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COUNTEREXAMPLES FOR SOME RESULTS IN “ON THE
MODULE INTERSECTION GRAPH OF IDEALS OF RINGS”

FARIDEH HEYDARI AND SOHEILA KHOJASTEH

Abstract. Let R be a commutative ring and M be an R-module, and let
I(R)∗ be the set of all nontrivial ideals of R. The M-intersection graph of
ideals of R, denoted by GM (R), is a graph with the vertex set I(R)∗, and
two distinct vertices I and J are adjacent if and only if IM ∩ JM ̸= 0. In
this note, we provide counterexamples for some results proved in a paper by
Asir, Kumar, and Mehdi [Rev. Un. Mat. Argentina 63 (2022), no. 1, 93–107].
Also, we determine the girth of GM (R) and derive a necessary and sufficient
condition for GM (R) to be weakly triangulated.

1. Introduction

The intersection graphs of some algebraic structures such as lattices, posets,
groups, rings and modules have been studied by several authors. Let R be a
commutative ring and M be an R-module, and I(R)∗ be the set of all non-zero
proper ideals of R. In [2], the intersection graph of ideals of R, denoted by G(R),
was introduced as the graph with vertices I(R)∗ and two distinct vertices are
adjacent if and only if they have non-zero intersection. In [6], the M -intersection
graph of ideals of R, denoted by GM (R), is defined to be the graph with the vertex
set I(R)∗, and two distinct vertices I and J are adjacent if and only if IM∩JM ̸= 0.
Clearly, GR(R) = G(R), so GM (R) is in fact a generalization of G(R). Also, the
Zn-intersection graph of Zm, was studied in [7]. Recently, Asir et al. studied the
M -intersection graph of ideals of R in [1]. In this note, we provide counterexamples
for some results proved in [1]. Moreover, we determine the girth of GM (R) and
derive a necessary and sufficient condition for GM (R) to be weakly triangulated.
Throughout the paper, all rings are commutative with non-zero identity and all
modules are unitary. The annihilator of an R-module M is denoted by ann(M).
If ann(M) = 0, then M is said to be a faithful R-module. An R-module M is a
multiplication module if for each submodule N of M there is an ideal I of R such
that IM = N . As usual, Z and Zn denote the set of integers and the set of integers
modulo n, respectively.
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Now, we recall some definitions and notations on graphs. Let G be a graph with
the vertex set V (G) and the edge set E(G). Suppose that x, y ∈ V (G). If x and y
are adjacent, then we write x — y. A graph G is complete if each pair of distinct
vertices is joined by an edge. For a positive integer n, we use Kn to denote the
complete graph with n vertices. A cycle is a path that begins and ends at the same
vertex in which no edge is repeated and all vertices other than the starting and
ending vertex are distinct. If a graph G has a cycle, then the girth of G (notated
gr(G)) is defined as the length of a shortest cycle of G; otherwise gr(G) = ∞.
A clique of a graph is a complete subgraph and the number of vertices in a largest
clique of graph G, denoted by ω(G), is called the clique number of G. By χ(G), we
denote the chromatic number of G, i.e., the minimum number of colors which can
be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. A graph is perfect if the clique number and the chromatic number
of its induced subgraphs are equal. Also, it is weakly perfect if χ(G) = ω(G). Recall
that a graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends.

2. Connectedness

Recall that an ideal which is minimal in I(R)∗ with respect to inclusion is said
to be a minimal ideal of R. The following theorem was proved in [1]:

Theorem 2.1 ([1, Theorem 2.5]). Let R be a commutative ring and M an R-module.
Then GM (R) is complete if and only if M is faithful and R is Artinian with a unique
minimal ideal.

Let M = R = Z. Since any two nontrivial ideals of Z have non-zero intersection,
GZ(Z) = G(Z) is a complete graph, and hence GZ(Z) is a counterexample for
Theorem 2.1.

3. Perfectness

The next theorem was proved in [1]:

Theorem 3.1 ([1, Theorem 3.3]). Let R ∼= R1×· · ·×Rn, where each Ri, 1 ≤ i ≤ n,
is a Noetherian ring with unique minimal ideal, and let M be a faithful R-module.
Then GM (R) is perfect if and only if n ≤ 4.

