COUNTEREXAMPLES FOR SOME RESULTS IN "ON THE MODULE INTERSECTION GRAPH OF IDEALS OF RINGS"

FARIDEH HEYDARI AND SOHEILA KHOJASTEH

ABSTRACT. Let R be a commutative ring and M be an R-module, and let $I(R)^*$ be the set of all nontrivial ideals of R. The M-intersection graph of ideals of R, denoted by $G_M(R)$, is a graph with the vertex set $I(R)^*$, and two distinct vertices I and J are adjacent if and only if $IM \cap JM \neq 0$. In this note, we provide counterexamples for some results proved in a paper by Asir, Kumar, and Mehdi [Rev. Un. Mat. Argentina 63 (2022), no. 1, 93–107]. Also, we determine the girth of $G_M(R)$ and derive a necessary and sufficient condition for $G_M(R)$ to be weakly triangulated.

1. Introduction

The intersection graphs of some algebraic structures such as lattices, posets, groups, rings and modules have been studied by several authors. Let R be a commutative ring and M be an R-module, and $I(R)^*$ be the set of all non-zero proper ideals of R. In [2], the intersection graph of ideals of R, denoted by G(R), was introduced as the graph with vertices $I(R)^*$ and two distinct vertices are adjacent if and only if they have non-zero intersection. In [6], the M-intersection graph of ideals of R, denoted by $G_M(R)$, is defined to be the graph with the vertex set $I(R)^*$, and two distinct vertices I and J are adjacent if and only if $IM \cap JM \neq 0$. Clearly, $G_R(R) = G(R)$, so $G_M(R)$ is in fact a generalization of G(R). Also, the \mathbb{Z}_n -intersection graph of \mathbb{Z}_m , was studied in [7]. Recently, Asir et al. studied the M-intersection graph of ideals of R in [1]. In this note, we provide counterexamples for some results proved in [1]. Moreover, we determine the girth of $G_M(R)$ and derive a necessary and sufficient condition for $G_M(R)$ to be weakly triangulated. Throughout the paper, all rings are commutative with non-zero identity and all modules are unitary. The annihilator of an R-module M is denoted by ann(M). If $\operatorname{ann}(M) = 0$, then M is said to be a faithful R-module. An R-module M is a multiplication module if for each submodule N of M there is an ideal I of R such that IM = N. As usual, \mathbb{Z} and \mathbb{Z}_n denote the set of integers and the set of integers modulo n, respectively.

²⁰²⁰ Mathematics Subject Classification. Primary 16P20; Secondary 05C25, 05C17. Key words and phrases. intersection graph, perfect graph, weakly perfect graph, planar graph, girth.

Now, we recall some definitions and notations on graphs. Let G be a graph with the vertex set V(G) and the edge set E(G). Suppose that $x, y \in V(G)$. If x and y are adjacent, then we write x-y. A graph G is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_n to denote the complete graph with n vertices. A cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices other than the starting and ending vertex are distinct. If a graph G has a cycle, then the girth of G (notated gr(G)) is defined as the length of a shortest cycle of G; otherwise $gr(G) = \infty$. A clique of a graph is a complete subgraph and the number of vertices in a largest clique of graph G, denoted by $\omega(G)$, is called the *clique number* of G. By $\chi(G)$, we denote the *chromatic number* of G, i.e., the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A graph is perfect if the clique number and the chromatic number of its induced subgraphs are equal. Also, it is weakly perfect if $\chi(G) = \omega(G)$. Recall that a graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends.

2. Connectedness

Recall that an ideal which is minimal in $I(R)^*$ with respect to inclusion is said to be a *minimal ideal* of R. The following theorem was proved in [1]:

Theorem 2.1 ([1, Theorem 2.5]). Let R be a commutative ring and M an R-module. Then $G_M(R)$ is complete if and only if M is faithful and R is Artinian with a unique minimal ideal.

Let $M=R=\mathbb{Z}$. Since any two nontrivial ideals of \mathbb{Z} have non-zero intersection, $G_{\mathbb{Z}}(\mathbb{Z})=G(\mathbb{Z})$ is a complete graph, and hence $G_{\mathbb{Z}}(\mathbb{Z})$ is a counterexample for Theorem 2.1.

3. Perfectness

The next theorem was proved in [1]:

Theorem 3.1 ([1, Theorem 3.3]). Let $R \cong R_1 \times \cdots \times R_n$, where each R_i , $1 \leq i \leq n$, is a Noetherian ring with unique minimal ideal, and let M be a faithful R-module. Then $G_M(R)$ is perfect if and only if $n \leq 4$.

