WkijlA

k
mAml,

where 2C(ij)k = Cijk + Cjik. Gathering (3.3), (3.4) and (3.5), the Ricci tensor
satisfies a (d − 2)th-order elliptic system. This allows us to apply some standard
elliptic PDE techniques, to obtain an ε-regularity result for the Ricci tensor, and
then for the metrics g∗. This is the key step which permits us to do various blow-up
analyses and derive the following compactness result (see [9, Theorem 1.1]).

Theorem 3.1. Let d ≥ 6 be even. Let X be a smooth oriented d-dimensional
manifold with boundary ∂X = Sd−1. Let {g+

i } be a set of conformally compact
Einstein metrics on X. Assume that the set {hi} of metrics on the boundary with
non-negative scalar curvature that represent the conformal infinities lies in a given
set C of metrics that is of positive Yamabe type and compact in the Ck,α Cheeger–
Gromov topology, with k ≥ d − 2. Moreover, assume that there exists some positive
constant C0 > 0 such that the Yamabe invariant of the conformal infinities is
uniformly bounded below by C0. Then there exists a sufficiently small δ0 > 0 such
that if either

(1′)
∫

Xd(|W |d/2 dvol)[g+
i ] < δ0 or

(1′′) Y (∂X, [hi]) ≥ Y (Sd−1, [gS]) − δ0,
then the set {g∗

i } of the adapted metrics (after diffeomorphisms that fix the bound-
ary) is compact in the Ck,α′ Cheeger–Gromov topology for all 0 < α′ < α.

Case II, when d is odd
When the dimension d of the manifold X is odd, in general we would not expect

the strong estimate Cd−1 as in the case when d is even, due to the occurrence of
the term of krd−1 log r in the expansion of the metric g as in (1.2). The coefficient
k of this term happens to be the obstruction tensor [17, 19] on the boundary of X
and in general it may not vanish. It turns out we can apply a different strategy to
reach a similar compactness result as in Theorem 3.1 under a stronger, namely C6,
regularity assumption. This strategy actually works for all dimensions d. Instead
of exploring the vanishing of the obstruction tensor as in the case when d is even,
we explore the regularity property of the Einstein metric g+. To do so, we will
apply the gauge fixing techniques for Einstein metrics developed in [9, Lemma 4.6
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and Lemma 4.7]. We first obtain some regularity property of the metrics near the
neighborhood of the boundary; we then introduce some suitable weighted spaces
and apply them to avoid the degeneration of the metric and reach the ε-regularity
property in the conformal infinity of the CCE metrics.

Let us introduce some notation. We firstly choose smooth local coordinates
θ = (θ2, θ2, . . . , θd) on an open set U ⊂ ∂X. We then extend θ to (θ1, θ) =
(ρ, θ2, θ2, . . . , θd) on the open subset Ω = [0, ϵ) × U ⊂ X, where ρ is the above
defining function and ϵ > 0 is some small positive number.

For any fixed point p ∈ ∂X, let Ω be a neighborhood and let (ρ, θ) be the
background coordinates such that θ(p) = 0. For each R > 0 sufficiently small, we
define ZR(p) ⊂ Ω ⊂ X:

ZR(p) = {(ρ, θ) ∈ Ω : |θ| < R, 0 < ρ < R}.

In [13], Chruściel, Delay, Lee and Skinner used the gauged Einstein equation to
study the regularity problem and, later on, Biquard and Herzlich [4] proved a local
version. Let us consider the non-linear functional on the d-dimensional open set
ZR(p), with p ∈ ∂X, introduced by Biquard [3]: for two asymptotically hyperbolic
metrics g+ and k+,

F (g+, k+) := Ric[g+] + (d − 1)g+ − δ∗
g+(Bk+(g+)),

where Bk+(g+) is a linear condition, essentially the infinitesimal version of the
harmonicity condition

Bk+(g+) := δk+g+ + 1
2d trk+(g+).

We have, for any asymptotically hyperbolic metrics k+,

D1F (k+, k+) = 1
2(∆L + 2(d − 1)),

where D1 denotes the partial differentiation of F with respect to its first variable,
and the Lichnerowicz Laplacian ∆L on symmetric 2-tensors is given by

∆L := ∇∗∇[k+] + 2
◦

Ric[k+] − 2
◦

Rm[k+],
where

◦
Ric[k+](u)ij = 1

2(Rim[g+]uj
m + Rjm[k+]ui

m)

and
◦

Rm[k+](u)ij = Rimjl[k+]uml.

It is clear that for any CCE metrics g+ we have
F (g+, g+) = 0.