Note that even if a ring has a unique non-zero minimal ideal, there might be
non-zero ideals not containing it, unless the ring is Artinian. Let n = 1, R ∼= R1 =
Z4 × Z × Z × Z × Z, and M = R. Clearly, R is a Noetherian ring with a unique
minimal ideal J = 2Z4 ×0×0×0×0. If I1 = Z4 ×Z×0×0×0, I2 = 0×Z×Z×0×0,
I3 = 0 × 0 × Z × Z × 0, I4 = 0 × 0 × 0 × Z × Z, and I5 = Z4 × 0 × 0 × 0 × Z, then
the subgraph induced by the set {I1, . . . , I5} in GR(R) = G(R) is an induced cycle
of length 5. Thus GR(R) is not perfect, and so GR(R) is a counterexample for
Theorem 3.1. We show that if each Ri is an Artinian ring with a unique minimal
ideal, and M is a faithful multiplication R-module, then the proof is correct.
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A graph G is called weakly triangulated if neither G nor its complement G
contains a chordless cycle of length more than 4. In [5], it is proved that all
weakly triangulated graphs are perfect. Also, Chudnovsky et al. [3] provided a
characterization of perfect graphs.

Theorem A (The Strong Perfect Graph Theorem [3]). A finite graph G is perfect
if and only if neither G nor G contains an induced odd cycle of length at least 5.

Theorem 3.2. Let R ∼= R1 × · · · × Rn, where each Ri, 1 ≤ i ≤ n, is an Artinian
ring with a unique minimal ideal, and let M be a faithful multiplication R-module.
Then GM (R) is weakly triangulated if and only if n ≤ 4.

Proof. (⇒): Suppose n ≥ 5. Let Ij = 0 × · · · × 0 × Rj × Rj+1 × 0 × · · · × 0 for
j = 1, . . . , 4 and I5 = R1 × 0 × 0 × 0 × R5 × 0 × · · · × 0. Since M is a faithful
multiplication R-module, by [4, Theorem 1.6], we find that IiM ∩IjM = (Ii∩Ij)M .
Hence the subgraph induced by the set {I1, . . . , I5} in GM (R) is an induced cycle
of length 5, and so GM (R) is not weakly triangulated.

(⇐): Assume n ≤ 4. Note that any ideal Ik of R is of the form Ik1 × · · · × Ikn
,

where Iki
is an ideal of Ri for all i = 1, . . . , n. If two vertices Ik and Il are non-

adjacent in GM (R), then IkM ∩ IlM = 0. The fact that M is faithful leads to
Ik ∩Il = 0. Note that Ri is Artinian with a unique minimal ideal for all i = 1, . . . , n.
Therefore if Ik is not adjacent to Il in GM (R), then either Ikj = 0 or Ilj = 0 for
each j = 1, . . . , n. First, let us consider the best possible choice, n = 4. We claim
that every cycle of length more than 4 in GM (R) must have diagonals. In order
to prove the claim, suppose I1 — I2 — I3 — · · · — Im — I1 is a cycle of length
m ≥ 5 in GM (R). If any three ideals from {I11 , I12 , I13 , I14} are the zero ideal, say
I11 = I12 = I13 = 0, then I24 ̸= 0 and Im4 ̸= 0. So I2 and Im form a diagonal
edge. If exactly one ideal from {I11 , I12 , I13 , I14} is a zero ideal, say I11 = 0, then
I32 = I33 = I34 = 0. This implies that I21 , I41 ̸= 0. Therefore I2 and I4 form a
diagonal edge. Thus every ideal of I1, I2, I3 and I4 can be decomposed into two
zero ideals and two non-zero ideals. Let I11 = I12 = 0 and I13 , I14 ̸= 0. Then
I33 = I34 = 0 and I43 = I44 = 0. Hence I31 , I32 ̸= 0 and I41 , I42 ̸= 0. Since I2 —
I3, either I21 ̸= 0 or I22 ̸= 0. So I2 and I4 form a diagonal edge. Therefore, the
claim holds true for n = 4.