Note that even if a ring has a unique non-zero minimal ideal, there might be non-zero ideals not containing it, unless the ring is Artinian. Let n=1, $R\cong R_1=\mathbb{Z}_4\times\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}$, and M=R. Clearly, R is a Noetherian ring with a unique minimal ideal $J=2\mathbb{Z}_4\times0\times0\times0\times0$. If $I_1=\mathbb{Z}_4\times\mathbb{Z}\times0\times0\times0$, $I_2=0\times\mathbb{Z}\times\mathbb{Z}\times0\times0$, $I_3=0\times0\times\mathbb{Z}\times\mathbb{Z}\times0$, $I_4=0\times0\times0\times\mathbb{Z}\times\mathbb{Z}$, and $I_5=\mathbb{Z}_4\times0\times0\times0\times0\times\mathbb{Z}$, then the subgraph induced by the set $\{I_1,\ldots,I_5\}$ in $G_R(R)=G(R)$ is an induced cycle of length 5. Thus $G_R(R)$ is not perfect, and so $G_R(R)$ is a counterexample for Theorem 3.1. We show that if each R_i is an Artinian ring with a unique minimal ideal, and M is a faithful multiplication R-module, then the proof is correct.

A graph G is called *weakly triangulated* if neither G nor its complement \overline{G} contains a chordless cycle of length more than 4. In [5], it is proved that all weakly triangulated graphs are perfect. Also, Chudnovsky et al. [3] provided a characterization of perfect graphs.

Theorem A (The Strong Perfect Graph Theorem [3]). A finite graph G is perfect if and only if neither G nor \overline{G} contains an induced odd cycle of length at least 5.

Theorem 3.2. Let $R \cong R_1 \times \cdots \times R_n$, where each R_i , $1 \leq i \leq n$, is an Artinian ring with a unique minimal ideal, and let M be a faithful multiplication R-module. Then $G_M(R)$ is weakly triangulated if and only if $n \leq 4$.

Proof. (\Rightarrow): Suppose $n \geq 5$. Let $I_j = 0 \times \cdots \times 0 \times R_j \times R_{j+1} \times 0 \times \cdots \times 0$ for $j = 1, \ldots, 4$ and $I_5 = R_1 \times 0 \times 0 \times 0 \times R_5 \times 0 \times \cdots \times 0$. Since M is a faithful multiplication R-module, by [4, Theorem 1.6], we find that $I_iM \cap I_jM = (I_i \cap I_j)M$. Hence the subgraph induced by the set $\{I_1, \ldots, I_5\}$ in $G_M(R)$ is an induced cycle of length 5, and so $G_M(R)$ is not weakly triangulated.

 (\Leftarrow) : Assume $n \leq 4$. Note that any ideal I_k of R is of the form $I_{k_1} \times \cdots \times I_{k_n}$, where I_{k_i} is an ideal of R_i for all i = 1, ..., n. If two vertices I_k and I_l are nonadjacent in $G_M(R)$, then $I_kM \cap I_lM = 0$. The fact that M is faithful leads to $I_k \cap I_l = 0$. Note that R_i is Artinian with a unique minimal ideal for all $i = 1, \ldots, n$. Therefore if I_k is not adjacent to I_l in $G_M(R)$, then either $I_{k_i} = 0$ or $I_{l_i} = 0$ for each $j=1,\ldots,n$. First, let us consider the best possible choice, n=4. We claim that every cycle of length more than 4 in $G_M(R)$ must have diagonals. In order to prove the claim, suppose $I_1 - I_2 - I_3 - \cdots - I_m - I_1$ is a cycle of length $m \geq 5$ in $G_M(R)$. If any three ideals from $\{I_{1_1}, I_{1_2}, I_{1_3}, I_{1_4}\}$ are the zero ideal, say $I_{1_1}=I_{1_2}=I_{1_3}=0$, then $I_{2_4}\neq 0$ and $I_{m_4}\neq 0$. So I_2 and I_m form a diagonal edge. If exactly one ideal from $\{I_{1_1}, I_{1_2}, I_{1_3}, I_{1_4}\}$ is a zero ideal, say $I_{1_1} = 0$, then $I_{3_2}=I_{3_3}=I_{3_4}=0$. This implies that $I_{2_1},I_{4_1}\neq 0$. Therefore I_2 and I_4 form a diagonal edge. Thus every ideal of I_1, I_2, I_3 and I_4 can be decomposed into two zero ideals and two non-zero ideals. Let $I_{1_1}=I_{1_2}=0$ and $I_{1_3},I_{1_4}\neq 0$. Then $I_{3_3}=I_{3_4}=0$ and $I_{4_3}=I_{4_4}=0$. Hence $I_{3_1},I_{3_2}\neq 0$ and $I_{4_1},I_{4_2}\neq 0$. Since I_2 — I_3 , either $I_{2_1} \neq 0$ or $I_{2_2} \neq 0$. So I_2 and I_4 form a diagonal edge. Therefore, the claim holds true for n=4.

