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Vol. 64, No. 2, 2022, Pages 247–269
Published online: November 14, 2022
https://doi.org/10.33044/revuma.2735

ON ESSENTIAL SELF-ADJOINTNESS OF SINGULAR
STURM–LIOUVILLE OPERATORS

S. BLAKE ALLAN, FRITZ GESZTESY, AND ALEXANDER SAKHNOVICH

Abstract. Considering singular Sturm–Liouville differential expressions of
the type

τα = −(d/dx)xα(d/dx) + q(x), x ∈ (0, b), α ∈ R,

we employ some Sturm comparison-type results in the spirit of Kurss to derive
criteria for τα to be in the limit-point and limit-circle case at x = 0. More
precisely, if α ∈ R and, for 0 < x sufficiently small,

q(x) ≥ [(3/4) − (α/2)]xα−2,

or, if α ∈ (−∞, 2) and there exist N ∈ N and ε > 0 such that, for 0 < x

sufficiently small,

q(x) ≥ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

+ [(3/4) + ε]xα−2[ln1(x)]−2,

then τα is nonoscillatory and in the limit-point case at x = 0. Here iterated
logarithms for 0 < x sufficiently small are of the form

ln1(x) = | ln(x)| = ln(1/x), lnj+1(x) = ln(lnj(x)), j ∈ N.

Analogous results are derived for τα to be in the limit-circle case at x = 0. We
also discuss a multi-dimensional application to partial differential expressions
of the type

− div |x|α∇ + q(|x|), α ∈ R, x ∈ Bn(0; R)\{0},

with Bn(0; R) the open ball in Rn, n ∈ N, n ≥ 2, centered at x = 0 of radius
R ∈ (0, ∞).

1. Introduction

In a nutshell, we are interested in deriving limit-point and limit-circle criteria
for singular differential expressions of the type

τα = −(d/dx)xα(d/dx) + q(x), x ∈ (0, b), α ∈ R. (1.1)
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The principal results we prove in Theorems 3.1 and 3.3 on the basis of Sturm
comparison-type results initiated by Kurss are the following: Suppose that α ∈ R
and, for 0 < x sufficiently small,

q(x) ≥ [(3/4) − (α/2)]xα−2, (1.2)

or, in the context of logarithmic refinements of (1.2), assume that α ∈ (−∞, 2) and
that there exist N ∈ N and ε > 0 such that, for 0 < x sufficiently small,

q(x) ≥ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

+ [(3/4) + ε]xα−2[ln1(x)]−2.

(1.3)

(For the definition of the iterated logarithms lnℓ(·), ℓ ∈ N, we refer the reader to
(3.3).) Then, in either situation (1.2) and (1.3), τα is nonoscillatory and in the
limit-point case at x = 0.

Similarly, if α ∈ (−∞, 2) and there exists ε ∈ (0, 1) (depending on α) such that,
for 0 < x sufficiently small (depending on ε),

q(x) ≤ [(3/4) − (α/2) − ε]xα−2, (1.4)

or, if α ∈ (−∞, 2) and there exist N ∈ N and ε ∈ (0, 1) (depending on α and N),
such that, for 0 < x sufficiently small (depending on ε and N),

q(x) ≤ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

− [ε(2 − α)/2]xα−2
N∏

k=1
[lnk(x)]−1.

(1.5)

Then, in either situation (1.4) and (1.5), τα is in the limit-circle case at x = 0.
We note that the amount of literature on limit-point/limit-circle criteria for

Sturm–Liouville operators is so immense that there is no possibility to account
for it in this short paper. The reader can find very thorough discussions of this
circle of ideas in [6, Ch. XIII.6, Sect. XIII.10.D], [10, Ch. 4.6], [18, Sect. 23.6], [21,
App. to Sect. X.1], [30, Sect. 13.4], [31, Ch. 7], and the extensive literature cited
therein. One of the driving motivations for writing this paper was to emphasize
the simplicity of proofs of Theorems 3.1 and 3.3 (essentially, they are reduced to
certain computations), given the Sturm comparison results, Theorems 2.8 and 2.9,
in the spirit of Kurss.

We now briefly turn to the content of each section: Section 2 provides the
necessary background on minimal and maximal operators associated with gen-
eral three-coefficient Sturm–Liouville differential expressions, and it recalls Weyl’s
limit-point/limit-circle classification and some oscillation theory, as well as Sturm
comparison results, quoting some extensions of the classical work by Kurss [17].
Section 3 contains our principal results, Theorems 3.1 and 3.3, as summarized in
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(1.2)–(1.5). Section 4 considers an elementary multi-dimensional application to
partial differential expressions of the type

− div |x|α∇ + q(|x|), α ∈ R, x ∈ Bn(0;R)\{0},

with Bn(0;R) the open ball in Rn, n ∈ N, n ≥ 2, centered at x = 0 of radius R ∈
(0,∞). Finally, Appendix A contains some more involved computations needed in
the proofs of Theorems 3.1 and 3.3.

2. Some background on Sturm–Liouville operators

In this section we briefly recall the necessary background on maximal and min-
imal operators corresponding to three-coefficient Sturm–Liouville differential ex-
pressions, introduce the notion of deficiency indices for symmetric Sturm–Liouville
operators, discuss Weyl’s limit-point/limit-circle dichotomy, recall some oscillation
theory, and discuss an extension of Sturm comparison results, applicable to the
limit-point/limit-circle case, following Kurss [17]. Standard references for much of
this material are, for instance, [3, Ch. 6], [4, Chs. 8, 9], [6, Sects. XIII.6, XIII.9,
XIII.10], [10, Ch. 4], [11, Ch. III], [18, Ch. V], [19], [20, Ch. 6], [27, Ch. 9], [28,
Sect. 8.3], [30, Ch. 13], [31, Chs. 4, 6–8].

We start with the basic set of assumptions throughout this section:

Hypothesis 2.1. Let (a, b) ⊆ R and suppose that p, q, r are (Lebesgue) measurable
functions on (a, b) such that the following three conditions hold:

(i) r > 0 a.e. on (a, b), r ∈ L1
loc((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1
loc((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1
loc((a, b); dx).

Given Hypothesis 2.1, we briefly study Sturm–Liouville differential expressions τ
of the type,

τ = 1
r(x)

[
− d

dx
p(x) d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R. (2.1)

Given τ as in (2.1), the corresponding maximal operator Tmax in L2((a, b); r dx)
associated with τ is defined by

Tmaxf = τf,

f ∈ dom(Tmax) =
{
g ∈ L2((a, b); r dx)

∣∣ g, g[1] ∈ ACloc((a, b));
τg ∈ L2((a, b); r dx)

}
,

(2.2)

with g[1] = pg′ denoting the first quasi-derivative of g. The preminimal operator.
Tmin in L2((a, b); r dx) associated with τ is defined by

.
Tminf = τf,

f ∈ dom
( .
Tmin

)
=
{
g ∈ L2((a, b); r dx)

∣∣ g, g[1] ∈ ACloc((a, b));
supp(g) ⊂ (a, b) is compact; τg ∈ L2((a, b); r dx)

}
.

