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COVERING-BASED NUMBERS RELATED TO THE
LS-CATEGORY OF FINITE SPACES

MANUEL CÁRDENAS, RAMÓN FLORES, ANTONIO QUINTERO,
AND MARÍA TRINIDAD VILLAR-LIÑÁN

Abstract. In this paper, we consider the Lusternik–Schnirelmann and geo-
metric categories of finite spaces. We define new numerical invariants for
these spaces derived from the geometric category and present an algorithmic
approach for their effective computation. Our analysis combines homotopy-
theoretic properties of these spaces with algorithms and tools from graph and
hypergraph theory. We also provide several examples to illustrate our results.

1. Introduction

In [3], P. Alexandrov observed that finite spaces are the natural topological
setting for ordered structures on finite sets. More precisely, the class of finite
posets can be identified with the class of finite T0-spaces.

Though these spaces are not relevant from the metric viewpoint, they are far
from being irrelevant in algebraic topology. In fact, M. McCord proved in [25] that
any compact polyhedron is weakly homotopy equivalent to a finite T0-space. In
particular, weak homotopy types of finite T0-spaces coincide with homotopy types
of compact polyhedra.

After years of oblivion, finite spaces have been recently considered with renewed
interest; see [24] and [4] as comprehensive references and [10, 22, 27] for more
specific aspects of the homotopy theory of such spaces. In particular, the notion
of Lusternik–Schnirelmann category (LS-category) in the context of finite spaces
was introduced in [15] in connection with the so-called simplicial LS-category of a
simplicial complex, and also in [30] in connection with the approach to the simplicial
complexity in [20] via finite spaces. The present paper goes further in the study of
numerical invariants for the class of finite spaces on its own.

Recall that given a topological space X, the LS-category cat(X) of X is defined
as the minimal number of open sets that are contractible in X and cover X, while
the geometric category gcat(X) is the minimal number of contractible open sets
that coverX. The latter is not a homotopy invariant, and this leads to the definition
of the strong category Cat(X) of X as the smallest value of the geometric category
over all spaces homotopy equivalent to X. See Section 2 for more details of these
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Notation Definition

cat Minimal number of contractible open sets in X that cover X

gcat Minimal number of contractible open sets that cover X

Cat Minimal value of gcat in the homotopy type of X

catw Value of cat of the underlying polyhedron to the order complex of X

cats Minimal value of cat on the successive barycentric subdivisions of X

Catu Value of gcat on the core of X

gcatp Minimal number of contractible prime open sets that cover X

Table 1. The different categories used in the paper.

definitions, and Table 1 for a brief summary of the different definitions of category
that appear in the paper.

Besides cat and Cat, we introduce other covering-based numbers specifically for
the class of finite T0-spaces. Properties of these numbers, as well as for cat and
Cat, are given, including the special features of spaces whose Hasse diagrams have
height 1. After this analysis, we propose a systematic procedure which allows us to
compute or bound some of these numbers using algorithms based on the structure
of the space. Attention is paid, in particular, to the complexity of the calculations.
It should be pointed out that the lack of an analog to such a procedure in the case
of cat(X) makes the development of an algorithmic approach more difficult for this
case. See the explanation at the beginning of Section 8.

Now we describe with detail the contents of the paper. The preliminary Section 2
contains the necessary definitions and results of the topology of finite spaces and
some observations about their LS category. In Section 3, we study the behaviour
of the function gcat on the homotopy type of a finite space X; in particular, it is
shown that the gap between cat(X) and gcat(X) can be arbitrarily large for finite
spaces. Furthermore, the maximum of gcat on the homotopy type of X coincides
with its value on the core of X. This provides a specific LS-type invariant for finite
spaces (Catu). Prime open sets of a finite space are defined in Section 4, where
it is proved that the geometric category given by them yields a new numerical
invariant of LS-type in the class of finite spaces (gcatp). Section 5 is devoted to
the finite spaces of height 1, which reveal interesting features: their category is
related with the arboricity of the graph given by the Hasse diagram; moreover, all
numerical invariants considered in the paper agree on them, and this number is in
turn bounded above by the arboricity of a canonically associated multigraph.

The remainder of the paper is devoted to developing a strategy to compute
gcat(X) and the other related invariants Catu and gcatp for any finite space X. In
Section 6, we describe a preliminary algorithm that decides if a finite space X is
contractible or not, and also identifies the core of X. It is checked that the time
complexity of the algorithm is at most quartic in the number of points of X. Using
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this algorithm, different procedures (deterministic and heuristic) are designed in
Section 7 in order to describe the compatibility structure of X with respect to
gcat(X). As a byproduct, bounds for gcat(X) can be obtained in polynomial
time. In Section 8, we generalize the notion of compatibility structure in terms of
Boolean functions and define a category associated to such a structure, with natural
examples being the categories studied in our paper. Moreover, we show that a
compatibility structure of a finite space X always gives rise to a hypergraph, in
such a way that the associated category corresponds to the covering number of the
hypergraph. We conclude by discussing the problem of representing a compatibility
structure in a finite space as the compatibility structure of a finite space of height 1.

Notation. We warn the reader that we adopt here the classical definition of LS-
category (and its variations); that is, the precise number of open sets involved in
the definition instead of the normalized definition which is given by this number
minus one. Moreover, the finite spaces that will appear in the text will always
be T0, although sometimes this separation condition will not be explicitly stated.

2. Preliminaries

Finite spaces are examples of Alexandrov spaces; that is, topological spaces
whose points admit a minimal open neighbourhood or, equivalently, whose topolo-
gies are closed under arbitrary intersections. If X is an Alexandrov space, the
minimal open set containing x ∈ X is denoted by Ux. Then an ordering can be
defined on X by setting x ≤ y if Ux ⊆ Uy. Alexandrov showed in [3] that this
ordering yields an equivalence between the class of Alexandrov T0-spaces and the
class of posets. Moreover, the homotopy class of an arbitrary Alexandrov space
can be represented by an Alexandrov T0-space.

A finite poset X = (X,≤) is usually represented by its Hasse diagram, which
turns out to be the transitive reduction of X. Recall that the transitive reduction
of a poset X is the acyclic directed graph whose vertex set is X and a directed
edge is drawn from x to y when x < y and there is no z with x < z < y (see [4]
or [24]). In this way, X is then recovered as the transitive closure of the reflexive
antisymmetric non-transitive relation defined by the edges of its Hasse diagram,
termed the covering relation of the poset X. Notice that such a diagram, and more
generally any acyclic directed graph, admits a decomposition by levels. Namely,
minimals of X are placed at level zero and the level assigned to a non-source
element a is the number of edges of a maximal directed path from a source to a.
The height of X is the maximal height of its elements.

Henceforth we will identify a finite T0-space X with the Hasse diagram of the
corresponding poset without further comment. So, by the height of X we will mean
the height of its Hasse diagram.

It is worth pointing out that after removing a point x ∈ X from a finite space X,
the resulting Hasse diagram of X − {x} is not in general a subgraph of the original
one. In fact all edges incident at x in the latter disappear in the former; and
moreover, any pair of edges in the Hasse diagram of X corresponding to y < x < z
(if any) is replaced by a directed edge y < z in the Hasse diagram of X − {x}.
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The Hasse diagram of a poset is the 1-skeleton of the so-called order complex
of X, denoted by O(X). This is the simplicial complex with the elements of X
as vertices and the totally ordered subsets of X as simplices. Conversely, any
simplicial complex K has associated its face poset F (K) consisting of the set of
simplices of K ordered by the face relation. McCord theorem in [25] shows that
there exist weak homotopy equivalences ψX : X → |O(X)| and φK : |K| → F (K),
where |K| denotes the underlying polyhedron of the complex K. The existence
of such weak equivalences show that homotopy types of polyhedra correspond to
weak homotopy types of finite T0-spaces.