Now, let I1 — I2 — I3 — · · · — Im — I1 be a cycle C of length m ≥ 5 in
GM (R). We show that C has a diagonal. If any three ideals from {I11 , I12 , I13 , I14}
are the zero ideal, say I11 = I12 = I13 = 0, then I34 , I44 ̸= 0, which yields a
contradiction. If exactly one ideal from {I11 , I12 , I13 , I14} is a zero ideal, say I11 = 0,
then I22 = I23 = I24 = 0. This implies that I41 , I51 ̸= 0, a contradiction. Thus
every ideal of I1, I2, I3 and I4 can be decomposed into two zero ideals and two
non-zero ideals. Assume that I11 = I12 = 0 and I13 , I14 ̸= 0. Then I23 = I24 = 0,
and hence I21 , I22 ̸= 0. This yields that I31 = I32 = 0, and so I33 , I34 ̸= 0. Again,
we deduce that I43 = I44 = 0, and then I41 , I42 ̸= 0. Therefore, I1 and I4 form a
diagonal edge.

Similar arguments to those above lead us to the cases n = 3 and n = 2. So let
n = 1. Thus R is an Artinian ring with a unique minimal ideal, say J . Since J is a
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non-zero ideal and M is a faithful R-module, we have JM ̸= 0. On the other hand,
since R is an Artinian ring, J ⊆ I for each non-zero ideal I of R. Thus we conclude
that GM (R) is a complete graph, and hence GM (R) is weakly triangulated. □

Example 3.3 ([7, Example 1]). Let R = Zp1p3
2
, where p1 and p2 are distinct

primes. It is not hard to see that Zp1p2
2

is an R-module. Then we have the graph
in Figure 1.

p3
2Rp1R

p1p2R

p2R

p2
2Rp1p2

2R

Figure 1. The graph GZp1p2
2
(R).

The next theorem was proved in [1]:
Theorem 3.4 ([1, Theorem 3.4]). The graph GM (R) is weakly perfect for any
R-module M .

The proof is not correct. Let A = {I ∈ I∗(R) | IM = 0} and A′ = I∗(R) \ A. In
line 6 of the proof, the authors claimed that if ω(GM (R)) = n and S = {I1, . . . , In}
is a clique of GM (R) such that S ⊂ A′, then the vertices J + I1, . . . , J + In are
the same as I1, . . . , In in different order, where J ∈ A′ \ S. But this claim does
not hold. See Example 3.3. Let I1 = p1R, I2 = p2R, and I3 = p1p2R. Clearly,
S = {I1, I2, I3} is a clique of GZp1p2

2
(R), and A = {p1p2

2R}. Consider J = p2
2R.

Then {J + I1, J + I2, J + I3} = {I2, R}. Because p2
2R +p1R = R, p2

2R +p2R = p2R
and p2

2R+p1p2R = p2R. This contradicts the claim. (Also, the open neighborhood
of J ∈ A′ \ S is not in S. This contradicts the sentence in line 9 of the proof.)

It is noteworthy that Nikandish and Nikmerh [8] conjectured that, for every
ring R, G(R) is a weakly perfect graph. The conjecture will be true if Theorem 3.4
is proved. Also, see the problem posed by Heydari [6].

4. Cyclic subgraph and planarity

The following theorem was proved in [1]:
Theorem 4.1 ([1, Theorem 4.1]). Let M be an R-module. If GM (R) contains a
cycle, then gr(GM (R)) = 3. That is, gr(GM (R)) ∈ {3, ∞}.

The proof is not correct. Let I1 — I2 — I3 — I4 be a path in GM (R). In
line 5 of the proof, the authors claimed that if Ik and Il (1 ≤ k ̸= l ≤ 4) are two
vertices that are incomparable, then Ik — Ik + Il — Ik + Im — Ik is a cycle, where
m ∈ {1, 2, 3, 4} \ {k, l}. This claim does not hold. We note that maybe Ik + Il = R
and then Ik + Il cannot be a vertex. We prove the theorem as follows.
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Theorem 4.2. Let M be an R-module. Then gr(GM (R)) ∈ {3, ∞}.

Proof. Suppose that I1 — I2 — · · · — In — I1 is a cycle of length n in GM (R).
If n = 3, we are done. Thus assume that n ≥ 4.