(2.3)
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One can prove that
.
Tmin is closable and then define the minimal operator Tmin in

L2((a, b); r dx) as the closure of
.
Tmin,

Tmin =
.
Tmin. (2.4)

The following result recalls Weyl’s celebrated alternative:

Theorem 2.2. Assume Hypothesis 2.1. Then the following alternative holds:
(i) For every z ∈ C, all solutions u of (τ−z)u = 0 are in L2((a, b); r dx) near b

(resp., near a).
(ii) For every z ∈ C, there exists at least one solution u of (τ−z)u = 0 which is

not in L2((a, b); r dx) near b (resp., near a). In this case, for each z ∈ C\R,
there exists precisely one solution ub (resp., ua) of (τ − z)u = 0 (up to
constant multiples) which lies in L2((a, b); r dx) near b (resp., near a).

This naturally leads to the notion that τ is in the limit-point or limit-circle case
at an interval endpoint as follows:

Definition 2.3. Assume Hypothesis 2.1.
In case (i) in Theorem 2.2, τ is said to be in the limit-circle case at b (resp., at a).
In case (ii) in Theorem 2.2, τ is said to be in the limit-point case at b (resp., at a).

The deficiency indices of Tmin are then given by

n±(Tmin) = dim(ker(Tmax ∓ iI))

=


2 if τ is in the limit-circle case at a and b,
1 if τ is in the limit-circle case at a

and in the limit-point case at b, or vice versa,
0 if τ is in the limit-point case at a and b.

(2.5)

In particular, Tmin = Tmax is self-adjoint
(
i.e.,

.
Tmin is essentially self-adjoint

)
if

and only if τ is in the limit-point case at a and b, underscoring the special role
played by limit-point endpoints (as opposed to a limit-circle endpoint that requires
a boundary condition in connection with self-adjointness issues of Tmin).

We continue with a few remarks on Sturm’s oscillation theory (see, e.g., [10,
Theorem 7.4.4], [29, Sect. 14], and the detailed list of references cited therein).

Definition 2.4. Assume Hypothesis 2.1.
(i) Fix c ∈ (a, b) and λ ∈ R. Then τ − λ is called nonoscillatory at a (resp.,

at b), if there exists a real-valued solution u(λ, ·) of τu = λu that has
finitely many zeros in (a, c) (resp., in (c, b)). Otherwise, τ − λ is called
oscillatory at a (resp., at b).

(ii) Let λ0 ∈ R. Then Tmin is called bounded from below by λ0, and one writes
Tmin ≥ λ0I, if

(u, [Tmin − λ0I]u)L2((a,b);r dx) ≥ 0, u ∈ dom(Tmin). (2.6)
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Remark 2.5. By Sturm’s separation theorem, τ −λ, λ ∈ R, is nonoscillatory at a
(resp., at b) if and only if every real-valued solution u(λ, ·) of τu = λu has finitely
many zeros in (a, c) (resp., in (c, b)).

The following is a key result relating the notions of boundedness from below and
nonoscillation.

Theorem 2.6. Assume Hypothesis 2.1. Then the following two conditions are
equivalent:

(i) Tmin (and hence any symmetric extension of Tmin) is bounded from below.
(ii) There exists ν0 ∈ R such that, for all λ < ν0, τ − λ is nonoscillatory at a

and b.

We also recall Sturm’s comparison result in the following form.

Theorem 2.7. Assume that p, qj, r satisfy Hypothesis 2.1 and set

τj = r(x)−1[−(d/dx)p(x)(d/dx) + qj(x)] for a.e. x ∈ (a, b) ⊆ R, j = 1, 2. (2.7)
Fix λ ∈ R and let uj be a real-valued solution of τjuj = λuj, j = 1, 2. If, for some
x0 ∈ (a, b) ⊆ R,

q2 ≥ q1 a.e. on (a, b),
u1 ̸= 0 on (a, b)\{x0},

u2(x0) = u1(x0), u
[1]
2 (x0) = u

[1]
1 (x0),

(2.8)

then
|u2(x)| ≥ |u1(x)| for all x ∈ (a, b); (2.9)

in particular,
u2 ̸= 0 on (a, b)\{x0}. (2.10)

Next, we also recall the following general comparison result (due to Kurss [17]
in the special case1 r = 1):

Theorem 2.8. Assume that p, qj, r satisfy Hypothesis 2.1 and set

τj = r(x)−1[−(d/dx)p(x)(d/dx) + qj(x)] for a.e. x ∈ (a, b) ⊆ R, j = 1, 2. (2.11)
Suppose that τ1 is nonoscillatory and in the limit-point case at a and that q2 ≥ q1
a.e. on (a, b) ⊆ R. Then τ2 is also nonoscillatory and in the limit-point case at a.
The analogous statement applies to the endpoint b.

Theorem 2.8 is a consequence of Theorem 2.7 (cf. [10, Theorem 7.4.6]), as is its
limit-circle analogue below:

Theorem 2.9. Under the assumptions of Theorem 2.8, suppose τ1 is nonoscilla-
tory and in the limit-circle case at a, and that q2 ≤ q1 a.e. on (a, b) ⊆ R. Then τ2
is in the limit-circle case at a. The analogous statement applies to the endpoint b.

1 One of us, F. G., is indebted to Hubert Kalf for kindly and repeatedly sharing his detailed
notes on the proof of Theorem 2.8 and on various ramifications of this circle of ideas (private
communications, May 2015 and September 2017).
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Proof. By assumption, both fundamental solutions u1,1 and u1,2 of τ1u1 = 0 are
strictly positive on (a, x0) for some x0 ∈ (a, b) with u1,j ∈ L2((a, x0); r dx), j ∈
{1, 2}. Let u2,j , j ∈ {1, 2}, be the solutions of τ2u2 = 0 with initial data u2,j(x0) =
u1,j(x0) and u

[1]
2,j(x0) = u

[1]
1,j(x0). Then, by Theorem 2.7, |u2,j(x)| ≤ |u1,j(x)| for

all x ∈ (a, x0), which implies u2,j ∈ L2((a, x0); r dx), j ∈ {1, 2}. Thus τ2 is in the
limit-circle case at a. □

3. Results on the limit-point and limit-circle case

In this section we prove our principal limit-point/limit-circle results on the spe-
cial two-coefficient differential expression τα in (3.2) below at x = 0.