The natural order on a finite T0-space Y induces an order on the sets of maps
f : X → Y by setting f ≤ g if f(x) ≤ g(x) for all x ∈ X. In fact, this order char-
acterizes the homotopies between maps, as proved in [4, Corollary 1.2.6]. Namely,
two maps f, g : X → Y are homotopic if and only if there exists a sequence of maps
fi : X → Y (0 ≤ i ≤ m) such that f0 = f , fm = g and fi and fi+1 are related;
that is, fi ≤ fi+1 or fi ≥ fi+1. Moreover, by [4, Lemma 2.1.1], we can assume in
addition that there exist points x0, . . . , xm ∈ X such that fi−1 = fi on X − {xi−1}
and fi−1(xi−1) < fi(xi−1) or fi−1(xi−1) > fi(xi−1) for 1 ≤ i ≤ m− 1.

Recall that (co)homology and other algebraic constructions are weak homotopy
invariants. In particular, the (co)homology of any compact polyhedron can be re-
alized as the (co)homology of a finite T0-space. However, the LS-category cat(X)
of a space X is a homotopy invariant but not a weak homotopy invariant. Recall
that the number cat(X) is defined as the smallest integer n for which there ex-
ists an open covering {Ui}n

i=1 of X such that for each i the inclusion Ui ⊆ X is
homotopically trivial. If such a number does not exist, it is written cat(X) = ∞.

Since the LS-category is not a weak homotopy invariant it should not be expected
that McCord’s theorem yields the equality between cat(X) and cat(|O(X)|). In-
deed, by iterating the face order operator F (−) and the order complex operator
O(−) we get new finite spaces sdnX = (FO)n(X), termed the iterated subdivi-
sions of X (n ≥ 0, sd0X = X), such that their corresponding order complexes
O(sdnX) coincide with the barycentric subdivision sdnO(X). Then, as it was
observed in [15], the following sequence of inequalities holds:

cat(X) ≥ scat(O(X)) ≥ cat(sdX) ≥ scat(sdO(X))
≥ cat(sd2X) ≥ · · · ≥ cat(|O(X)|). (2.1)

Here scat(K) stands for the simplicial category of a simplicial complex K; that
is, the smallest integer n for which there exists a covering {Ki}n

i=1 of K by sub-
complexes such that for each i the inclusion Ki ⊆ K is in the contiguity class of
a constant map. All these notions in the simplicial setting can be found in [2]
and [15].

It is worth pointing out that given a finite T0-space X, we can derive from the
sequence of inequalities in (2.1) two new invariants of X. Namely:
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Definition 2.1. The weak LS-category of X is the LS-category of the underlying
polyhedron of its order complex; that is, the number catw(X) = cat(|O(X)|).
Similarly, we can define the stable LS-category of X as the number cats(X) =
min{cat(sdkX) | k ≥ 0}.

Note that the term “weak category” appears with a different meaning in [11,
Chapter 2.4].

Proposition 2.2. The weak LS-category is a weak homotopy invariant, while the
stable LS-category is a homotopy invariant.

Proof. If f : X → Y is a weak homotopy, then the induced simplicial map O(f) :
|O(X)| → |O(Y )| is a homotopy equivalence (see [4, Corollary 1.4.18]) and so
catw(X) = catw(Y ). Besides, if f is a homotopy equivalence then O(f) is a strong
equivalence and then sd(f) = OF (f) : sdX = OF (X) → OF (Y ) = sdY is again a
homotopy equivalence by [4, Theorem 5.2.1]. Therefore, by iterating the argument,
we get cat(sdkX) = cat(sdkY ) for all k ≥ 0 and so cats(X) = cats(Y ). □

Remark 2.3. Obviously one has the inequalities catw(X) ≤ cats(X) ≤ cat(X).
Moreover, the gap between cat(X) and catw(X) can be arbitrarily large. Indeed,
for each n ≥ 2, let X be the finite space of height 1 whose Hasse diagram is the
bipartite graph K(n, 2) as shown on the left in Figure 1. It is readily checked that
cat(X) = n since any open set with two or more maximal points is not contractible
in X, while it is well known that catw(X) = cat(|O(X)|) = 2.

In fact the same example shows that the gap between cat(X) and scat(O(X))
(and so cats(X)) can also be arbitrarily large since scat(O(X)) = 2 according
to [15].

Notice also that the space X in [4, Example 4.2.1] (on the right in Figure 1) is
not contractible but |O(X)| is. Hence sdkX is not contractible for all k ≥ 0 by
[4, Corollary 5.2.7], whence cats(X) ≥ 2 > catw(X) = 1. Furthermore, one easily
checks that cat(X) = 2 and so cat(X) = cats(X) = 2 > 1 = catw(X).

x1 x2 x3 xn

l

a0 b0

xn2 xn1

Figure 1

Open Question. Find a finite T0-space X with cat(X) > cats(X) > catw(X).
If we consider the LS category of maps, Tanaka shows in [31] the equality

catw(X) = cats(id), where, for a map between finite spaces f : X → Y , cats(f) =
min{cat(f ◦ τk) | k ≥ 0} with τk the iterated subdivision map τk : sdkX →
sdk−1X → · · · → sdX → X.
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210 M. CÁRDENAS, R. FLORES, A. QUINTERO, AND M. T. VILLAR-LIÑÁN

3. The geometric category and the strong category of finite spaces

If we use open sets which are contractible in themselves, we get the geometric
category gcat(X) ofX, which is the minimal n ≥ 1 such that there is a covering ofX
with n contractible open sets. It turns out that, in general, the geometric category
is not a homotopy invariant. However, it defines a new homotopy invariant, termed
the strong category of X and denoted by Cat(X), by considering the minimal value
of gcat(Y ) for all spaces Y with the homotopy type of X. We refer to [11] for a
comprehensive treatment of these (and other) numerical invariants in homotopy
theory.

A distinctive property of finite spaces is the fact that the homotopy type of any
finite T0-space is represented up to homeomorphism by a minimal space, i.e., a
space without beat points. Recall that a point x ∈ X is termed an up beat point
if the set of points which are greater than x has a minimum. Similarly, x is said
to be a down beat point if the set of points below it has a maximum. If we do
not distinguish if x is an up or a down beat point, we simply say that x is a beat
point. It is immediate that if x ∈ X is a beat point, there exists y ∈ X, y ̸= x,
such that any point which is comparable with x is also comparable with y. In [29],
R. Stong showed that for any beat point x ∈ X, the inclusion X − {x} ⊆ X is a
strong deformation retract and that after removing the beat points, one at a time,
we obtain a strong deformation retract of X with no beat points, called the core
of X, which is unique up to homeomorphism. A T0-space is called minimal if it
has no beat point, and the homotopy type of a finite T0-space contains a unique
minimal space up to homeomorphism (see [4]).

As the LS-category is a homotopy invariant, it will suffice to compute it for
minimal spaces. In contrast, as observed in [15], the removal of beat points may
increase the geometric category. In fact, the following proposition shows that this
may occur only for up beat points.

Proposition 3.1. Let b be a down beat point in a finite T0-space X. Then
gcat(X) = gcat(Y ) for Y = X − {b}.