First, assume that M is a faithful R-module. Suppose that I1 and I2 are not
comparable. Let m1,m2 be two maximal ideals of R such that I1 ⊆ m1 and I2 ⊆ m2.
If I1 ̸= m1 (resp. I2 ̸= m2), then I1 — I2 — m1 — I1 (resp. I1 — I2 — m2 — I1) is a
cycle of length 3. So let I1 and I2 be two maximal ideals of R. If I1 ∩I2 = 0, then R
is a direct sum of two fields which implies that |I(R)∗| = 2, a contradiction. Thus
I1 ∩ I2 ̸= 0, and hence I1 — I2 — I1 ∩ I2 — I1 is a triangle. Now, assume that I1
and I2 are comparable. Similarly, we can assume that Ii and Ii+1 are comparable,
for every i, 1 < i < n. Hence we can compile into two cases. If I1 ⊆ I2, I3 ⊆ I2
and I3 ⊆ I4, then I3 ⊆ I2 ∩ I4. So (I2 ∩ I4)M ̸= 0. Thus I2 — I3 — I4 — I2 is a
cycle of length 3. If I2 ⊆ I1 and I2 ⊆ I3, then I2 ⊆ I1 ∩ I3 and so I1 — I2 — I3 —
I1 is a cycle of length 3. Therefore, gr(GM (R)) = 3.

Next, suppose that ann(M) ̸= 0. Let S = R/ ann(M) and Ji = (Ii + ann(M))/
ann(M), for i = 1, . . . , n. Note that Ii + ann(M) ̸= ann(M), otherwise IiM = 0
which yields that Ii is an isolated vertex in GM (R), a contradiction. Also, if
Ii + ann(M) = R, then IiM = M . This implies that Ii is adjacent to all other
vertices of the cycle, and hence gr(GM (R)) = 3. On the other hand, if i ̸= k and
Ii + ann(M) = Ik + ann(M), then IiM = IkM . Consider m ∈ {1, . . . , n} \ {i} such
that Im is adjacent to Ik. Thus Ii — Ik — Im — Ii is a cycle of length 3 in GM (R).
Therefore, we can assume that J1 — J2 — · · · — Jn — J1 is a cycle of length n
in GM (S). Since M is a faithful S-module, as we saw above, GM (S) contains a
triangle, say L1/ ann(M) — L2/ ann(M) — L3/ ann(M) — L1/ ann(M), and so
L1 — L2 — L3 — L1 is a cycle of length 3 in GM (R). Hence gr(GM (R)) = 3, as
desired. □

Remark 4.3 ([1, Remark 4.4]). Let M be a faithful R-module and |I(R)∗| ≥ 3.
(a) If R is an Artinian local ring or M is uniform, then GM (R) is complete and so

it is Hamiltonian.
(b) If M is not a faithful R-module, then ann(M) is an isolated vertex in GM (R),

so GM (R) is not Hamiltonian.

Let R = F [x, y]/(x, y)2, where F is a field. Clearly, R is an Artinian local ring
with maximal ideal (x, y). But GR(R) = G(R) is not a complete graph, because
(x) and (y) are two non-adjacent vertices. This contradicts the statement (a) of
Remark 4.3.

Lemma 4.4. Let R be the direct product of n ≥ 2 local rings such that at least one
of them is not a field, and let M be a faithful R-module. Then K2n−1 is a subgraph
of GM (R).

Proof. Let R = R1 × · · · × Rn, where each Ri is local with maximal ideal mi

for i = 1, . . . , n. With no loss of generality, assume that R1 is not a field. Let
A = {I1 × · · · × In | Ii = Ri or mi for i = 1, . . . , n} \ {R1 × · · · × Rn}. Then
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A ⊆ I∗(R) and |A| = 2n − 1. Since I1 is non-zero, the subgraph induced by A is a
complete subgraph of GM (R). Therefore K2n−1 is a subgraph of GM (R). □

In [1, page 106, line 1], the authors claimed that the vertex 0 × R2 × · · · × Rn

is adjacent to all the vertices of A in GM (R). This is not correct. For example,
consider M = R = R1 ×· · ·×Rn, with R2, . . . , Rn fields. Then R1 ×0×· · ·×0 ∈ A.
But R1 × 0 × · · · × 0 and 0 × R2 × · · · × Rn are not adjacent.

0 × 0 × F3

0 × F2 × F3

0 × F2 × 0

F1 × 0 × F3

F1 × F2 × 0
F1 × 0 × 0

Figure 2. The graph G(F1 × F2 × F3).

Let F1, F2, F3 be fields and let M = R = F1 × F2 × F3. It is not hard to see that
Figure 2 is a counterexample for [1, Theorem 4.10].
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