Specializing to the case of half-line two-coefficient Sturm–Liouville operators,
where

a = 0, b ∈ (0,∞) ∪ {∞}, p(x) = xα, α ∈ R, r(x) = 1, x ∈ (0, b),
q ∈ L1

loc((0, b); dx) is real-valued a.e.,
(3.1)

τ in (2.1) now takes on the simplified form

τα = −(d/dx)xα(d/dx) + q(x) for a.e. x ∈ (0, b), α ∈ R. (3.2)

Given α ∈ R, or α ∈ (−∞, 2), we will derive conditions on q that imply the
limit-point (and nonoscillatory) or limit-circle behavior of τα at x = 0.

Introducing iterated logarithms for 0 < x sufficiently small,

ln1(x) = | ln(x)| = ln(1/x), lnj+1(x) = ln(lnj(x)), j ∈ N (3.3)

(rendering lnℓ(·), 1 ≤ ℓ ≤ N , in Theorems 3.1 and 3.3 below, strictly positive), our
first principal result reads as follows:

Theorem 3.1. Suppose that q ∈ L1
loc((0, b); dx) is real-valued a.e. on (0, b).

(i) Let α ∈ R and assume that, for a.e. 0 < x sufficiently small,

q(x) ≥ [(3/4) − (α/2)]xα−2. (3.4)

Then τα is nonoscillatory and in the limit-point case at x = 0.
(ii) Let2 α ∈ (−∞, 2) and assume there exist N ∈ N and ε > 0 such that, for

a.e. 0 < x sufficiently small (depending on N and ε),

q(x) ≥ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

+ [(3/4) + ε]xα−2[ln1(x)]−2 ≡ Qα,N,ε(x).

(3.5)

Then τα is nonoscillatory and in the limit-point case at x = 0.

Proof. In the following, 0 < x is assumed to be sufficiently small.

2 Only α ∈ (−∞, 2) can improve on item (i).
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(i) Abbreviating, for α ∈ R,

qα,0(x) = [(3/4) − (α/2)]xα−2, (3.6)

y0(x) = x−1/2, (3.7)
τα,0 = −(d/dx)xα(d/dx) + qα,0(x), (3.8)

one confirms that
(τα,0 y0)(x) = 0, α ∈ R. (3.9)

In particular, (3.7) and (3.9) prove that τα,0, α ∈ R, is nonoscillatory at x = 0.
Moreover, since for R > 0,

y0 /∈ L2((0, R); dx), α ∈ R, (3.10)

τα,0, α ∈ R, is nonoscillatory and in the limit-point case at x = 0, and hence so is
τα, α ∈ R, by Theorem 2.8.

(ii) Since the sum of the second and third terms on the right-hand side of (3.5)
would be nonnegative for α ≥ 2, Theorem 2.8 yields that only the case α ∈ (−∞, 2)
can improve upon item (i). Next, we abbreviate, for α ∈ (−∞, 2), N ∈ N, and
0 < x sufficiently small,3

qα,N (x) = [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

+ (3/4)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−2

+ xα−2
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−2
N∑

m=j+1

m∏
p=j+1

[lnp(x)]−1, (3.11)

yN (x) = x−1/2
N∏

k=1
[lnk(x)]−1/2, (3.12)

τα,N = −(d/dx)xα(d/dx) + qα,N (x), (3.13)

and claim (cf. Lemma A.1) that

(τα,N yN )(x) = 0, α ∈ (−∞, 2), N ∈ N. (3.14)

Once more, (3.12) and (3.14) prove that τα,N , α ∈ (−∞, 2), N ∈ N, is nonoscilla-
tory at x = 0. Moreover, since for 0 < δN sufficiently small,

yN /∈ L2((0, δN ); dx), (3.15)

3 If N = 1 one interprets, as usually, sums and products over empty index sets as 0 and 1,
respectively.
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τα,N , α ∈ (−∞, 2), N ∈ N, is nonoscillatory and in the limit-point case at x = 0.
Since, for 0 < ε and 0 < x both sufficiently small, one infers that

(3/4)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−2 + xα−2
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−2
N∑

m=j+1

m∏
p=j+1

[lnp(x)]−1

≤ [(3/4) + ε]xα−2[ln1(x)]−2, (3.16)

condition (3.5) implies that q(x) ≥ Qα,N,ε(x) ≥ qα,N (x) for 0 < ε and 0 < x suffi-
ciently small. Thus, Theorem 2.8 implies that also τα, α ∈ (−∞, 2), is nonoscilla-
tory and in the limit-point case at x = 0. □

Although not needed in the context of Theorem 3.1, we note that a second
(necessarily nonoscillatory) linearly independent solution ỹN of τα,Ny = 0 is a
consequence of the standard reduction of order approach:

ỹN (x) = yN (x)
ˆ c

x

dt t−αyN (t)−2, 0 < x < c sufficiently small. (3.17)

Remark 3.2. In connection with the nonoscillatory behavior of τα, we now re-
call the power-weighted and logarithmically refined Hardy inequalities in the form
(see [7] and the references therein)

ˆ ρ

0
dxxα|f ′(x)|2 ≥ (1 − α)2

4

ˆ ρ

0
dxxα−2|f(x)|2,

α ∈ R, ρ ∈ (0,∞) ∪ {∞}, f ∈ C∞
0 ((0, ρ)),

(3.18)

and
ˆ ρ

0
dxxα|f ′(x)|2 ≥ (1 − α)2

4

ˆ ρ

0
dxxα−2|f(x)|2

+ 1
4

N∑
j=1

ˆ ρ

0
dxxα−2

(
j∏

ℓ=1
[lnℓ(x/γ)]−2

)
|f(x)|2,

N ∈ N, α ∈ R, ρ, γ ∈ (0,∞), γ ≥ eNρ, f ∈ C∞
0 ((0, ρ)),

(3.19)

where

e0 = 0, ej+1 = eej , j ∈ N0 = N ∪ {0}. (3.20)

Inequalities (3.18) and (3.19) imply, in particular, that(
− d

dx
xα d

dx
− (1 − α)2

4 xα−2
)∣∣∣∣

C∞
0 ((0,ρ))

≥ 0,

α ∈ R, ρ ∈ (0,∞) ∪ {∞},
(3.21)
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and

(
− d

dx
xα d

dx
− (1 − α)2

4 xα−2 − 1
4x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x/γ)]−2
)∣∣∣∣

C∞
0 ((0,ρ))

≥ 0,

N ∈ N, α ∈ R, ρ, γ ∈ (0,∞), γ ≥ eNρ. (3.22)

All constants displayed in (3.18)–(3.22) are sharp (cf. [7]).
Since [(3/4) − (α/2)] ≥ −(1 − α)2/4 is equivalent to (α − 2)2 ≥ 0, which au-

tomatically holds for all α ∈ R, the assertion that τα,0, α ∈ R, is nonoscillatory
(cf. the paragraph following (3.9)) is of course consistent with Hardy’s inequality
(3.18), which implies the (much weaker) inequality(

− d

dx
xα d

dx
+
(

3
4 − α

2

)
xα−2

)∣∣∣∣
C∞

0 ((0,ρ))
≥ 0,

α ∈ R, ρ ∈ (0,∞) ∪ {∞}.