Proof. We may assume that X − Y reduces to a down beat point b.
Let V = {V1, . . . , Vn} be an open covering of Y consisting of contractible sets.

Since b is a down beat point, let c be the maximum of the points below b in X.
Let m ∈ Max(X) with b ≤ m. If b = m, then choose Vi with c ∈ Vi. The
open set V ′

i = Vi ∪ {b} is contractible in X (b is a down beat point in V ′
i ) and

{V1, . . . , V
′

i , . . . , Vn} covers X. Otherwise, if b < m, take Vi with m ∈ Vi and so
UY

m ⊆ Vi, where UY
m is the minimal open set of m in Y . Then UX

m = UY
m ∪ {b}

and V ′
i = Vi ∪ {b} is an open set in X. Moreover, b remains a down beat point

in V ′
i , and so by replacing Vi by V ′

i in V we get an open covering of X consisting
of contractible sets. This shows that gcat(X) ≤ gcat(Y ).

On the other hand, it is easy to see that given any covering W = {W1, . . . ,Wn}
of X by contractible open sets one can obtain a covering of Y by contractible open
sets of the same cardinality. Indeed, if b ∈ Wi then b is also a down beat point
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of Wi and hence W ′
i = Wi − {b} is an open contractible open set in Y . Hence

gcat(X) = gcat(Y ). □

In contrast, as mentioned above, removing up beat points may increase gcat.
See Example 3.2 (2) below.
Example 3.2. (1) The following example shows a finite T0-space such that

gcat(X) = 3 but cat(X) = 2 since the union Ua ∪ Uc, although it is not
contractible in itself, is contractible in X.

c1 e1 e2 c2

d2d1

b1 a b2

Figure 2

(2) The gap between gcat and cat can be arbitrarily large. Indeed, given
any integer s ≥ 1, for the space X(s) depicted in Figure 3, whose core is
showed in Figure 3, one checks that cat(X(s)) = gcat(X(s)) = 2 since the
contractible open sets Ub and Ue ∪Uj0 ∪ · · · ∪Ujs

cover X(s). However, by
deleting the up beat point e from X(s), for Y (s) = X(s) − {e} in Figure 3
it is verified that cat(Y (s)) = cat(X(s)) = 2 while gcat(Y (s)) = s + 2
since the open sets Ujt

are disjoint from each other and Ub ∪ Ujt
are not

contractible for t = 0, . . . , s. Notice that gcat(Y (s)) = gcat(Z(s)) since the
removing any of the up beat points c0, . . . , cs and l0, . . . , ls does not change
gcat.

j0e

ls

js

b

e0

cs

es

l0

j0

cs ls

js

b

e0 es

l0

j0 jsb

e0 es

z

c0c0

d0 ds d0 ds m0 msm0 ms

d0 ds m0 ms

yx

Figure 3
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Recall that, by definition, Cat(X) is the minimum of the function gcat on the
homotopy type of X. Moreover, as observed above, the removal of beat points never
diminishes the geometric category, and so the maximum of gcat on the homotopy
type of X is precisely gcat(X0), where X0 ⊆ X is the core of X. Moreover, as X0
is unique up to homeomorphism within the homotopy class of X, we have a new
numerical homotopy invariant for finite T0-spaces. Namely:

Definition 3.3. Given a finite T0-space X, we define the upper strong category
of X, Catu(X), to be geometric category of its core X0 ⊆ X.

Example 3.4. Notice that the gap between Cat(X) and Catu(X) can also be
arbitrarily large, as the following example shows:

x

p0 p1 p2 pn

q1 q2 q3 q4 q2n1 q2n

This minimal space of height 1 satisfies Catu(X) = gcat(X) = n+1. However, one
can show that Cat(X) = cat(X) = 2 by using the space Y = X ∪ {p′

k}n−1
k=1 , with

the ordering generated by the one of X and q2k, q2k+1 ≤ p′
k ≤ p0 for 1 ≤ k ≤ n− 1.

Remark 3.5. In a similar fashion to Remark 2.3, by using [15, Proposition 6.2 and
Proposition 6.5] and [4, Theorem 5.2.1], and letting Cats(X) = min{Cat(sdk(X)) :
k ≥ 0} and gcats(X) = min{gcat(sdk(X)) : k ≥ 0}, we obtain the following
diagram of inequalities with similar considerations:

cat(X) ≥ cats(X) ≥ catw(X)

≤ ≤ ≤

Cat(X) ≥ Cats(X) ≥ Cat(|O(X)|)

≤ ≤ =

gcat(X) ≥ gcats(X) ≥ Cat(|O(X)|)

Open Question. Find a finite T0-space X holding strict inequalities in some (or
any) of the lines and/or columns of the diagram above.

Remark 3.6. A strong LS-type parameter specially devised for finite spaces and
its combinatorial counterpart in the class of cell complexes is defined in [30].
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4. Numerical invariants and the maximal set of a finite space

Another distinctive property of a finite space X is the existence of its set
of maximal points, Max(X). Notice that for any beat point x ∈ X, one gets
Max(X − {x}) ≤ Max(X) and so Max(X0) ≤ Max(X) for the core of X, X0.
Moreover, as X0 is determined up to homeomorphism by the homotopy type of X,
the cardinal number | Max(X0)| is a numerical homotopy invariant of X. Further-
more, as minimal open sets in a finite T0-space X are contractible in themselves,
we get

cat(X) ≤ Cat(X) ≤ Catu(X) = gcat(X0) ≤ | Max(X0)| ≤ | Max(X)|.

The maximal set of a finite space yields a special type of open set. Namely, we
define a prime open set in X as an open set UJ =

⋃
x∈J Ux, where J ⊆ Max(X).

Then the following lemma holds.

Lemma 4.1. Any open cover U of X admits a refinement V consisting of prime
open sets with |V| ≤ |U|.

Proof. For each U let VU be the (possibly empty) open set VU =
⋃

{Ux | x ∈
Max(X) ∩ U}. As any x ∈ Max(X) belongs to some U ∈ U , the family V of
non-empty sets in {VU | U ∈ U} is the required refinement. □

This immediately implies:

Lemma 4.2. For any finite T0-space X, cat(X) is the least cardinal number of
those coverings of X consisting of prime open sets contractible in X.

Lemma 4.2 does not hold for the geometric category since subsets of contractible
sets need not be contractible. For instance, for the space X in Example 3.2 (1), the
minimal open set Ua contains the non-contractible open set Ua − {a}.

As observed in Example 3.2 (2) above, the geometric category of a space can be
altered by introducing up beat points and considering non-prime open sets. It is
then natural to state a specialized version of the geometric category by restricting
to those coverings consisting of prime open sets. More precisely,

Definition 4.3. The prime geometric category of a finite T0-space X is the least
cardinal number, gcatp(X), of coverings of X by prime open sets which are con-
tractible in themselves.

Example 4.4. For each t ≥ 1 we now construct a space X(t) with gcat(X(t)) ̸=
gcatp(X(t)). In fact, this example shows that the gap between gcat and gcatp can
be arbitrarily large.
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d1 dt

a b

x

c

et

k1 kt

f1 ft

e1

g h

Clearly, X(t) is a minimal space; moreover, the open set Ua ∪ Uc ∪ Ud1 ∪ · · · ∪ Udt

retracts onto Uc and so gcat(X(t)) = Catu(X(t)) = 2. However, gcatp(X(t)) = t+1
since the union Ua ∪ Ub is the only prime open set which is contractible in itself
and is not minimal.

