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HAAR WAVELET CHARACTERIZATION
OF DYADIC LIPSCHITZ REGULARITY

HUGO AIMAR, CARLOS EXEQUIEL ARIAS, AND IVANA GÓMEZ

To Pola Harboure and Roberto Maćıas

Abstract. We obtain a necessary and sufficient condition on the Haar coef-
ficients of a real function f defined on R+ for the Lipschitz α regularity of f

with respect to the ultrametric δ(x, y) = inf{|I| : x, y ∈ I; I ∈ D}, where
D is the family of all dyadic intervals in R+ and α is positive. Precisely,
f ∈ Lipδ(α) if and only if |⟨fhj

k
⟩| ≤ C2−(α+1/2)j for some constant C, every

j ∈ Z and every k = 0, 1, 2, . . . Here, as usual, hj
k

(x) = 2j/2h(2jx − k) and
h(x) = X[0,1/2)(x) − X[1/2,1)(x).

Arde de abejas el aguaribay, arde.
Rı́en los ojos, los labios, hacia las islas azules
a través de la cortina
de los racimos
pálidos.

Juan L. Ortiz

1. Introduction

In [4] and [3] (see also [2]), M. Holschneider and Ph. Tchamitchian provide
characterizations of the Lipschitz α regularity of a function in L2(R) for 0 < α < 1
in terms of the behaviour of the continuous wavelet transform. The result is that a
given function is Lipschitz α if and only if its continuous wavelet transform satisfies
a power law in the absolute value of the scale parameter. Here Lipschitz α refers to
the classical definition with respect to the usual metric in R, i.e., |f(x) − f(y)| ≤
C |x − y|α for some constant C > 0 and every x and y in R. In [1] these results are
extended to more general moduli of regularity of functions when the basic wavelet
is the Haar wavelet. The method used in [1] provides the tool for the analysis of
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pointwise regularity through the discrete wavelet transform associated to dyadic
scaling and integer translations of the Haar wavelet. The natural Lipschitz α class,
in our setting, is defined through the dyadic distance instead of the usual one.

The result of this paper is contained in the next statement.

Theorem 1.1. Let f be a real valued function in L1
loc(R+). Let hj

k(x) = 2j/2 ×
h(2jx − k), where h(x) = X[0,1/2)(x) − X[1/2,1)(x), j ∈ Z, k = 0, 1, 2, . . ., and〈
f, hj

k

〉
=
∫
R+ f(x)hj

k(x) dx. Let α be any positive number. Then, the boundedness
of the sequence {

2
(

α+ 1
2
)

j
∣∣〈f, hj

k

〉∣∣ : j ∈ Z, k = 0, 1, 2, . . .

}
is equivalent to the essential boundedness of the quotients

|f(x) − f(y)|
δα(x, y) , x ̸= y,

where δ(x, y) = inf{|I| : x, y ∈ I; I ∈ D} with D the family of all dyadic intervals
in R+.

In Section 2 we introduce the basic facts and notation, and Section 3 is devoted
to the proof of Theorem 1.1.

2. Dyadic distance in R+ and the Haar system

The set of nonnegative real numbers is denoted here by R+. The family of
all dyadic intervals in R+ is the disjoint union of the classes Dj , j ∈ Z, where
Dj = {Ij

k = [k2−j , (k + 1)2−j) : k = 0, 1, 2, . . .} are the dyadic intervals of level j.
Notice that with this notation, when j grows, the partitions of R+ get refined and
the intervals smaller. Since given two points x and y of R+ there exists some j0 ∈ Z
such that 0 ≤ max{x, y} < 2−j0 , we have that x, y ∈ Ij0

0 . Hence, the class of all
dyadic intervals I ∈ D such that both x and y belong to I is non-empty. Therefore,
if |E| denotes the Lebesgue length of the measurable set E, we have that

δ(x, y) = inf {|I| : x, y ∈ I; I ∈ D}

is a well-defined nonnegative real number. Even more, δ is an ultrametric in R+.
In other words,