(3.23)

Similarly, the assertion that τα,N , α ∈ R, N ∈ N, is nonoscillatory (cf. the para-
graph following (3.14)) is consistent with the logarithmic refinements of Hardy’s
inequality (3.19) as [(3/4) − (α/2)] > −(1 − α)2/4 is equivalent to (α− 2)2/4 > 0,
which in turn automatically holds for all α ∈ (−∞, 2). The subtle difference
[(3/4) − (α/2)] > −(1 − α)2/4 versus [(3/4) − (α/2)] ≥ −(1 − α)2/4 now is crucial
as the leading logarithmic terms in (3.11) are of the form [lnℓ(x)]−1 as opposed to
the smaller terms [lnℓ(x)]−2 in (3.19) and (3.22). In particular, (3.22) now implies

(
− d

dx
xα d

dx
+
(

3
4 − α

2

)
xα−2 + α− 2

2 xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x/γ)]−1
)∣∣∣∣

C∞
0 ((0,ρ))

≥ 0,

N ∈ N, α ∈ R, γ ≥ eNρ, (3.24)

for suitable ρ, γ ∈ (0,∞), since for arbitrarily small 0 < δ ≡ (α − 2)2/4, the
expression δxα−2 dominates the second term on the right-hand side of (3.11) in a
sufficiently small neighborhood of x = 0.

Our second main result then reads as follows:

Theorem 3.3. Suppose that q ∈ L1
loc((0, b); dx) is real-valued a.e. on (0, b).

(i) Let α ∈ (−∞, 2) and assume that there exists ε ∈ (0, 1) (depending on α)
such that, for a.e. 0 < x sufficiently small (depending on ε),

q(x) ≤ [(3/4) − (α/2) − ε]xα−2. (3.25)

Then τα is in the limit-circle case at x = 0.
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(ii) Let α ∈ (−∞, 2) and assume there exist N ∈ N and ε ∈ (0, 1) (depending
on α and N) such that, for a.e. 0 < x sufficiently small (depending on N
and ε),

q(x) ≤ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

− (ε/2)(2 − α)xα−2
N∏

k=1
[lnk(x)]−1 ≡ Q̂α,N,ε(x).

(3.26)

Then, τα is in the limit-circle case at x = 0.

Proof. In the following, 0 < x is assumed to be sufficiently small.

(i) Abbreviating, for α ∈ (−∞, 2), β ∈ (0,∞),

qα,0,β(x) = [(3/4) − (α/2) − β]xα−2, (3.27)
yα,0,β,j(x) = xγα,β,j ,

γα,β,j = (1/2)(1 − α) − (1/2)(−1)j

{∣∣(2 − α)2 − 4β
∣∣1/2

, 0 < 4β ≤ (2 − α)2,

i
∣∣(2 − α)2 − 4β

∣∣1/2
, (2 − α)2 ≤ 4β,

α ∈ (−∞, 2), β ∈ (0,∞)\
{

(2 − α)2/4
}
, j = 1, 2, (3.28)

yα,0,(2−α)2/4,1(x) = x(1−α)/2, yα,0,(2−α)2/4,2(x) = x(1−α)/2 ln(1/x), (3.29)
γα,(2−α)2/4,j = (1 − α)/2, j = 1, 2,

τα,0,β = −(d/dx)xα(d/dx) + qα,0,β(x), (3.30)

one confirms that

(τα,0,β yα,0,β,j)(x) = 0, α ∈ (−∞, 2), β ∈ (0,∞), j = 1, 2. (3.31)

To verify the limit-circle property of τα,0,β , one needs to guarantee that, for some
ρ ∈ (0, 1), yα,0,β,j ∈ L2((0, ρ); dx), j = 1, 2; equivalently,

Re(γα,β,j) > −1/2, j = 1, 2. (3.32)

Inequality (3.32) in turn is equivalent to

α ∈ (−∞, 2), β ∈ (0,∞). (3.33)

Hence, choosing α ∈ (2,∞) and β ≡ ε ∈
(
0, (2 − α)2/4

]
yields that for 0 < ε

sufficiently small, τα,0,ε is in the limit-circle case and nonoscillatory (cf. (3.28)) at
x = 0. An application of Theorem 2.9 then yields that also τα is in the limit-circle
case at x = 0.
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(ii) We recall that qα,N is given by (3.11), and abbreviate, for N ∈ N and 0 < x
sufficiently small,4

qα,N,ε(x) = qα,N (x) − (ε/2)(α− 2)xα−2
N∏

k=1
[lnk(x)]−1 +

(
ε2/4

)
xα−2

N∏
k=1

[lnk(x)]−2

+ εxα−2
N∏

k=1
[lnk(x)]−1

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1, (3.34)

yN,ε(x) = x−1/2
N−1∏
k=1

[lnk(x)]−1/2[lnN (x)]−1/2−ε/2, (3.35)

ỹN,ε(x) = yN,ε(x)
ˆ x

x0

dt t−αyN,ε(t)−2, (3.36)

τα,N,ε = −(d/dx)xα(d/dx) + qα,N,ε(x). (3.37)

At this point we claim (cf. Lemma A.2 for details) that

(τα,N,ε yN,ε)(x) = 0, (τα,N,ε ỹN,ε)(x) = 0, α ∈ (−∞, 2), N ∈ N. (3.38)

Since, for 0 < δN sufficiently small,

yN,ε ∈ L2((0, δN ); dx), α ∈ (−∞, 2), N ∈ N, (3.39)

and (utilizing α ∈ (−∞, 2))
ˆ δN

0
dt t1−α

(
N−1∏
k=1

lnk(t)
)

[lnN (t)]1+ε < ∞, (3.40)

also
ỹN,ε ∈ L2((0, δN ); dx), α ∈ (−∞, 2), N ∈ N. (3.41)

Thus, τα,N,ε is in the limit-circle case and nonoscillatory (cf. (3.35)) at x = 0.
Moreover, since for 0 < ε and 0 < x sufficiently small,

qα,N,ε(x) ≥ [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

− (ε/2)(2 − α)xα−2
N∏

k=1
[lnk(x)]−1,

(3.42)

condition (3.26) implies that q(x) ≤ Q̂α,N,ε(x) ≤ qα,N,ε(x) for 0 < ε and 0 < x
sufficiently small. Thus, Theorem 2.9 implies that also τα, α ∈ (−∞, 2), is in the
limit-circle case at x = 0. □

Remark 3.4. Thus far we have focused on endpoint classifications at x = 0. It
is of course possible to address the limit-point case at x = ∞; however, this is
typically based on a markedly different technique and we provide an example next.