In contrast to ordinary geometric category, the prime version is a homotopy
invariant. More precisely,

Proposition 4.5. Let X and Y be finite T0-spaces. Then the equality gcatp(X) =
gcatp(Y ) holds whenever X and Y are homotopy equivalent.

Proof. We can assume that Y is the core of X and so homeomorphic to the core
of any finite space with the homotopy type of X. By an inductive argument, we
can assume that X − Y reduces to a beat point b. Moreover, by Proposition 3.1
we can assume that b is an up beat point (whence, b /∈ Max(X)). Let d be the
minimum of the points greater than b and V = {V1, . . . , Vn} be a covering of Y
consisting of contractible prime open sets. Take Vi with d ∈ Vi; then the minimal
open set Ud of d in Y is contained in Vi. It is immediate that U ′

d = Ud ∪ {b} is
the minimal open set of d in X and b is an up beat point in V ′

i = Vi ∪ {b}. Thus,
V ′ = (V − {Vi}) ∪ {V ′

i } is a covering of X by contractible prime open sets, and
therefore gcatp(X) ≤ gcatp(Y ).

Conversely, given a covering of X consisting of contractible prime open sets
W = {W1, . . . ,Wm}, let d denote again the minimum of the points above b in X.
Then b is an up beat point in any Wi with d ∈ Wi, and W ′

i = Wi − {b} is a
contractible prime open set in Y since b is not in Max(X). Thus, W ′ = {W ′

j | d ∈
Wj} ∪ {Wj | d /∈ Wj} is a covering of Y consisting of contractible prime open sets
of Y . We have proved gcatp(Y ) ≤ gcatp(X), and hence gcatp(X) = gcatp(Y ). □

Remark 4.6. If X or Y are infinite Alexandrov spaces, we do not know whether
Proposition 4.5 holds.

As a consequence of Proposition 4.5, the prime geometric category of a finite
T0-space X is a new numerical homotopy invariant which bounds Catu(X) from
above, since the equality gcatp(X) = gcatp(X0) holds for the core X0 of X. Then
we have

Catu(X) = gcat(X0) ≤ gcatp(X0) = gcatp(X).
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Notice that there is nothing interesting about defining prime LS-category since
it will coincide with the usual LS-category by Lemma 4.2 and the following in-
equalities relate the numerical invariants defined above:

cat(X) ≤ Cat(X) ≤ Catu(X) ≤ gcatp(X) ≤ | Max(X0)| ≤ | Max(X)|. (4.1)

Example 4.7. For each n ≥ 2, letXn be the finite space of height 1 in Example 2.3.
It is readily checked that cat(Xn) = gcatp(Xn) = | Max(Xn)| = n. Incidentally,
Xn is the smallest finite space with LS-category n. More generally, the smallest
finite space of height k with LS-category n is the finite space whose Hasse diagram
has two elements at each level ≤ k − 1 and n maximal elements; see Figure 4.

l

d

a0

a1

b0

b1

ah3

ah2

ah1

bh3

bh2

bh1

x1 x2 x3 xn1xn2 xn

Figure 4

The problem of measuring the gaps in the sequence of inequalities in (4.1) arises
naturally. We have already observed in Examples 3.4 and 4.4 that the intervals
[Cat(X),Catu(X)] and [Catu(X), gcatp(X)] can be arbitrarily large. It is obvious
that for a height-1 space X whose Hasse diagram is a cycle and | Max(X)| = k+ 2
the interval [gcatp(X), | Max(X)|] has length k.

Open Question. Estimate the interval [cat(X),Cat(X)] for finite T0-spaces.

Recall that a well-known result due to Fox [11] states that Cat(X) ≤ cat(X)+1
for a CW-complex X. In the next section we will show that cat and Cat coincide
in the class of height-1 spaces.

5. Spaces of height 1

Spaces of height 0 are exactly finite discrete spaces and so their LS-category
is trivially the number of points of the spaces. Also any positive integer can be
realized as any of the LS-type numbers defined above of a finite space of height 1;
see Example 4.7.

We will next show that the strong category equals the LS-category in the class
of height-1 spaces. Namely:
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Theorem 5.1. Let X be a finite T0-space of heigth 1. Then Cat(X) = cat(X).
Moreover, the equality is achieved by a height-2 space homotopy equivalent to X.

Remark 5.2. Actually, the result is valid for any finite T0-space whose core has
height 1.

The proof of Theorem 5.1 is a consequence of the following two lemmas.

Lemma 5.3. Let X be a connected finite space of height 1. Given J ⊆ Max(X),
the prime open set UJ is contractible in X if and only if each component of UJ is
contractible in itself.

Proof. Obviously UJ is contractible in X if all its components are contractible in
themselves. Conversely, let C ⊆ UJ be a component. Then C = UJ′ is also a prime
open set for some J ′ ⊆ J and contractible in X.

Let C0 ⊆ C be the core of C. Next, we show that C0 reduces to a point and so
C is contractible.

As C0 remains contractible in X, there exists a sequence f0, f1, . . . , fn : C0 →
X, of comparable maps with f0, the inclusion C0 ⊆ X, and a constant map fn.
Moreover, we can assume that there exist points x0, . . . , xn ∈ C0 such that fi−1 = fi

on C0 −{xi−1} and fi−1(xi−1) < fi(xi−1) or fi−1(xi−1) > fi(xi−1) (1 ≤ i ≤ n−1).
If C0 is not just a point, we arrive to a contradiction.
First assume that x0 is at level 0. Then x0 = f0(x0) < f1(x0) = m ∈

Max(X). Moreover, by connectedness {y ∈ C0 | y > x0} ̸= ∅, and there exists
m′ ∈ Max(C0) ⊆ Max(X) such that x0 ≤ m′ and m ̸= m′, since otherwise x0
would be an up beat point in C0. Then by continuity we reach the contradiction
m = f1(x0) ≤ f1(m′) = f0(m′) = m′.

Assume now that x0 lies at level 1. Then f1(x0) ∈ Min(X) and y = f1(x0) <
f0(x0) = x0. Again by connectedness Min(C0) ∩ Ux0 ̸= ∅, and there exists y′ ∈
Min(C0) ⊆ Min(X) with y′ < x0. Moreover y′ ̸= y, since otherwise x0 would be a
down beat point in C0. By continuity, y = f1(x0) ≥ f1(y′) = f0(y′) = y′, which is
contradiction. □

Lemma 5.4. Let {U1, . . . , Un} be an open covering of a finite connected T0-space X
such that U1 decomposes in s connected components which are contractible in them-
selves. Then there exists a finite T0-space Y and an open covering {U ′

1, U
′
2, . . . , U

′
n}

of Y such that X and Ui are deformation retracts of Y and U ′
i , respectively, for

2 ≤ i ≤ n, and U ′
1 consists of s−1 connected components contractible in themselves.

Moreover, height(Y ) = max{2, height(X)}.

Proof. Firstly we observe that all minimal open sets in a finite T0-space meet
Min(X) and moreover, given any two minimal elements p, q ∈ Min(X) there exists
a path in X

p = x0 ≤ x1 ≥ x2 ≤ · · · ≤ x2m−1 ≥ x2m = q (5.1)
with x2k ∈ Min(X) and x2k−1 ∈ Max(X) for all k ≤ m. Indeed, given any
path L between p and q: L ≡ p = y0 < y1 > y2 · · · < y2m+1 > y2m = q, choose
x2k ∈ Min(X) ∩ Uy2k

(0 ≤ k ≤ m). Notice that x0 = y0 = p, x2m = y2m = q
and the desired path is obtained by replacing the y2k’s by x2k’s in L since y2k+1
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remains greater than both x2k and x2k+2 for all 0 ≤ k ≤ m. Finally, we replace
each y2k−1 by some x2k−1 ∈ {y2k−1} ∩ Max(X), 1 ≤ k ≤ m.