Now, let $I_1-I_2-I_3-\cdots-I_m-I_1$ be a cycle C of length $m\geq 5$ in $\overline{G_M(R)}$. We show that C has a diagonal. If any three ideals from $\{I_{1_1},I_{1_2},I_{1_3},I_{1_4}\}$ are the zero ideal, say $I_{1_1}=I_{1_2}=I_{1_3}=0$, then $I_{3_4},I_{4_4}\neq 0$, which yields a contradiction. If exactly one ideal from $\{I_{1_1},I_{1_2},I_{1_3},I_{1_4}\}$ is a zero ideal, say $I_{1_1}=0$, then $I_{2_2}=I_{2_3}=I_{2_4}=0$. This implies that $I_{4_1},I_{5_1}\neq 0$, a contradiction. Thus every ideal of I_1,I_2,I_3 and I_4 can be decomposed into two zero ideals and two non-zero ideals. Assume that $I_{1_1}=I_{1_2}=0$ and $I_{1_3},I_{1_4}\neq 0$. Then $I_{2_3}=I_{2_4}=0$, and hence $I_{2_1},I_{2_2}\neq 0$. This yields that $I_{3_1}=I_{3_2}=0$, and so $I_{3_3},I_{3_4}\neq 0$. Again, we deduce that $I_{4_3}=I_{4_4}=0$, and then $I_{4_1},I_{4_2}\neq 0$. Therefore, I_1 and I_4 form a diagonal edge.

Similar arguments to those above lead us to the cases n=3 and n=2. So let n=1. Thus R is an Artinian ring with a unique minimal ideal, say J. Since J is a

non-zero ideal and M is a faithful R-module, we have $JM \neq 0$. On the other hand, since R is an Artinian ring, $J \subseteq I$ for each non-zero ideal I of R. Thus we conclude that $G_M(R)$ is a complete graph, and hence $G_M(R)$ is weakly triangulated. \square

Example 3.3 ([7, Example 1]). Let $R = \mathbb{Z}_{p_1p_2^3}$, where p_1 and p_2 are distinct primes. It is not hard to see that $\mathbb{Z}_{p_1p_2^2}$ is an R-module. Then we have the graph in Figure 1.

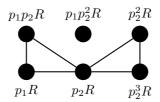


FIGURE 1. The graph $G_{\mathbb{Z}_{p_1p_2^2}}(R)$.

The next theorem was proved in [1]:

Theorem 3.4 ([1, Theorem 3.4]). The graph $G_M(R)$ is weakly perfect for any R-module M.

The proof is not correct. Let $A = \{I \in I^*(R) \mid IM = 0\}$ and $A' = I^*(R) \setminus A$. In line 6 of the proof, the authors claimed that if $\omega(G_M(R)) = n$ and $S = \{I_1, \ldots, I_n\}$ is a clique of $G_M(R)$ such that $S \subset A'$, then the vertices $J + I_1, \ldots, J + I_n$ are the same as I_1, \ldots, I_n in different order, where $J \in A' \setminus S$. But this claim does not hold. See Example 3.3. Let $I_1 = p_1 R$, $I_2 = p_2 R$, and $I_3 = p_1 p_2 R$. Clearly, $S = \{I_1, I_2, I_3\}$ is a clique of $G_{\mathbb{Z}_{p_1 p_2^2}}(R)$, and $A = \{p_1 p_2^2 R\}$. Consider $J = p_2^2 R$. Then $\{J + I_1, J + I_2, J + I_3\} = \{I_2, R\}$. Because $p_2^2 R + p_1 R = R$, $p_2^2 R + p_2 R = p_2 R$ and $p_2^2 R + p_1 p_2 R = p_2 R$. This contradicts the claim. (Also, the open neighborhood of $J \in A' \setminus S$ is not in S. This contradicts the sentence in line 9 of the proof.)