4 See footnote 3.
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For this purpose we abbreviate iterated logarithms for 0 < x sufficiently large as
follows:

Ln1(x) = ln(x), Lnj+1(x) = ln(Lnj(x)), j ∈ N. (3.43)
Next, let a ∈ R, α ∈ (−∞, 2], and consider τα in (3.2) on the interval [a,∞). Sup-
pose there exists C ∈ (0,∞) such that, for R ∈ (a,∞) sufficiently large (rendering
Lnℓ(·), 1 ≤ ℓ ≤ N , strictly positive) and some N ∈ N,

q(x) ≥ −Cx2−α
N∏

k=1
[Lnk(x)]2 for a.e. x ∈ [R,∞). (3.44)

Then τα, α ∈ (−∞, 2], is in the limit-point case at x = ∞.
For the proof it suffices to choose

p(x) = xα, M(x) = x2−α
N∏

k=1
[Lnk(x)]2, x ∈ [R,∞), (3.45)

and refer to [6, Theorem 16, p. 1406]. (For a three-coefficient analogue of the latter,
see [31, Theorem 7.4.3, pp. 148–149].)

For additional results regarding the absence of L2-solutions at x = ∞, implying
the limit-point case at x = ∞, we also refer the reader to [24], [25], and [26].

4. An elementary multi-dimensional application

In this section we briefly sketch an elementary multi-dimensional application of
Theorem 3.1 in connection with the partial differential expression − div(p(| · |)∇)+
q(| · |).

In n-dimensional spherical coordinates, the differential expression − div(p(|·|)∇)
on the n-dimensional ball Bn(0;R) ⊂ Rn, n ∈ N, n ≥ 2, R ∈ (0,∞), assuming

1/p ∈ L1((ε,R); dr), 0 < p ∈ AC([ε,R]) for all ε > 0, (4.1)

takes the form

− div p(|x|)∇ = −r1−n ∂

∂r

(
rn−1p(r) ∂

∂r

)
− p(r)

r2 ∆Sn−1 , x ∈ Bn(0;R)\{0},

(4.2)

where −∆Sn−1 denotes the Laplace–Beltrami operator associated with the (n− 1)-
dimensional unit sphere Sn−1 in Rn. When acting in L2(Bn(0;R)), which in
spherical coordinates can be written as L2(Bn(0;R); dnx) ≃ L2((0, R); rn−1dr) ⊗
L2(Sn−1), (4.2) becomes

− div p(|x|)∇ =
[

− d

dr
p(r) d

dr
− (n− 1)p(r)

r

d

dr

]
⊗ IL2(Sn−1) − p(r)

r2 ⊗ ∆Sn−1

(4.3)

(with IX denoting the identity operator on X ). The Laplace–Beltrami operator
−∆Sn−1 in L2(Sn−1), with domain dom(−∆Sn−1) = H2(Sn−1) (cf., e.g., [2]), is
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known to be essentially self-adjoint and nonnegative on C∞
0 (Sn−1) (cf. [5, Theo-

rem 5.2.3]). Recalling the treatment in [21, pp. 160–161], one decomposes the space
L2(Sn−1) into an infinite orthogonal sum, yielding

L2(Bn(0;R); dnx) ≃ L2((0, R); rn−1dr) ⊗ L2(Sn−1)

=
∞⊕

ℓ=0
L2((0, R); rn−1dr) ⊗ Yn

ℓ ,
(4.4)

where Yn
ℓ is the eigenspace of −∆Sn−1 corresponding to the eigenvalue ℓ(ℓ+n− 2),

ℓ ∈ N0, as
σ(−∆Sn−1) = {ℓ(ℓ+ n− 2)}ℓ∈N0 . (4.5)

In particular, this results in

− div p(|x|)∇ =
∞⊕

ℓ=0

[
− d

dr
p(r) d

dr
− (n− 1)p(r)

r

d

dr
+ ℓ(ℓ+ n− 2)p(r)

r2

]
⊗ IYn

ℓ
,

(4.6)

in the space (4.4).
To simplify matters, replacing the measure rn−1dr by dr and simultaneously

removing the term (n− 1)p(r)r−1(d/dr), one introduces the unitary operator

Un =

L
2((0, R); rn−1dr) → L2((0, R); dr),

f(r) 7→ r(n−1)/2f(r),
(4.7)

under which (4.6) becomes

− div p(|x|)∇ =
∞⊕

ℓ=0
U−1

n

[
− d

dr
p(r) d

dr
+ (n− 1)p

′(r)
2r

+ {[(n− 1)(n− 3)/4] + ℓ(ℓ+ n− 2)}p(r)
r2

]
Un ⊗ IYn

ℓ
,

(4.8)

still acting in the space (4.4). Thus, specializing to the case

p(r) = rα, α ∈ R, r ∈ (0, R], (4.9)

the self-adjoint Friedrichs L2-realization, H(0)
α,F , of − div | · |α∇ in the space (4.4)

then is of the form

H
(0)
α,F =

∞⊕
ℓ=0

U−1
n h

(0)
n,ℓ,α,F Un ⊗ IYn

ℓ
, (4.10)

where h(0)
n,ℓ,α,F , ℓ ∈ N0, represents the Friedrichs extension of the preminimal oper-

ator,
.
h

(0)
n,ℓ,α in L2((0, R); dr), associated with the differential expression

τ
(0)
n,ℓ,α = − d

dr
rα d

dr
+ [(n− 1)(n− 3 + 2α)/4] + ℓ(ℓ+ n− 2)

r2−α
,

α ∈ R, n ∈ N, n ≥ 2, ℓ ∈ N0, r ∈ (0, R],
(4.11)
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that is,

.
h

(0)
n,ℓ,α = τ

(0)
n,ℓ,α

∣∣
C∞

0 ((0,R)), α ∈ R, n ∈ N, n ≥ 2, ℓ ∈ N0, (4.12)

in L2((0, R); dr).
To explicitly describe h(0)

n,ℓ,α,F we next recall some results from [8] and [9]. For
this purpose we introduce the differential expression

τβ,γ =
[
− d

dx
xβ d

dx
+ (2 − β)2γ2 − (1 − β)2

4 xβ−2
]
,

β ∈ R, γ ∈ [0,∞), x ∈ (0, R],
(4.13)

and recall that solutions to τβ,γy(z, ·) = zy(z, ·) are given by (cf. [16, No. 2.162,
p. 440])

y1,β,γ(z, x) = x(1−β)/2Jγ

(
2z1/2x(2−β)/2/(2 − β)

)
, γ ∈ [0,∞), (4.14)

y2,β,γ(z, x) =
{
x(1−β)/2J−γ

(
2z1/2x(2−β)/2/(2 − β)

)
, γ /∈ N0,

x(1−β)/2Yγ

(
2z1/2x(2−β)/2/(2 − β)

)
, γ ∈ N0,

γ ∈ [0,∞), (4.15)

x ∈ (0, R],

where Jν(·), Yν(·) are the standard Bessel functions of order ν ∈ R (cf. [1, Ch. 9]).
Solutions for z = 0 are particularly simple and we note that (non-normalized)
principal and nonprincipal solutions u0,β,γ(0, ·) and û0,β,γ(0, ·) of τβ,γu = 0 at
x = 0 are of the form

u0,β,γ(0, x) = x[1−β+(2−β)γ]/2, γ ∈ [0,∞),

û0,β,γ(0, x) =
{
x[1−β−(2−β)γ]/2, γ ∈ (0,∞),
x(1−β)/2 ln(1/x), γ = 0,

β ∈ R, x ∈ (0, 1),

û0,2,γ(0, x) = x−1/2 ln(1/x), γ ∈ [0,∞), x ∈ (0, 1).