Suppose (Xd, ∂X, g+) is conformally compact Einstein with positive conformal
infinity (∂X, [h]) and with dimension d ≥ 5. Assume that, under the adapted
metrics g∗, we have

(1) ∥ Rmg∗ ∥C0 ≤ 1;
(2) ∥h∥C6 ≤ N for some positive constant N > 0.
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We will prove the ε-regularity. Namely, Rmg∗ is in the Hölder space C1,α for all
α ∈ (0, 1) (or, equivalently, the adapted metric g∗ is in the Hölder space C3,α) near
the boundary ∂X.

We can identify {p ∈ X̄ : ρ(p) ≤ r1} = [0, r1] × ∂X for some r1 > 0 as a
submanifold with the boundary. We consider a C4 compactified AH manifold on
[0, r1/2] × ∂X,

t = dρ2 + h + ρ2h(2), t+ = ρ−2t,

where h(2) = g(2) is the Fefferman–Graham expansion term and intrinsically deter-
mined by the boundary metric h (g(2) is the Schouten tensor of h for the adapted
metric). Given 2R < r1/2, we look for a local diffeomorphism Φ : ZR(p) →
Φ(ZR(p)) ⊂ Z2R(p) such that Φ∗g+ solves the gauged Einstein equation in ZR/2(p),

F (Φ∗g+, t+) = 0. (3.6)
We divide the boundary ∂ZR(p) := ∂∞ZR(p) ∪ ∂intZR(p) = ({ρ = 0} ∩ ∂ZR(p)) ∪
({ρ > 0} ∩ ∂ZR(p)). Recall that CCE g+ and regular AH t+ have the same confor-
mal infinity h on ∂X. We try to find a C2,α (with α ∈ (0, 1)) local diffeomorphism
Φ : ZR(p) → Z2R(p) fixing the boundary ∂∞ZR(p) such that the gauged condition
is satisfied in ZR/2(p) up to the diffeomorphism Φ, that is,

Bt+(Φ∗g+) = 0 in ZR/2(p).
Thus, the gauged Einstein equation (3.6) is satisfied in ZR/2(p). Such equation
permits us to establish that ρ2(Φ∗g+ − t+) is in the Hölder space C3,α for all
α ∈ (0, 1), which in turn implies that ρ2Φ∗g+ is in C3,α. Using the fact that g+ is
CCE, we derive the regularity result for the Cotton tensor in the Hölder space C0,α.
Hence, it follows from (3.2) and (3.3) that the Ricci tensor Ric is in the Hölder
space C1,α in ZR/2(p), which yields the desired ε-regularity in ZR/2(p). Once
the ε-regularity is established, the rest of the proof is as in the even-dimensional
case. Finally, we prove the following compactness result. For more details, see [9,
Theorem 1.2].

Theorem 3.2. Let d ≥ 4 be even. Let X be a smooth oriented d-dimensional
manifold with boundary ∂X = Sd−1. Let {g+

i } be a set of conformally compact
Einstein metrics on X. Assume the set {hi} of metrics on the boundary with
non-negative scalar curvature that represent the conformal infinities lies in a given
set C of metrics that is of positive Yamabe type and compact in the C6 Cheeger–
Gromov topology. Moreover, assume there exists some positive constant C > 0
such that the Yamabe invariant of the conformal infinities is uniformly bounded
below by C. Then under the above assumptions (1′) or (1′′), the set {g∗

i } of the
adapted metrics (after diffeomorphisms that fix the boundary) is compact in the
C3,α Cheeger–Gromov topology for all 0 < α < 1.

4. Uniqueness of Graham–Lee metrics in high dimensions, d ≥ 5

As an application of Theorem 3.2, we are able to establish the global uniqueness
for the CCE metrics on Xd with prescribed conformal infinities that are very close
to the conformal round (d − 1)-sphere as in the work [21] (see also [29]).
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Theorem 4.1 ([9, Theorem 1.3]). For a given conformal (d−1)-sphere (Sd−1, [h]),
with d ≥ 5, that is sufficiently close to the round one in the C6 topology, there
is exactly one conformally compact Einstein metric g+ on Xd whose conformal
infinity is the prescribed conformal (d−1)-sphere (Sd−1, [h]). Moreover, the topology
of X is that of the ball Bd.

We remark that there exists a unique CCE filling-in metric when the conformal
infinity is the standard sphere [35] (see also [14, 30]). We remark that the unique-
ness result in the above theorem is the stability property of the uniqueness result
of the model case—hyperbolic space.

Theorem 4.1 could be proved by contradiction. Assume that there is a sequence
of conformal (d − 1)-dimensional spheres (Sd−1, [hi]) that converges to the round
sphere such that, for each i, there exist two non-isometric conformally compact
Einstein metrics g+

i and g̃+
i , and g∗

i and g̃∗
i are the corresponding adapted metrics.