It is noteworthy that Nikandish and Nikmerh [8] conjectured that, for every ring R, G(R) is a weakly perfect graph. The conjecture will be true if Theorem 3.4 is proved. Also, see the problem posed by Heydari [6].

4. Cyclic subgraph and planarity

The following theorem was proved in [1]:

Theorem 4.1 ([1, Theorem 4.1]). Let M be an R-module. If $G_M(R)$ contains a cycle, then $gr(G_M(R)) = 3$. That is, $gr(G_M(R)) \in \{3, \infty\}$.

The proof is not correct. Let $I_1-I_2-I_3-I_4$ be a path in $G_M(R)$. In line 5 of the proof, the authors claimed that if I_k and I_l $(1 \le k \ne l \le 4)$ are two vertices that are incomparable, then $I_k-I_k+I_l-I_k+I_m-I_k$ is a cycle, where $m \in \{1,2,3,4\} \setminus \{k,l\}$. This claim does not hold. We note that maybe $I_k+I_l=R$ and then I_k+I_l cannot be a vertex. We prove the theorem as follows.

Theorem 4.2. Let M be an R-module. Then $gr(G_M(R)) \in \{3, \infty\}$.

Proof. Suppose that $I_1 - I_2 - \cdots - I_n - I_1$ is a cycle of length n in $G_M(R)$. If n = 3, we are done. Thus assume that $n \ge 4$.

First, assume that M is a faithful R-module. Suppose that I_1 and I_2 are not comparable. Let $\mathfrak{m}_1,\mathfrak{m}_2$ be two maximal ideals of R such that $I_1\subseteq\mathfrak{m}_1$ and $I_2\subseteq\mathfrak{m}_2$. If $I_1\neq\mathfrak{m}_1$ (resp. $I_2\neq\mathfrak{m}_2$), then $I_1-I_2-\mathfrak{m}_1-I_1$ (resp. $I_1-I_2-\mathfrak{m}_2-I_1$) is a cycle of length 3. So let I_1 and I_2 be two maximal ideals of R. If $I_1\cap I_2=0$, then R is a direct sum of two fields which implies that $|I(R)^*|=2$, a contradiction. Thus $I_1\cap I_2\neq 0$, and hence $I_1-I_2-I_1\cap I_2-I_1$ is a triangle. Now, assume that I_1 and I_2 are comparable. Similarly, we can assume that I_i and I_{i+1} are comparable, for every i, 1 < i < n. Hence we can compile into two cases. If $I_1\subseteq I_2, I_3\subseteq I_2$ and $I_3\subseteq I_4$, then $I_3\subseteq I_2\cap I_4$. So $(I_2\cap I_4)M\neq 0$. Thus $I_2-I_3-I_4-I_2$ is a cycle of length 3. If $I_2\subseteq I_1$ and $I_2\subseteq I_3$, then $I_2\subseteq I_1\cap I_3$ and so $I_1-I_2-I_3-I_4$ is a cycle of length 3. Therefore, $\operatorname{gr}(G_M(R))=3$.

Next, suppose that $\operatorname{ann}(M) \neq 0$. Let $S = R/\operatorname{ann}(M)$ and $J_i = (I_i + \operatorname{ann}(M))/\operatorname{ann}(M)$, for $i = 1, \ldots, n$. Note that $I_i + \operatorname{ann}(M) \neq \operatorname{ann}(M)$, otherwise $I_i M = 0$ which yields that I_i is an isolated vertex in $G_M(R)$, a contradiction. Also, if $I_i + \operatorname{ann}(M) = R$, then $I_i M = M$. This implies that I_i is adjacent to all other vertices of the cycle, and hence $\operatorname{gr}(G_M(R)) = 3$. On the other hand, if $i \neq k$ and $I_i + \operatorname{ann}(M) = I_k + \operatorname{ann}(M)$, then $I_i M = I_k M$. Consider $m \in \{1, \ldots, n\} \setminus \{i\}$ such that I_m is adjacent to I_k . Thus $I_i - I_k - I_m - I_i$ is a cycle of length 3 in $G_M(R)$. Therefore, we can assume that $J_1 - J_2 - \cdots - J_n - J_1$ is a cycle of length $n \in I_1 \cap I_2 \cap I_3 \cap I_4 \cap I_4 \cap I_4 \cap I_4 \cap I_4 \cap I_4 \cap I_5 \cap I_4 \cap I_5 \cap I_4 \cap I_5 \cap I_5$

Remark 4.3 ([1, Remark 4.4]). Let M be a faithful R-module and $|I(R)^*| \geq 3$.