(4.16)

In particular, τβ,γ , β ∈ R, γ ∈ [0,∞), is nonoscillatory at x = 0 and x = R, regular
at x = R, and the following limit-point/limit-circle classification holds:


τβ,γ is in the limit-point case at x = 0 if β ∈ [2,∞), γ ∈ [0,∞)

and if β ∈ (−∞, 2), γ ∈ [1,∞),
τβ,γ is in the limit-circle case at x = 0 if β ∈ (−∞, 2), γ ∈ [0, 1),
τβ,γ is in the limit-circle case at x = R if β ∈ R, γ ∈ [0,∞).

(4.17)
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The preminimal,
.
T β,γ , and maximal, Tβ,γ,max, L2((0, R]; dx)-realizations associ-

ated with τβ,γ , β ∈ R, γ ∈ [0,∞), are then given by
.
T β,γ = τβ,γ

∣∣
C∞

0 ((0,R)), (4.18)

(Tβ,γ,maxf)(x) = (τβ,γf)(x) for a.e. x ∈ (0, R],
f ∈ dom(Tβ,γ,max) =

{
g ∈ L2((0, R); dx)

∣∣ g, g′ ∈ ACloc((ε,R]) for all 0 < ε < R;
τβ,γg ∈ L2((0, R); dx)

}
. (4.19)

According to [8], the generalized boundary values for g ∈ dom(Tβ,γ,max) at x = 0
in the limit-circle case at x = 0 (i.e., if β ∈ (−∞, 2), γ ∈ [0, 1)) are of the form

g̃(0) =

limx↓0 g(x)
/[
x[1−β−(2−β)γ]/2], γ ∈ (0, 1),

limx↓0 g(x)
/[
x(1−β)/2 ln(1/x)

]
, γ = 0,

(4.20)

g̃ ′(0) =
{

limx↓0
[
g(x) − g̃(0)x[1−β−(2−β)γ]/2]/[x[1−β+(2−β)γ]/2], γ ∈ (0, 1),

limx↓0
[
g(x) − g̃(0)x(1−β)/2 ln(1/x)

]/[
x(1−β)/2], γ = 0.

(4.21)

Since τβ,γ is regular at x = R, the standard boundary values for g ∈ dom(Tβ,γ,max)
at x = R are of the standard form g(R), g′(R).

The closure of
.
T β,γ in L2((0, R); dx), that is, the minimal operator, Tβ,γ,min,

associated with τβ,γ , is then given by
(Tβ,γ,minf)(x) = (τβ,γf)(x) for a.e. x ∈ (0, R], β ∈ R, γ ∈ [0,∞),
f ∈ dom(Tβ,γ,min) =

{
g ∈ dom(Tβ,γ,max)

∣∣ g̃(0) = g̃ ′(0) = 0, g(R) = g′(R) = 0
}
,

β ∈ (−∞, 2), γ ∈ [0, 1), (4.22)
f ∈ dom(Tβ,γ,min) =

{
g ∈ dom(Tβ,γ,max)

∣∣ g(R) = g′(R) = 0
}
, (4.23)

β ∈ (−∞, 2), γ ∈ [1,∞), or, β ∈ [2,∞), γ ∈ [0,∞),

and the Friedrichs extension, Tβ,γ,F , of Tβ,γ,min (and
.
T β,γ) is characterized by

(cf. [13], [19], [22])
(Tβ,γ,F f)(x) = (τβ,γf)(x) for a.e. x ∈ (0, R], β ∈ R, γ ∈ [0,∞),
f ∈ dom(Tβ,γ,F ) =

{
g ∈ dom(Tβ,γ,max)

∣∣ g̃(0) = 0, g(R) = 0
}
, (4.24)

β ∈ (−∞, 2), γ ∈ [0, 1),
f ∈ dom(Tβ,γ,F ) =

{
g ∈ dom(Tβ,γ,max)

∣∣ g(R) = 0
}
, (4.25)

β ∈ (−∞, 2), γ ∈ [1,∞), or, β ∈ [2,∞), γ ∈ [0,∞).

Returning to τ (0)
n,ℓ,α, and hence comparing

(n−1)(n−3+2α)+4ℓ(ℓ+n−2) with (2−α)2γ2−(1−α)2 for α ∈ R\{0}, (4.26)
and treating the case α = 2 separately, an application of (4.13)–(4.25) then yields
the following facts for its limit-point/limit-circle classification, for the maximal
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operator h(0)
n,ℓ,α,max associated with τ

(0)
n,ℓ,α, and the Friedrichs extension h

(0)
n,ℓ,α,F of

.
h

(0)
n,ℓ,α in L2((0, R); dx). First, upon identifying

β = α ∈ R\{2}, γ = γα =
[
(2 − α− n)2 + 4ℓ(ℓ+ n− 2)

]1/2/|2 − α| ∈ [0,∞),
(4.27)

more precisely,
α > 2, γα ∈ [1,∞),
α < 2, γα ∈ [0,∞),

(4.28)

τ
(0)
n,ℓ,α, α ∈ R, is nonoscillatory at r = 0 and r = R, and regular at r = R. In

addition,

τ
(0)
n,ℓ,α is in the limit-point case at r = 0 if α ∈ (2,∞), γα ∈ [0,∞),

if α ∈ (−∞, 2), γα ∈ [1,∞), and if α = 2;

τ
(0)
n,ℓ,α is in the limit-circle case at r = 0 if α ∈ (−∞, 2), γα ∈ [0, 1);

τ
(0)
n,ℓ,α is in the limit-circle case at r = R for all α ∈ R;

(4.29)

and hence 

τ
(0)
n,ℓ,α is in the limit-point case at r = 0 if and only if

α ∈ [2 − (n/2) − (2/n)ℓ(ℓ+ n− 2),∞),
τ

(0)
n,ℓ,α is in the limit-circle case at r = 0 if and only if

α ∈ (−∞, 2 − (n/2) − (2/n)ℓ(ℓ+ n− 2)),
τ

(0)
n,ℓ,α is in the limit-circle case at r = R for all α ∈ R.