Up to a subsequence, both g∗
i and g̃∗

i converge to the adapted metric g∗
H of

hyperbolic space in the C3,α Cheeger–Gromov sense due to Theorem 3.2. On the
other hand, there exists a diffeomorphism φi of class C2,α for all α ∈ (0, 1) (equal
to the identity on the boundary), such that

F (φ∗
i g̃+

i , g+
i ) = 0.

Moreover, ∥φi(x) − x∥C2,α → 0 and ∥φ∗
i g̃∗

i − g∗
i ∥C1,α → 0 when i → ∞. By the

implicit function theorem, we have local uniqueness around each g+
i , which implies

that, for large i,
g+

i = φ∗
i g̃+

i .

5. Compactness and uniqueness in dimension d = 4

In this section, we report results in dimension 4 established in [7, 8]. On a
4-dimensional CCE manifold (X4, g+), we will consider a special choice of com-
pactification g∗ = gF G = ρ2g+, called Fefferman–Graham’s compactification (also
called FG metric or FG compactification). The FG metric was first studied by
Fefferman and Graham [16], who introduced the PDE

−∆w = −(d − 1) on Xd (5.1)

and showed the connection between the integral of some coefficient of the as-
ymptotic expansion of w and that of the renormalized volume of CCE manifolds
(Xd, g+). Their result was later put into the geometric setting by Chang, Qing
and Yang [37], who considered the metric g∗ := e2wg+ and related the behavior of
the renormalized volume to that of the Q-curvature of g∗.

We remark that in the special case when d = 4, the FG metric g∗ = e2wg+ on
a CCE 4-manifold (X4, g+) is a natural dimensional continuation of the adapted
metrics on a CCE d-manifold (Xd, g+) when d ≥ 5, in the following sense: Fixed
a boundary metric h, let us call vs the solution of the Poisson equation

−∆g+v − s(d − 1 − s)v = 0 on Xd (5.2)
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when we choose s = d
2 + 1. Then, for d ≥ 5, the adapted metric on Xd which we

introduced earlier in Section 4 is defined as g∗ = vs
d−4

2 g+ = ρ2
sg+ with g∗|M = h.

When d = 4, we have s = d
2 + 1 = 3 = d − 1; then the solution w of (5.1) satisfies

w = − d
ds

∣∣
s=d−1 vs,

and the FG metric is defined as the compactified metric g∗ = e2wg+ = ρ2g+. Note
that when s = d − 1, the natural solution of the Poisson equation (5.2) is vs ≡ 1,
and therefore ρ is the limiting function of ρs when s tends to d − 1. We refer
the reader to the expository article [12] for further explanation of the relationship
between the adapted metric and the FG metric, and of the connection between
the FG metric and the notion of renormalized volume and other integral conformal
invariants in the CCE setting.

Thus the FG metric on X4 satisfies properties similar to the adapted metrics
defined on Xd when d ≥ 5. The most important among them are: (a) the FG metric
g∗ has free Q4-curvature and positive scalar curvature, and (b) its restriction to the
boundary M is totally geodesic. For simplicity, we choose the boundary metric h
be the Yamabe metric representative of the conformal infinity. With the same
arguments as in Theorem 3.2, we obtain the same result in dimension 4 (see [8,
Theorem 1.3]).

Theorem 5.1. Suppose that X is a smooth oriented 4-manifold with boundary
∂X = S3. Let {g+

i } be a set of conformally compact Einstein metrics on X.
Assume the following conditions:

(1) the set {hi} of Yamabe metrics that represent the conformal infinities lies
in a given set C of metrics that is of positive Yamabe type and compact in
the Ck,α Cheeger–Gromov topology with k ≥ 3 and with some α ∈ (0, 1);

(2) there exists some δ0 > 0 such that either
(2a)

∫
X4(|W |2 dvol)[g+

i ] < δ0 or
(2b) Y (∂X, [hi]) ≥ Y (S3, [gS]) − δ0
holds.

Then, the set {g∗
i } of the FG compactifications (after diffeomorphisms that fix the

boundary) is compact in the Ck,α′ Cheeger–Gromov topology for all α′ ∈ (0, α).

We now present some general compactness results on X4 without the assump-
tions that the Weyl tensor is small in L2 norm or that the Yamabe invariant of the
conformal infinity is close to that of the standard sphere (see [7, 8]).

We first introduce some geometric quantities. In [7, Lemma 2.1], for a CCE
manifold (X4, g+) with any compactification g, we introduce the notion of 2-tensor
S, which on a 3-manifold M3 is defined as

(S[g])α,β := ∇i(W [g])iαnβ + ∇i(W [g])iβnα − ∇n(W [g])nαnβ − 4
3H[g](W [g])αnβ

n

where W [g] denotes the Weyl tensor, H[g] the mean curvature on the boundary M ,
i is the full index, α, β represent the tangential indices, and n is the outward unit
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normal of the boundary under the metric g. When the compactified metric g has
totally geodesic boundary, it takes the form

(S[g])α,β = 1
2∂n Ric[g]α,β − 1

12∂nR[g] hα,β .