(i) δ(x, y) = 0 if and only if x = y;
(ii) δ(x, y) = δ(y, x) for every x, y in R+;
(iii) δ(x, z) ≤ max{δ(x, y), δ(y, z)} for every x, y, z in R+.
The triangle inequality follows from the properties of the family D. In fact,
given x, y and z in R+, let I(x, y) and I(y, z) denote the smallest dyadic inter-
vals containing x, y and y, z, respectively; then, one of these intervals contains
the other because y ∈ I(x, y) ∩ I(y, z) ̸= ∅. Assume I(x, y) ⊇ I(y, z); then
δ(x, z) ≤ |I(x, y)| = max{|I(y, z)| , |I(x, y)|} = max{δ(y, z), δ(x, y)}. In particu-
lar, δ is a metric in R+. Notice that |x − y| ≤ δ(x, y), but δ(x,y)

|x−y| is unbounded.
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Hence every Lipschitz α function f in the usual sense (|f(x) − f(y)| ≤ C |x − y|α)
is also a Lipδ(α) function, i.e.,

|f(x) − f(y)| ≤ Cδα(x, y)
for some constant C and every x and y in R+. On the other hand, there are Lipδ(α)
functions which are not Lipschitz α in the classical sense. In fact, XI , I ∈ D, is in
the class Lipδ(1). We also observe that in contrast with the class Lipschitz α for
every α > 1, which is trivial, there exist nonconstant Lipδ(α) functions for every
α > 0.

Let us now review the basic properties of the Haar system. Set h0
0(x) =

X[0,1/2)(x) − X[1/2,1)(x) and hj
k(x) = 2j/2h0

0(2jx − k) for j ∈ Z and k = 0, 1, 2, . . .

The family H = {hj
k : j ∈ Z, k = 0, 1, 2, . . .} is the Haar system in R+. It is

well known that H is an orthonormal basis for L2(R+). Since for each I ∈ D
there is one and only one h ∈ H supported in I, we write sometimes hI to denote
the h ∈ H supported in I ∈ D and sometimes Ih to denote the dyadic support of
h ∈ H . From the basic character of H in L2(R+) we have that, given f ∈ L2(R+),

f =
∑

h∈H

⟨f, h⟩h,

in the L2(R+)-sense, with ⟨f, h⟩ =
∫
R+ f(x)h(x) dx. The sequence of coefficients

{⟨f, h⟩ : h ∈ H } is well defined even for functions in L1
loc(R+), since the Haar

functions are bounded and have bounded support.

3. Proof of Theorem 1.1

The easy part of Theorem 1.1 follows as usual from the vanishing of the mean
of the Haar functions. Let us state and prove it.

Proposition 3.1. Let f ∈ Lipδ(α), α > 0. Set [f ]Lipδ(α) to denote the infimum
of the constants C > 0 such that |f(x) − f(y)| ≤ Cδα(x, y), x, y ∈ R+. Then
|⟨f, hI⟩| ≤ [f ]Lipδ(α) |I|α+ 1

2 for every I ∈ D.

Proof. For I = [aI , bI) ∈ D we have
∫
R+ hI(x) dx = 0; hence

|⟨f, hI⟩| =
∣∣∣∣∫

R+
f(x)hI(x) dx

∣∣∣∣
=
∣∣∣∣∫

R+
(f(x) − f(aI))hI(x) dx

∣∣∣∣
≤
∫

I

|f(x) − f(aI)| |hI(x)| dx

≤ [f ]Lipδ(α)

∫
I

δα(x, aI) |I|−
1
2 dx

≤ [f ]Lipδ(α) |I|α− 1
2
∫

I

dx

= [f ]Lipδ(α) |I|α− 1
2 +1 = [f ]Lipδ(α) |I|α+ 1

2 . □

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2024)



52 H. AIMAR, C. E. ARIAS, AND I. GÓMEZ

In order to prove that the size of the coefficients guarantee the regularity of f ,
we start by stating and proving a lemma. Given an interval I ∈ D, we denote by
I− and I+ its left and right halves, respectively. Notice that when I ∈ Dj , both
I− and I+ belong to Dj+1. Given a locally integrable function f , we write mI(f)
to denote the mean value of f on I ∈ D. In other words, mI(f) = 1

|I|
∫

I
f(x) dx.

Lemma 3.2. Let f ∈ L1
loc(R+). Then, for every I ∈ D, we have

|mI−(f) − mI+(f)| = 2 |I|−
1
2 |⟨f, hI⟩| .

Proof. Let I ∈ D be given. Then

|mI−(f) − mI+(f)| =
∣∣∣∣ 2
|I|

∫
I−

f(x) dx − 2
|I|

∫
I+

f(x) dx

∣∣∣∣
= 2 |I|−

1
2

∣∣∣∣∫
I

|I|−
1
2 (XI−(x) − XI+(x)) f(x) dx

∣∣∣∣
= 2 |I|−

1
2

(∫
R+

hI(x)f(x) dx

)
= 2 |I|−

1
2 |⟨f, hI⟩| . □

Proposition 3.3. Let f ∈ L1
loc(R+) be such that, for some constant A > 0, we

have
|⟨f, hI⟩| ≤ A |I|α+ 1

2

for every I ∈ D. Then f ∈ Lipδ(α) and [f ]Lipδ(α) ≤ CαA with Cα = sup{2, 1
2α−1 }.