(4.30)

Moreover, the underlying maximal operator is of the form(
h

(0)
n,ℓ,α,maxf

)
(r) =

(
τ

(0)
n,ℓ,αf

)
(r) for a.e. r ∈ (0, R], α ∈ R,

f ∈ dom(h(0)
n,ℓ,α,max) =

{
g ∈ L2((0, R); dr)

∣∣ g, g′ ∈ AC([ε,R]) for all ε ∈ (0, R);(
τ

(0)
n,ℓ,αf

)
(r) ∈ L2((0, R); dr)

}
,

(4.31)

and the corresponding Friedrichs extension of
.
h

(0)
n,ℓ,α is given by(

h
(0)
n,ℓ,α,F f

)
(r) =

(
τ

(0)
n,ℓ,αf

)
(r) for a.e. r ∈ (0, R], α ∈ R,

f ∈ dom(h(0)
n,ℓ,α,F ) =

{
g ∈ dom(h(0)

n,ℓ,α,max)
∣∣ g̃(0) = 0, g(R) = 0

}
, (4.32)

α ∈ (−∞, 2 − (n/2) − (2/n)ℓ(ℓ+ n− 2)),

f ∈ dom(h(0)
n,ℓ,α,F ) =

{
g ∈ dom(h(0)

n,ℓ,α,max)
∣∣ g(R) = 0

}
, (4.33)

α ∈ [2 − (n/2) − (2/n)ℓ(ℓ+ n− 2),∞).
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Here the boundary value g̃(0) associated with g ∈ dom
(
h

(0)
n,ℓ,α,max

)
, n ∈ N, n ≥ 2,

ℓ ∈ N0, α ∈ (−∞, 2), is now given by

g̃(0) =
{

limx↓0 g(x)
/[
x[1−α−(2−α)γα]/2], γα ∈ (0, 1),

limx↓0 g(x)
/[
x(1−α)/2 ln(1/x)

]
, γα = 0,

α ∈ (−∞, 2),

=


limx↓0 g(x)

/[
x{1−α−[(2−α−n)2+4ℓ(ℓ+n−2)]1/2}/2],

α ∈ (−∞, 2 − (n/2) − (2/n)ℓ(ℓ+ n− 2)), ℓ ∈ N0,

limx↓0 g(x)
/[
x(1−α)/2 ln(1/x)

]
, α = 2 − n, ℓ = 0.

(4.34)

Without going into details, we note that utilizing the transformation (4.7), and
invoking results of Kalf [12], the operator H(0)

α,F is of the following form:(
H

(0)
α,Fψ

)
(x) = −(div |x|α∇ψ)(x), x ∈ Bn(0;R)\{0},

ψ ∈ dom
(
H(0)

α

)
=
{
ϕ ∈ dom

(
H(0)

α,max
) ∣∣∣∣ | · |α(∇ϕ) ∈ L2(Bn(0;R); dnx); (4.35)

lim
r↑R

ˆ
Sn−1

dn−1ω |ϕ(rω)|2 = 0,

and if and only if n < 2 − α, lim
r↓0

ˆ
Sn−1

dn−1ω |ϕ(rω)|2 = 0
}

(with dn−1ω the surface measure on Sn−1), where(
H(0)

α,maxψ
)
(x) = −(div |x|α∇ψ)(x), x ∈ Bn(0;R)\{0},

ψ ∈ dom
(
H(0)

α,max
)

=
{
ϕ ∈ L2(Bn(0;R); dnx)

∣∣ϕ ∈ H2
loc(Bn(0;R)\{0}); (4.36)

div | · |α∇ϕ ∈ L2(Bn(0;R); dnx)
}
.

We remark that the boundary condition at x = R (and at x = 0 if and only if
n < 2 − α) has to be imposed on a distinguished representative of ϕ for which
the restriction to the (n− 1)-dimensional sphere Sn−1 exists as a square-integrable
function (see the discussion in [12, Remark 3]).

We conclude these considerations by adding an additional potential term q in
accordance with inequalities (3.4) and (3.5). For this purpose we assume that, for
all η ∈ (0, R),

q ∈ L1((η,R); dr) is real-valued a.e. on (0, R), (4.37)
and introduce, for n ∈ N, n ≥ 2, ℓ ∈ N0,

τn,ℓ,α = τ
(0)
n,ℓ,α + q(r) for a.e. r ∈ (0, R), α ∈ R, (4.38)

and the following L2((0, R); dr)-realization of τn,ℓ,α:(
hn,ℓ,αf

)
(r) =

(
τn,ℓ,αf

)
(r) for a.e. r ∈ (0, R], α ∈ R,

f ∈ dom(hn,ℓ,α) =
{
g ∈ L2((0, R); dr)

∣∣ g, g′ ∈ AC([ε,R]) for all ε ∈ (0, R); (4.39)

g(R) = 0;
(
τ

(0)
n,ℓ,αf

)
(r) ∈ L2((0, R); dr)

}
.
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Theorem 4.1. Assume n ∈ N, n ≥ 2, and (4.37).
(i) If α ∈ R, ℓ ∈ N0, and, for a.e. 0 < r sufficiently small,

q(r) ≥ −{[n(n− 4 + 2α)/4] + ℓ(ℓ+ n− 2)}rα−2, (4.40)

then τn,ℓ,α is nonoscillatory and in the limit-point case at r = 0.
(ii) If5 α ∈ (−∞, 2), ℓ ∈ N0, and there exist N ∈ N and ε > 0 such that, for

a.e. 0 < r sufficiently small (depending on N and ε),

q(r) ≥ −{[n(n− 4 + 2α)/4] + ℓ(ℓ+ n− 2)}rα−2

− (1/2)(2 − α)rα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(r)]−1 + [(3/4) + ε]rα−2[ln1(x)]−2,
(4.41)

then τn,ℓ,α is nonoscillatory and in the limit-point case at r = 0.
(iii) Assuming inequality (4.40) (for α ∈ R) or (4.41) (for α ∈ (−∞, 2)) holds

for ℓ = 0, then the operator

Hα =
⊕
ℓ∈N0

U−1
n hn,ℓ,αUn (4.42)

is self-adjoint in L2(Bn(0;R); dnx).

Proof. Items (i) and (ii) are an immediate consequence of Theorem 3.1 since, for
instance, inequality (4.40) in the context N = 0 is equivalent to

{[(n− 1)(n− 3 + 2α)/4] + ℓ(ℓ+ n− 2)}rα−2 + q(r) ≥ [(3/4) − (α/2)]rα−2

(4.43)

for 0 < r sufficiently small (cf. (3.4)), and analogously in the context of (4.41) (cf.
(3.5)) for N ∈ N. Item (iii) holds since hn,0,α being self-adjoint in L2((0, R); dr)
implies that hn,ℓ,α is self-adjoint in L2((0, R); dr) for all ℓ ∈ N0. □

In the case N = 0, the self-adjointness of Hα is familiar from multi-dimensional
results by Kalf and Walter [15] (with strict inequality in the analogue of (4.40) for
ℓ = 0); in this context, see also [14], [23] for α = 0.