- (a) If R is an Artinian local ring or M is uniform, then $G_M(R)$ is complete and so it is Hamiltonian.
- (b) If M is not a faithful R-module, then $\operatorname{ann}(M)$ is an isolated vertex in $G_M(R)$, so $G_M(R)$ is not Hamiltonian.

Let $R = F[x,y]/(x,y)^2$, where F is a field. Clearly, R is an Artinian local ring with maximal ideal $\overline{(x,y)}$. But $G_R(R) = G(R)$ is not a complete graph, because $\overline{(x)}$ and $\overline{(y)}$ are two non-adjacent vertices. This contradicts the statement (a) of Remark 4.3.

Lemma 4.4. Let R be the direct product of $n \ge 2$ local rings such that at least one of them is not a field, and let M be a faithful R-module. Then K_{2^n-1} is a subgraph of $G_M(R)$.

Proof. Let $R = R_1 \times \cdots \times R_n$, where each R_i is local with maximal ideal \mathfrak{m}_i for $i = 1, \ldots, n$. With no loss of generality, assume that R_1 is not a field. Let $A = \{I_1 \times \cdots \times I_n \mid I_i = R_i \text{ or } \mathfrak{m}_i \text{ for } i = 1, \ldots, n\} \setminus \{R_1 \times \cdots \times R_n\}$. Then

 $A \subseteq I^*(R)$ and $|A| = 2^n - 1$. Since I_1 is non-zero, the subgraph induced by A is a complete subgraph of $G_M(R)$. Therefore K_{2^n-1} is a subgraph of $G_M(R)$.

In [1, page 106, line 1], the authors claimed that the vertex $0 \times R_2 \times \cdots \times R_n$ is adjacent to all the vertices of A in $G_M(R)$. This is not correct. For example, consider $M = R = R_1 \times \cdots \times R_n$, with R_2, \ldots, R_n fields. Then $R_1 \times 0 \times \cdots \times 0 \in A$. But $R_1 \times 0 \times \cdots \times 0$ and $0 \times R_2 \times \cdots \times R_n$ are not adjacent.

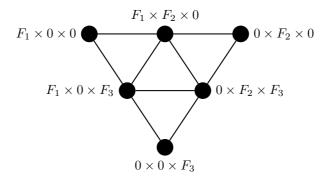


FIGURE 2. The graph $G(F_1 \times F_2 \times F_3)$.

Let F_1, F_2, F_3 be fields and let $M = R = F_1 \times F_2 \times F_3$. It is not hard to see that Figure 2 is a counterexample for [1, Theorem 4.10].

ACKNOWLEDGMENTS

The authors would like to express their deep gratitude to the referee for comments and suggestions.

References

- [1] T. ASIR, A. KUMAR, and A. MEHDI, On the module intersection graph of ideals of rings, *Rev. Un. Mat. Argentina* **63** no. 1 (2022), 93–107. DOI MR Zbl
- [2] I. CHAKRABARTY, S. GHOSH, T. K. MUKHERJEE, and M. K. SEN, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392. DOI MR Zbl
- [3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, *Ann. of Math.* (2) **164** no. 1 (2006), 51–229. DOI MR Zbl
- [4] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 no. 4 (1988), 755-779. DOI MR Zbl
- [5] R. B. HAYWARD, Weakly triangulated graphs, J. Combin. Theory Ser. B 39 (1985), 200–208.DOI MR Zbl
- [6] F. HEYDARI, The M-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), article no. 1850038. DOI MR Zbl
- [7] S. Khojasteh, The intersection graph of ideals of \mathbb{Z}_m , Discrete Math. Algorithms Appl. 11 no. 4 (2019), article no. 1950037. DOI MR Zbl

COUNTEREXAMPLES FOR SOME RESULTS IN THE INTERSECTION GRAPH 249

[8] R. NIKANDISH and M. J. NIKMEHR, The intersection graph of ideals of \mathbb{Z}_n is weakly perfect, Util. Math. 101 (2016), 329–336. MR Zbl

 $Farideh\ Heydari^{\boxtimes}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran farideh.heydari@iau.ac.ir

 $Soheila\ Khojasteh$

Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran soheila.khojasteh@iau.ac.ir

Received: December 19, 2022 Accepted: July 18, 2023 Early view: August 24, 2024