Proof. Let x < y be two points in R+. Let I ∈ D be the smallest dyadic interval
containing x and y. In other words, |I| = δ(x, y). Since x < y, necessarily x ∈ I−

and y ∈ I+. Set Ix
1 = I− and Iy

1 = I+. Now let Ix
2 be the half of Ix

1 to which x
belongs, and Iy

2 the half of Iy
1 with y ∈ Iy

2 . In general, once Ix
l and Iy

l are defined,
we select Ix

l+1 as the only half of Ix
l with x ∈ Ix

l+1 and Iy
l+1 as the only half of Iy

l

with y ∈ Iy
l+1. In this way, for a fixed positive integer k, we have

Ix
k ⊂ Ix

k−1 ⊂ · · · ⊂ Ix
2 ⊂ Ix

1 ⊂ I

and
Iy

k ⊂ Iy
k−1 ⊂ · · · ⊂ Iy

2 ⊂ Iy
1 ⊂ I.

Hence
f(x) − f(y) =

(
f(x) − mIx

k
(f)
)

+
(

mIx
k
(f) − mIx

k−1
(f)
)

+ · · · +
(
mIx

2
(f) − mIx

1
(f)
)

+
(

mIx
1
(f) − mIy

1
(f)
)

+
(

mIy
1
(f) − mIy

2
(f)
)

+ · · · +
(

mIy
k−1

(f) − mIy
k
(f)
)

+
(

mIy
k
(f) − f(y)

)
.
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Then

|f(x) − f(y)| ≤
∣∣∣f(x) − mIx

k
(f)
∣∣∣

+
k∑

l=2

∣∣∣mIx
l
(f) − mIx

l−1
(f)
∣∣∣

+
∣∣∣mIx

1
(f) − mIy

1
(f)
∣∣∣

+
k−1∑
l=1

∣∣∣mIy
l
(f) − mIy

l+1
(f)
∣∣∣

+
∣∣∣mIy

k
(f) − f(x)

∣∣∣
= I + II + III + IV + V.

Let us start by bounding the central term III. Notice that Ix
1 = I− and Iy

1 = I+,
with |I| = δ(x, y). Then by Lemma 3.2, we have

III =
∣∣mIx

1
(f) − mIy

1
(f)
∣∣

= |mI−(f) − mI+(f)|

= 2 |I|−
1
2 |⟨f, hI⟩|

≤ 2A |I|−
1
2 |I|α+ 1

2

= 2A |I|α

= 2Aδα(x, y),

which has the desired form. The terms II and IV can be handled in the same way;
let us deal with II. Take a generic term of the sum II, and use again Lemma 3.2:

∣∣mIx
l
(f) − mIx

l−1
(f)
∣∣ =

∣∣∣∣∣ 1
|Ix

l |

∫
Ix

l

f − 1∣∣Ix
l−1
∣∣
(∫

Ix
l

f +
∫

Ix
l−1\Ix

l

f

)∣∣∣∣∣
=

∣∣∣∣∣12 1
|Ix

l |

∫
Ix

l

f − 1
2

1∣∣Ix
l−1 \ Ix

l

∣∣ ∫
Ix

l−1\Ix
l

f

∣∣∣∣∣
= 1

2
∣∣mIx

l
(f) − mIx

l−1\Ix
l
(f)
∣∣

= 1
22
∣∣Ix

l−1
∣∣− 1

2
∣∣⟨f, hIx

l−1
⟩
∣∣

≤ A
∣∣Ix

l−1
∣∣− 1

2
∣∣Ix

l−1
∣∣α+ 1

2

= A
∣∣Ix

l−1
∣∣α

= A
2α

2αl
|I|α .

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2024)



54 H. AIMAR, C. E. ARIAS, AND I. GÓMEZ

Then

II =
k∑

l=2

∣∣mIx
l
(f) − mIx

l−1
(f)
∣∣

≤ A2α |I|α
∑
l≥2

1
2αl

= A

2α − 1δα(x, y).

The same estimate holds for IV. Let Cα = sup{2, 1
2α−1 }. Then

|f(x) − f(y)| ≤
∣∣f(x) − mIx

k
(f)
∣∣+ ACαδα(x, y) +

∣∣f(y) − mIy
k
(f)
∣∣

uniformly in k. Now, from the differentiation theorem, we have for almost all x
and almost all y that mIx

k
(f) → f(x) as k → ∞ and mIy

k
(f) → f(y) as k → ∞.

Hence, for those values of x and y in R+ we get the result
|f(x) − f(y)| ≤ ACαδα(x, y). □

Propositions 3.1 and 3.3 prove Theorem 1.1.
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