Assume that {Cj}s
l=1 is the family of connected components of U1. Let Γ be a

path as in (5.1) joining some p ∈ Min(X) ∩ C1 to some q ∈ Min(X) ∩ Cl for some
2 ≤ l ≤ s. We can assume that Γ is an arc (that is, xi ̸= xj if i ̸= j) by removing
all cycles in Γ.

We can also assume, without loss of generality, that Γ ∩ U1 reduces to {p, q},
since otherwise we can consider the subarc Γ′ ⊆ Γ running from the last element
of Γ in Min(X) ∩C1 to the first element of Γ in Min(X) ∩ (U1 −C1). In particular,
x2k−1 /∈ U1 for all 1 ≤ k ≤ m.

For each 0 ≤ k ≤ m− 1, we will write j = j(k) if x2k+1 ∈ Uj , with j = 2, . . . , n,
and take some point qk /∈ X. Consider the space Y = X∪{qk}m

k=1 with the ordering
generated by the ordering on X and x2k, x2k+2 < qk < x2k+1 (0 ≤ k ≤ m − 1).
Notice that the minimal open sets of qk and x2k+1 in Y are UY

qk
= {qk, x2k, x2k+2}

and UY
x2k+1

= Ux2k+1 ∪ {qk}. This determines a new arc Γ̂ ≡ p = y0 < q1 >

y2 · · · < q2m+1 > y2m = q between p and q. Notice that Γ̂ is open in Y and, clearly,
contractible.

Let U ′
1 = U1 ∪ Γ̂ and U ′

j = Uj ∪ {qk | j = j(k)} (2 ≤ j ≤ n). These sets are open
sets in Y and all the points qk are up beat points in Y and those qk with j = j(k)
are, in addition, up beat points in U ′

j . Hence Y and U ′
j retract onto X and Uj ,

respectively. Moreover, the family of connected components of U ′
1 consists of the

union C1 ∪ Γ̂ ∪ Cl and the former components Ci with i ̸= 1, l.
Finally, as (C1 ∩ Cl) ∩ Γ̂ = {p, q} and C1, Cl and Γ̂ are contractible, so is the

component C1 ∪ Γ̂ ∪ Cl.
We observe that, since the x2k−1’s are maximal elements, one gets height(Y ) =

height(X) if height(X) ≥ 2 and height(Y ) = 2 otherwise. □

Proof of Theorem 5.1. Assume cat(X) = n and let X =
⋃n

j=1 Uj be an open cov-
ering where each Uj is contractible in X. Then Lemma 5.3 yields that each Uj is
a disjoint union of open sets contractible in themselves.

By applying Lemma 5.4 recursively on the number of connected components of
U1 we construct a finite space X1 with the same homotopy type as X such that
X1 =

⋃n
j=1 U

1
j , where U1

j is contractible and each U1
j is homotopy equivalent to Uj

for j ≥ 2. In particular, each U1
j has the same number of (contractible) components

as Uj for j ≥ 2.
Now one applies recursively Lemma 5.4 to U1

2 in X1 to get a new space X2 with
the same homotopy type as X1 such that X2 =

⋃n
j=1 U

2
j is an open covering of X2,

where U2
j is contractible and U2

j is homotopy equivalent to U1
j whenever j ̸= 2. In

particular, U2
1 is contractible.

This way we proceed inductively on n to get a space Xn within the homo-
topy class of X such that Xn admits an open covering {Un

j }n
j=1 where each Un

j

is contractible. Hence Cat(X) ≤ n = cat(X) and so Cat(X) = cat(X). As
observed in Lemma 5.4, we have height(Xn) = max{2, height(Xn−1)} = · · · =
max{2, height(X)} = 2. □
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Remark 5.5. As an immediate consequence of Lemma 5.3 we get that an open
set U is contractible in a finite space of height 1 if an only if it does not contain a
cycle, that is, there is no sequence of the form x1, y1, x2, y2, . . . , xn with x1 = xn

and xi > yi < xi+1 for 1 ≤ i ≤ n− 1.
A cycle is a special instance of a certain configuration known as a crown; see

[28, Theorem] and [12].

As mentioned in Section 2, a lower bound for the LS-category of a finite T0-
space is given by the simplicial category of its order complex O(X), scat(O(X)).
Moreover, if K is a graph, then scat(K) is equal to the vertex arboricity va(K)
of K, see [15]. Recall that given a graph G the vertex arboricity va(G) of G is the
minimum n for which the vertex set of G admits a partition Pn = {V1, . . . , Vn}
such that for every i = 1, . . . , n the subgraph of G induced by the vertices of Vi is
acyclic.

On the other hand, an upper bound for the LS-category of finite spaces of
height 1 can be obtained in terms of vertex arboricity for multigraphs.

Given a space X of height 1, let us define the multigraph Γ(X) associated to X
in the following way: The vertex set of Γ(X) is Max(X); a simple edge exists
between any two vertices v, w ∈ Max(X) if the corresponding minimal open sets
Uv and Uw have exactly one common neighbour; and a double edge connects two
vertices v, w ∈ Max(X) if the corresponding minimal open sets Uv and Uw have
more than one common neighbour.

A description of the LS-category in terms of graph arboricity is accomplished
by a sort of relative arboricity as follows. Given a graph G = (V,E), a domination
set of G is a set D ⊆ V such that each vertex in V \D is adjacent to some vertex
of D. Then the D-arboricity aD(G) of G is the minimum n for which D admits a
partition {D1, . . . , Dn} such that for every i = 1, . . . , n the subgraph of G given by
the union of the edges of G incident to the vertices in Di is acyclic. The previous
remarks are summarized in the following proposition:

Proposition 5.6. The following (in)equalities hold for any finite space of height 1:

va(O(X)) ≤ cat(X) = aMax(X)(O(X)) ≤ va(Γ(X)).

Proof. Observe that the first inequality is already known. The equality in the
middle follows from the fact that if UJ is a prime open set, then the corresponding
subgraph GJ ⊆ O(X), generated by the edges incident at vertices of J , is acyclic
if and only if each component of UJ is contractible. We then apply Lemma 5.3.

To check the second inequality, let {J1, . . . , Jn} be a partition of Max(X) such
that Γi(X) =

⋃
j∈Λi

Tj is a forest. Let Vj be the vertex set of the tree Tj , and
Uj =

⋃
x∈Vj

Ux. Now observe that the open sets Ui =
⋃

j∈Λi
Uj do not contain

cycles (see Remark 5.5). Indeed, any such cycle yields a cycle in Tj , in the classical
graph-theoretic sense. Therefore, Ui is contractible in X by Remark 5.5, and then
cat(X) ≤ va(Γ(X)). □
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The upper bound provided by the multigraph Γ(X) may not be very accurate,
as the following example shows.