Appendix A. More details in connection with Theorems 3.1 and 3.3

In this appendix we elaborate on the proofs of Theorems 3.1 and 3.3 by sketching
the proofs of the assertions in (3.14) and (3.38).

We begin with the limit-point case discussed in Theorem 3.1.

Lemma A.1. Let the assumptions of Theorem 3.1 be satisfied, and let qα,N (x),
τα,N , and yN (x) be as in (3.11)–(3.13). Then, for all N ∈ N,

(τα,N yN )(x) = 0. (A.1)

5 Again, only α ∈ (−∞, 2) can improve on item (i).
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Proof. One observes6

(
lnN (x)

)′ = −x−1
N−1∏
k=1

[lnk(x)]−1, (A.2)

(
[lnN (x)]−1/2

)′
= 1

2x
−1

(
N−1∏
k=1

[lnk(x)]−1

)
[lnN (x)]−3/2, (A.3)

(
N∏

ℓ=1
[lnℓ(x)]−1/2

)′

= 1
2x

−1
N∏

k=1
[lnk(x)]−1/2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1, (A.4)

(
N∏

k=1
[lnk(x)]−1

)′

= x−1
N∏

k=1
[lnk(x)]−1

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1, (A.5)

and hence verifies

1
yN (x)

(
xαy′

N (x)
)′

= 1
yN (x)

d

dx

[
− 1

2x
α−3/2

N∏
k=1

[lnk(x)]−1/2

+ 1
2x

α−3/2
N∏

k=1
[lnk(x)]−1/2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

]

= 1
yN (x)

d

dx

1
2x

α−3/2
N∏

k=1
[lnk(x)]−1/2

(
− 1 +

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

)
= 1
yN (x)

[
1
2

(
α− 3

2

)
xα−5/2

N∏
k=1

[lnk(x)]−1/2

(
− 1 +

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

)

+ 1
4x

α−5/2
N∏

k=1
[lnk(x)]−1/2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

(
− 1 +

N∑
m=1

m∏
p=1

[lnp(x)]−1

)

+ 1
2x

α−5/2
N∏

k=1
[lnk(x)]−1/2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1
j∑

m=1

m∏
p=1

[lnp(x)]−1

]

=
(

3
4 − α

2

)
xα−2 +

(
α

2 − 3
4

)
xα−2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

6 See footnote 3.
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− 1
4x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1 + 1
4x

α−2

(
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

)2

+ 1
2x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1
j∑

m=1

m∏
p=1

[lnp(x)]−1. (A.6)

Using the equality

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1
j∑

m=1

m∏
p=1

[lnp(x)]−1 =
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−2
N∑

m=j+1

m∏
p=j+1

[lnp(x)]−1

+
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−2, (A.7)

one rewrites the last line in (A.6) in the form

1
4x

α−2

(
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1

)2

+ 1
2x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1
j∑

m=1

m∏
p=1

[lnp(x)]−1

= 1
4x

α−2
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1
N∑

m=j+1

m∏
p=1

[lnp(x)]−1

+ 3
4x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−1
j∑

m=1

m∏
p=1

[lnp(x)]−1 (A.8)

= xα−2
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−2
N∑

m=j+1

m∏
p=j+1

[lnp(x)]−1 + 3
4x

α−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−2.

Taking into account (3.11), (A.6), and (A.8), one derives the result

1
yN (x)

(
xαy′

N (x)
)′ = [(3/4) − (α/2)]xα−2 − (1/2)(2 − α)xα−2

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

+ (3/4)xα−2
N∑

j=1

j∏
ℓ=1

[lnℓ(x)]−2 = qα,N (x)

+ xα−2
N−1∑
j=1

j∏
ℓ=1

[lnℓ(x)]−2
N∑

m=j+1

m∏
p=j+1

[lnp(x)]−1. (A.9)

□

In connection with the limit-circle case discussed in Theorem 3.3 we note the
following result:
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Lemma A.2. Let the conditions of Theorem 3.3 be satisfied, and let qα,N,ε(x),
τα,N,ε, yN,ε(x), and ỹN,ε(x) be as in (3.34)–(3.37). Then, for all N ∈ N,

(τα,N,ε yN,ε)(x) = 0, (τα,N,ε ỹN,ε)(x) = 0. (A.10)

Proof. Since yN,ε(x) = yN (x)[lnN (x)]−ε/2, one derives(
xαy′

N,ε(x)
)′ =

(
xαy′

N (x)
)′[lnN (x)]−ε/2 + 2xαy′

N (x)
(
[lnN (x)]−ε/2)′

+ xαyN (x)
(
[lnN (x)]−ε/2)′′ + αxα−1yN (x)

(
[lnN (x)]−ε/2)′

.
(A.11)

Employing (A.2), (A.4), and (A.5), we next calculate several derivatives, which
appear on the right-hand side of (A.11):

(
[lnN (x)]−ε/2)′ = (ε/2)x−1[lnN (x)]−ε/2

N∏
k=1

[lnk(x)]−1, (A.12)

(
[lnN (x)]−ε/2)′′ = −(ε/2)x−2[lnN (x)]−ε/2

N∏
k=1

[lnk(x)]−1

+
(
ε2/4

)
x−2[lnN (x)]−ε/2

N∏
k=1

[lnk(x)]−2 (A.13)

+ (ε/2)x−2[lnN (x)]−ε/2
N∏

k=1
[lnk(x)]−1

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1,

y′
N (x)
yN (x) = (2x)−1

[
− 1 +

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

]
. (A.14)

It follows from the last equality in (A.9), from (A.11), from (A.12)–(A.14), and
from (3.34) that

1
yN,ε(x)

(
xαy′

N,ε(x)
)′ = qα,N (x) − (ε/2)xα−2

N∏
k=1

[lnk(x)]−1

(
1 −

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

)

+ (ε/2)xα−2

(
−

N∏
k=1

[lnk(x)]−1 + (ε/2)
N∏

k=1
[lnk(x)]−2

+
N∏

k=1
[lnk(x)]−1

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

)
+ (ε/2)αxα−2

N∏
k=1

[lnk(x)]−1

= qα,N (x) − (ε/2)(2 − α)xα−2
N∏

k=1
[lnk(x)]−1 +

(
ε2/4

)
xα−2

N∏
k=1

[lnk(x)]−2

+ εxα−2
N∏

k=1
[lnk(x)]−1

N∑
j=1

j∏
ℓ=1

[lnℓ(x)]−1

= qα,N,ε(x). (A.15)
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Thus, the first equality in (A.10) is proved, and the second equality in (A.10) is
clear from the reduction of order approach. □
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