The 2-tensor S is conformally invariant, in the sense that

S[r2g] = r−1S[g].

The connection of the S tensor to that of g(3) in (1.1) is the following (see [7,
Remark 2.2, (2.7)]): Under any compactification by a geodesic defining function r,
g = r2g+ has ∂nR[g] = 0 on M , thus

(S[g])α,β = −3
2g

(3)
α,β .

This shows that g(3) is also a local conformal invariant, which has been stated by
Graham [18].

The compactness result in the general case can be stated as follows (see [8,
Theorem 1.1] and also [7, Theorem 1.1]):

Theorem 5.2. Suppose that X is a smooth oriented 4-manifold with boundary
∂X = S3. Let {g+

i } be a set of conformally compact Einstein metrics on X. As-
sume that the condition (1) from Theorem 5.1 holds, and assume also the following
conditions:

(2′′) the FG compactifications {g∗
i = ρ2

i g+
i } associated with the Yamabe repre-

sentatives {hi} on the boundary satisfy

lim
r→0

sup
i

sup
x∈∂X

∮
B(x,r)

|Si|[g∗
i ] dvol[hi] = 0;

(3) H2(X,Z) = 0.
Then, the set {g∗

i } of FG compactifications (after diffeomorphisms that fix the
boundary) forms a compact family in the Ck,α′ Cheeger–Gromov topology for all
α′ ∈ (0, α).

We remark that we are aware that in the paper [1] M. Anderson asserted similar
compactness results in the CCE setting under no assumptions on the (analogue of
the) non-local tensor S. We have difficulty understanding some key estimates in
his arguments.

The key points for the compactness result in the general case on 4-dimensional
CCE manifolds are the following: on the one hand, the condition (2′′) in Theo-
rem 5.2 rules out the boundary blow-up; on the other hand, the topological condi-
tion (3) in Theorem 5.2 rules out the interior blow-up.

We now explain the connection of the S tensor to other scalar curvature invari-
ants for the metric g∗, which plays a key role in the results [7, Theorem 1.7] and
[8, Theorem 1.2].
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Recall that on a 4-manifold (X4, g), a fourth-order Q4-curvature is given by

Q4[g] := −1
6∆R − 1

2 | Ric |2 + 1
6R2.

Q4-curvature is naturally associated with a fourth-order Paneitz operator (3.1).
The relation of the pair {Q4, P4} in 4 dimensions is like that of the well-known pair
{K, −∆} in 2 dimensions, where K denotes the Gaussian curvature:

−∆[g] + K[g] = K[e2wg]e2w on X2,

P4[g]w + Q4[g] = Q4[e2wg]e4w on X4,

for conformal changes of the metric. For a 4-manifold (X4, g) with boundary,
in the earlier works of Chang and Qing [10, 11], in connection with the fourth-
order Q-curvature, a third-order non-local boundary curvature T was introduced
on ∂X to study the boundary behavior of g. The relation of the pair (Q4, T ) is
a generalization of that of the Dirichlet–Neumann pair (−∆, ∂n). The expression
of T -curvature is in general complicated, but in the special case when g is totally
geodesic, the expression T takes the simple form

T [g] := 1
12∂nR.

We can state another compactness result (see [8, Theorem 1.2] and also [7,
Theorem 1.7]).

Theorem 5.3. Suppose that X is a smooth oriented 4-manifold with boundary
∂X = S3. Let {g+

i } be a set of conformally compact Einstein metrics on X.
Assume the conditions (1) from Theorem 5.1, (3) from Theorem 5.2, and

(2′′′) For the associated Fefferman–Graham’s compactifications {g∗
i = ρ2

i g+
i }

with the Yamabe representatives {hi} on the boundary,

lim inf
r→0

inf
i

inf
x∈∂X

∮
B(x,r)

T [g∗
i ] dvol[hi] ≥ 0.

Then, the set {g∗
i } is compact in the Ck,α′ Cheeger–Gromov topology for all α′ ∈

(0, α) up to diffeomorphisms that fix the boundary, provided k ≥ 7.

We remark that with the same arguments as in high dimensions (see Theo-
rem 4.1), we also reach a global uniqueness result in dimension 4 (see [8, Theorem
1.9]). Namely,

Theorem 5.4. For a given conformal 3-sphere (S3, [h]) that is sufficiently close
to the round one in the C3,α Cheeger–Gromov topology with some α ∈ (0, 1), there
is exactly one conformally compact Einstein metric g+ on B4 whose conformal
infinity is the prescribed conformal 3-sphere (S3, [h]).
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