Example 5.7. For n = 2k, let X be the finite space of height 1 with A =
{a0, a1, . . . , an} as points at level 0, {b0, . . . , bn} as points at level 1, and such
that Ub0 = {b0} ∪ A, while Ubi

= {bi, a0, ai} for i ≥ 1. Then U1 =
⋃n

i=1 Ubi
and

U2 = Ub0 are contractible open sets such that U1 ∪U2 = X, so that cat(X) = 2. In
contrast, no set with three or more bi (i ≥ 1) as well as no set containing b0 and
some bi (i ̸= 0) generates an acyclic graph in Γ(X), and so va(Γ(X)) = k + 1.

6. A contractibility algorithm

In this section, we present an algorithm to obtain the core of a finite T0-space X,
and, in particular, decide whether X is contractible or not. The algorithm is
based on the following basic observation which is an immediate consequence of the
homotopical properties of beat points.

Fact. If X is a contractible space and x is a beat point of X, then X − {x} is
contractible.

We next describe the procedure.

Algorithm: Contractibility Test (CT)
Input: A finite T0-space X as a poset.
Output: The core of X and the answer to the question “Is X contractible?”
(1) Identify all the beat points of X.
(2) If X has no beat points and is itself a point, STOP. Otherwise, go to (3).
(3) If X has no beat points and is not a point, STOP (and we have reached

the core of X). Otherwise, go to (4).
(4) Remove the beat points identified in (1).
(5) Rename the obtained space as X.
(6) Go to (1).

As we are dealing with finite spaces, the algorithm terminates. If it terminates
in some iteration at Step (2), the original space was contractible, while if it stops
in some iteration at Step (3), the original space was not.

Note that the bulk of the algorithm is Step (1), the detection of the beat points.
A careful analysis of this step is undertaken in the proof of the following lemma,
which shows that the procedure finishes in polynomial time.

Lemma 6.1. For a finite space X of cardinality n, obtaining its core and detecting
its contractibility have time complexity of order O(n4).

Proof. Firstly, the transitive reduction algorithm described in [21] must be per-
formed in order to obtain a Hasse diagram of the space X. Let D = (V,E),
V = {v1, v2, . . . , vn}, be the digraph representing the Hasse diagram of X. By
abuse of notation, we say that a vertex b is a beat point of D if it corresponds to
a beat point of X. A vertex b of D is a beat point if and only if b has indegree or
outdegree (possibly both) equal to one in D.
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Let us consider the adjacency matrix A = (aij)n×n of D, defined by aij = 1 if
(vi, vj) ∈ E and aij = 0 otherwise. For each beat point b with indegree δi(b) = 1
and outdegree δo(b) = k > 0, let us consider the edge (a, b) providing the only in-
edge. Removing a beat point produces a sequence of operations over the matrix A
that consists of:

(1) Replacing the row of a by the addition of the rows of a and b and any
out-edge (b, vj) by a new out-edge (a, vj).

(2) Deleting the column and the row corresponding to b.
For each beat point b with δo(b) = 1 and δi(b) = h > 0 an analogous method is
used, by interchanging the roles of columns and rows in operations (1) and (2).

This way, after the removal of all beat points of D, a new acyclic digraph D′ =
(V ′, E′) is obtained satisfying |V ′| ≤ |V | − 1 and |E′| ≤ |E| − 1. Two situations
are possible:

(a) D′ is the Hasse diagram of a new spaceX ′, that is, the transitivity property
of X ′ is reflected in D′ ((a, b), (b, c) ∈ E′ implies (a, c) /∈ E′).

(b) D′ is not the Hasse diagram of any space since there are three edges (a, b),
(b, c), (a, c) ∈ E′ for some vertices a, b, c ∈ V ′.

In situation (a) new beat points must be searched for D′, while in (b) the
transitive reduction algorithm must be performed again in order to obtain a new
digraph corresponding to a Hasse diagram of a new space X ′.

Now, we study the time complexity of the entire procedure. Detecting the set
of beat points of D can be done in O(n2) time, since it suffices to find out in the
matrix A arrows with only one 1 and columns with only one 1. It is clear that,
for a beat point b, operations (1) and (2) have time complexity of constant order.
According to [21], the time complexity of obtaining the transitive reduction of an
acyclic digraph is O(n3), where n is the order of the digraph. In the worst case,
only one beat point is eliminated in each step, and the vertex set decreases by one
after each removal. Hence we can conclude that the total time complexity in the
worst case is of order

∑n
k=1 k

3 = n2(n+1)2

4 , that is, O(n4). □

7. An algorithmic approach to the geometric category

In this section, we explore possible algorithmic treatments of the geometric cat-
egory and the other related numerical parameters Catu and gcatp for a finite T0-
space X. With this purpose we introduce the following definition: A subset J ⊂ X
is said to be compatible if the open set UJ =

⋃
x∈J Ux is contractible.

We next proceed to analyze the compatibilities by using the CT-algorithm, which
allows us to decide whether J is compatible or not. Moreover, in order to deter-
mine Catu(X) we first apply the CT-algorithm to find the core X0 of X. For the
prime strong geometric category gcatp(X), we first reduce X to its set of maximal
elements and then analyse the compatibilities among them.

There are two possible approaches when undertaking this calculation. The first
one consists in identifying the compatibility (or not) of all subsets of X for gcat(X),
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Max(X) for gcatp and Max(X0) for Catu(X), and then deriving from this infor-
mation the exact value of the corresponding numerical parameter (or, equivalently,
the covering number of an appropriate hypergraph associated to X in Section 8).
We describe below greedy algorithms that work in this context. Unfortunately,
there will be instances of spaces for which these procedures will need exponential
time to solve the problem, although they should be useful for “small” cases. On
the other hand, we may investigate bounds for these numerical parameters without
computing the compatibility (or not) of all subsets of X (Max(X) or Max(X0),
respectively) but only of a number of them that involve a polynomial number of
operations. This can be achieved by restricted applications of the mentioned algo-
rithm, as we will also see below.

We will proceed to describe the algorithm for the geometric category gcat(X).
In a similar way we can deal with gcatp(X) (Catu(X), respectively) simply by
taking below the smaller set Max(X) (Max(X0), respectively) in the place of X
and prime open sets in the place of all open sets of X (X0, respectively).

Observe that, for |X| = n, there are 2n − 1 non-empty different collections of
such open sets. As singletons are clearly compatible, in principle we should take
account of 2n − n− 1 collections.

7.1. Greedy strategies. Given k ≥ 2, we present two systematic greedy proce-
dures to check the compatibility of collections of k minimal open sets that at the
same time provides upper bounds for gcat(X).
Notation. For simplicity, given a finite T0-space with |X| = n, we will write
X = {1, . . . , n} so that for J = {i1, i2, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ n, we
denote UJ =

⋃
i∈J Ui simply by (i1, i2, . . . , ik). The number k will be called the

length of the collection J .
Let us now describe the first algorithm, which we will call U-algorithm; the

name comes from the fact that we check sets of prime open sets with growing
length, “going up”.
U-Algorithm:
Input: The family of minimal open sets UJ with J ⊂ X, |X| = n.
Output: An upper bound for gcat(X), or gcat(X) = n.
(1) Set k = 2; bound = n.
(2) For k ≤ n check CT for the

(
n
k

)
different collections of minimal open sets

of length k.
If at least one is compatible, then set bound = n−k+1, gcat(X) ≤ bound
else gcat(X) ≤ bound.
k = k + 1.

(3) If bound < n set gcat(X) ≤ bound and STOP
else set gcat(X) = n and STOP.

Remark 7.1. If there is a collection C = {i1, . . . , ik} of length k that is compatible,
then the covering given by (i1, . . . , ik) and the remaining open sets assures that
gcat(X) ≤ n − k + 1. The algorithm does not give in general an exact value
for the gcat(X), because the coverings whose length gives gcat(X) could not be
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identified by the algorithm. The exceptions are the cases k = n − 1 and k = n,
where the equality gcat(X) = 2 or gcat(X) = 1 is immediately deduced from the
corresponding inequality.

Note that a dual algorithm (D-Algorithm) is possible, starting from the unique
collection of length n, continuing with the collections of length n−1 and so on. The
output in this case in an upper bound for the category. Although the algorithms are
basically symmetric, there is a difference between them. In the U -algorithm, every
step can improve the bound obtained in the previous one. In the dual version,
however, the occurrence of a value for the bound of the category in some step
implies immediately that the algorithm stops, as the bound cannot be improved in
subsequent steps.

On the other hand, the compatibility structure of the minimal open sets is
completely described when you run until the end any of the two algorithms; this
is important in order to get an exact computation of gcat(X) using the tools of
hypergraph theory described in last section.

In general, the complexity of the algorithms (when computing the whole compat-
ibility structure) is exponential in the number n of open minimal sets, as 2n −n−1
collections of open minimal sets must be checked. However, if we are only inter-
ested in bounds for the category and we run the algorithm only until some fixed
length, the complexity is polynomial in n. For a certain length k, we will call U(k)
and D(n− k) the shortened versions of the U -algorithm and its dual, respectively.
In the case of the U(k)-algorithm, the fact that there are

(
n
k

)
different collections of

k minimal open sets and that checking the CT-algorithm for a collection of k min-
imal open sets has complexity O(k4) (Lemma 6.1) implies that the complexity of
this algorithm is O(nkk4). A similar reasoning for the D(n− k)-algorithm gives a
complexity of O(nk+4), bigger than the previous one. So from the point of view of
the complexity, the U -algorithm is better than its dual, the D-algorithm.

It could be also interesting to combine both approaches, starting from the set of
all minimal open sets, then checking pairs, then checking collections of length n−1,
then triplets, and so on. Alternatively, one can start by checking compatibilities
over a random sample of collections of minimal open sets, to get a clue over the
number of compatibilities: a high number of them would recommend to use the
first algorithm, while a low number would indicate that the dual version would be
more useful.

7.2. Heuristics. In this subsection we suggest heuristic ways of obtaining bounds
for the geometric category of X. Recall that X = {1, . . . , n} and contractible
open sets are identified as ordered compatible subsets of X. The goal is to find a
covering of X consisting of a number of contractible open sets as close as possible
to gcat(X). We follow the notation described at the beginning of Section 7.1.

Heuristic 1. First apply the CT-algorithm to (1, 2). If this set is contractible,
then apply the CT-algorithm to (1, 2, 3), and iterate the process until the smallest
k such that {1, 2, 3, . . . , k} is not compatible is found. Then one can proceed in
different ways, in order to identify a covering, which in general have linear or at
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most polynomial complexity. For example, consider the following scheme. The
first element of our covering will be (1, 2, 3, . . . , k− 1). Apply the CT-algorithm to
(k, k+1). If this set is contractible, apply the CT-algorithm to (k, k+1, k+2), and
iterate the process until you find the smallest j such that {k, k+1, . . . , (k+j)} is not
compatible. The second element of the covering will then be (k, k+1, . . . , k+j−1).
Now iterate the process starting with the contractibility of (k + j, k + j + 1). The
process finishes when {n} has been assigned to a member of the covering. It is easy
to develop variations of this scheme, checking, for example, (1, 2, . . . , k − 1, k + 1)
after (1, 2, 3, . . . , k − 1) at first, and/or considering different ways to perform the
updating in the covering.

Heuristic 2. A different approach is to fix a certain k < n/2, and to check
the compatibility of all the subcollections of length smaller or equal than k. This
can be always undertaken in polynomial time of degree k. Observe that k should
be independent of n in order to get the polynomial complexity. After all these
compatibilities have been checked, we give an order to the set A of compatible
subcollections (where the unitary ones are included), and we call Ai the i-th sub-
collection in this ordered set. Now we can define a covering {U1, . . . , Uj} in the
following way: U1 = UA1 ; U2 = UAi1

, where Ai1 ∈ A with smallest subindex such
that Ai1 ∩A1 = ∅ (alternatively, Ai1 −A1 ̸= ∅); U3 = UAi2

with Ai2 ∈ A with small-
est subindex such that Ai2 ∩A1 = Ai2 ∩Ai1 = ∅ (alternatively, Ai2 −(A1∪Ai1) ̸= ∅);
and so on. Observe that different orders give rise to different coverings and that
checking all possible orders allows one to obtain the covering with the smallest
cardinality that can be constructed using collections of length at most k.

Let us also remark that in Heuristic 1 the CT-algorithm is applied a linear
number of times (precisely, n − 1 times) while in Heuristic 2 the complexity time
needed to check the compatibilities is of polynomial order.

8. Compatibility structures, Boolean functions and hypergraphs

The structures of compatibility defined by the geometric category and the related
LS-type numbers Catu and gcatp can be modeled by a Boolean function that sends
compatible sets (possibly empty) to 0 and incompatible sets to 1. An analogous
notion of compatibility can be defined for cat(X) on P(Max(X)) by considering a
prime open set J ⊆ Max(X) to be cat-compatible if UJ is contractible inside of X
(see Lemma 4.2).

Observe that if an open set U is contractible inside of X, every subset of U is
also contractible inside of X. Hence, subsets of compatible collections in the sense
of cat are always compatible, and the Boolean function for cat is monotonic. This
is not the case for the other LS-type numbers since open subsets of contractible
open sets need not be contractible (for instance, the open set Ud1 ∪Ud2 in the space
of Example 3.2 is not contractible but it is part of the contractible minimal open
set Ub).

Although the cat-compatibility structure yields a monotonic Boolean function,
the algorithmic approach in Section 6 does not apply to cat. This is because a
starting algorithm similar to the Contractibility Test is significantly more complex
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for the LS-category, as checking whether a certain subset U ⊆ X is contractible inX
requires devising an algorithm that explores all possible homotopies starting from
the inclusion of U . It is worth pointing out that Tanaka [31] describes homotopies
between finite spaces in terms of relation matrices.

Notice also that the strong category Cat(X) requires, in principle, analyzing the
geometric category of all spaces within the homotopy type of X.

The following definition provides a general framework in terms of Boolean func-
tions for the LS-type invariants in this paper except for the strong category. Let
σ : P(Z) → {0, 1} be a (monotonic) Boolean function on a set Z. We call σ-category
of Z and denote by σ-cat(Z) the smallest integer n for which there exists a covering
{Ui}n

i=1 of Z such that each Ui is σ-compatible; that is, σ(Ui) = 0.
There is a natural hypergraph arising from a compatibility structure on a finite

T0-space X. More generally, any Boolean function σ : P(Z) → {0, 1} has associ-
ated a hypergraph such that σ-cat(Z) coincides with the covering number of the
hypergraph as defined in graph theory.

Recall that given a finite set V = {v1, . . . , vr} an hypergraph H in V is a family
E = {E1, . . . , Em} of subsets of V so that E ̸= ∅ and V =

⋃m
i=1 Ei. The elements

vi ∈ V are called vertices and the sets Ej ∈ E are the hyperedges of H. A hyper-
graph is termed simple or a Sperner hypergraph if all its hyperedges are maximal,
that is, if e′ ⊆ e ∈ E then e = e′.

Given a hypergraph H = (V,E), an hyperedge covering of H is a family of
hyperedges of H whose union is the vertex set V . The covering number ρ(H) of H
is the minimum cardinality of a hyperedge covering of H. When H is not Sperner,
we may consider its Sperner subhypergraph Ĥ = (V, Ê), where the hyperedges in
Ê are the maximal hyperedges in H. Clearly ρ(H) = ρ(Ĥ), so when dealing with
the covering number we can work with Sperner hypergraphs.

We refer to [5] and [7] for more information.
There is always a hypergraph H(σ) = (V,E) canonically associated to any

Boolean function σ : P(Z) → {0, 1}, with vertex set V = Z and E = {e ⊆ Z :
σ(e) = 0}.

Remark 8.1. Notice that for every subset U ⊆ Z, σ(U) = 0 if and only if U = e
for some e ∈ E. Hence, H(σ) describes completely the Boolean function σ. In fact,
in this way any hypergraph H describes a Boolean function, denoted by σ(H).
Also observe that a hypergraph may be associated to any function τ : A → {0, 1}
for a family of subsets A ⊆ P(Z).

Taking into account the previous considerations, the following result is easily
checked.

Proposition 8.2. The σ-category defined by a Boolean function σ coincides with
ρ(H(σ)), the covering number of H(σ).

Given any finite T0-space X, the previous proposition applies to the Boolean
functions σgcat on Z = X, σcat and σgcatp

on Z = Max(X) and σCatu
on Z = X0

(the core of X). Therefore, information about these parameters provides knowledge
of the corresponding covering number of the associated hypergraph, and conversely.
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It has been established that for a given hypergraph, computing its covering number
can be solved in polynomial time by using Boolean functions defined over it hyper-
edges set. However, finding a covering with at most k hyperedges is an NP-complete
problem whenever k is not fixed, [16].

Nevertheless, whenever the compatibility structure of Z is completely known,
the associated hypergraph H(σ) covering number and hence the σ-category are
bounded. For instance, according to [1], for a hypergraph H of n vertices and
m hyperedges such that any vertex lies in at least b ≥ 1 hyperedges and every
hyperedge size is at most a, we have

n

a
≤ ρ(H) ≤ ln(ml/bn)

ln(1 − b/n) + m

b

∑
1≤j≤l

1
j

for any integer l. Other bounds for some particular situations can be found in [1].
The covering number can be reformulated as in terms of the transversal number

of a hypergraph, which we now define. Recall that, given a hypergraph H = (V,E),
a set of vertices B ⊂ V is said to be a transversal if it meets every hyperedge e ∈ E.
The transversal number τ(H) is the minimum cardinality of a transversal. Each
transversal of H corresponds to a covering of the dual hypergraph Hd = (V d, Ed)
of H, and viceversa. Recall that the dual hypergraph Hd has E as its vertex set,
V d = E, and a hyperedge in Ed is a family ed

v = {e ∈ E | v ∈ e} for a given v ∈ V
(possibly ed

v = ed
w for w ̸= v), see [23]. This way ρ(H) = τ(Hd). In particular,

determining different versions of the category of a finite T0-space turns out to be
equivalent to determining a transversal number from the viewpoint of graph theory.

These problems are in general NP-complete, see [19]. Furthermore, they are
related to computing the so-called transversal hypergraph and hence to enumerate
maximal set of independent sets in a hypergraph [6], or to solve the Boolean func-
tion dualization problem [14]. These invariants have many applications in computer
science and, in particular, to logic and artificial intelligence, as described in [13].
According to [26], the best known algorithm for solving the hypergraph transversal
problem is due to Fredman and Khachiyan [17]. Actually, in [26] an algorithm for
computing the minimum covering (and transversal) number is obtained based on
the semi-tensor product of matrices, see [8] and [9].

Observe that, by Lemma 5.3 and Remark 5.5, we have a clear criterium about
the contractibility of a subspace of a finite T0-space X of height 1, so it is tempting
to recreate the monotonic Boolean function σ(H) induced by a Sperner hypergraph
H = (V,E) as the monotonic Boolean function associated to the LS-category of a
suitable X with Max(X) = V . The following example shows that it is not possible
to define such a space.

Example 8.3. Consider the hypergraph H1 = (V1, E1), where V1 = {1, 2, 3, 4, 5}
and E1 = P(V1) − {∅, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 4, 5}}. Its Sperner hypergraph
has as hyperedges Ê1 = {{1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}. If there was a
finite T0-space X of height 1 so that σcat = σ(H1), then σcat would be zero on all
subsets except for {1, 2, 3, 4}, {1, 2, 3, 5} and {1, 2, 3, 4, 5}. This would mean that
U = U1 ∪U2 ∪U3 ∪U4 and V = U1 ∪U2 ∪U3 ∪U5 would contain crowns X(1) and
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X(2) respectively, as depicted in Figure 5 (see Remark 5.5). Notice that in both
of them the order of appearance of the vertices {1, 2, 3} must be same, otherwise
σcat(U2 ∪ U3) = 1.

v1 v2 v3 v4

d1 d2 d3 d4

v1 v2 v3 v5

d3’ d5d2’d1’

x2
x1

Figure 5

In these conditions, it should be true that d(2) = d(2′) and d(3) = d(3′), other-
wise σcat(U1 ∪ U2) = 1 and σcat(U2 ∪ U3) = 1. Now we study the cases when d(1)
and d(1′) are or are not equal, and when d(4) and d(5) are or are not equal. In
any of the four possible cases we obtain subsets on which σcat takes on the value 1
when it should not.

It is unknown to the authors whether there exists a fixed k > 1 such that the
Boolean function σ(H) associated to an arbitrary H can be always modeled by
the Boolean function associated to the LS-category of a finite space of height k.
The same conclusion would be obtained regarding the computation of the covering
number of a hypergraph and, as apparently every combinatorial problem can be
reformulated as the determination of the covering number [18] this would reduce
such problems to the calculation of the LS-category of a finite T0-space of height k.

In the above recreation of a hypergraph, the collections of subsets of the vertices
which are not subsets of any hyperedge play an important role. In the example
described above these subsets and the intersections among them have large car-
dinalities with respect to the cardinality of the set of vertices. It seems that if
these subsets were small such a recreation would be plausible. The following is an
example of such phenomenon.

Example 8.4. Let H2 = (V2, E2) be the hypergraph with V2 = {0, 1, 2, 3, 4} and
E2 = P(V2) − {∅, U ⊆ V2 | U contains {0, 1}, {1, 2}, {2, 3}, {3, 4} or {0, 4}}. Its
Sperner hypergraph has as hyperedges Ê2 = {{0, 2}, {0, 3}, {1, 3}, {1, 4}, {2, 4}}.
Then the height-1 finite T0-space X whose Hasse diagram is depicted below has
σcat = σ(H2). Its Hasse diagram is the union of the Hasse diagrams of the
spaces (crowns) X(i, i + 1) considered as directed graphs, where the indices are
i = 0, 1, . . . , 4 mod 5. See Figure 6.
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i

di

x 1

23
4

d2d3

d1

d0

i1

di1

d4

0xi

Figure 6

We conclude with a question that arises from the previous considerations. It
appears to be both difficult and interesting.

Question. Identify the hypergraphs H for which there exists a finite T0-space of
height 1 with σcat = σ(H). This would help characterize the finite T0-spaces for
which the computation of their LS-category can be reduced to that of a height-1
space, where homotopy issues are under control.
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