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ON A FRACTIONAL NIRENBERG EQUATION: COMPACTNESS
AND EXISTENCE RESULTS

AZEB ALGHANEMI AND RANDA BEN MAHMOUD

ABSTRACT. This paper deals with a fractional Nirenberg equation of order o €
(0,n/2), n > 2. We study the compactness defect of the associated variational
problem. We determine precise characterizations of critical points at infinity
of the problem, through the construction of a suitable pseudo-gradient at
infinity. Such a construction requires detailed asymptotic expansions of the
associated energy functional and its gradient. This study will then be used to
derive new existence results for the equation.

1. INTRODUCTION

Over the past decades fractional analysis has aroused the interest of many sci-
entists. This is mainly due to its numerous applications in various scientific do-
mains such as biology, medicine, engineering and mathematical analysis; see [16]
and [23] and references therein. In this paper we are concerned with a fractional
partial differential equation arising in a geometric context. Namely, the prescribed
fractional @-curvature problem on the standard sphere. Let S™, n > 2, be the
unit sphere of R™"*! equipped with its standard metric go. Let g = uﬁgo,
u e C™(S",RT), 0 € (0,%), be a metric of S™ conformably equivalent to go. The
fractional Q-curvature @), of order o associated to the metric g is defined by

Qo‘ =c
where c(n,o) =T'(% +0)/T(

(n,o) tu~ o P (u) on S™,

5 U), with I' the gamma function, and

1 1 -1\’
Pgo_r<B+2+a)/r<B+2—a), B= —Ago+<”2 )

is the conformal fractional operator of order o of (S™,gg). It can be seen, via
the stereographic projection, as the pull back operator of the fractional Lapla-
cian (—A)? on R™. The problem of finding conformal metrics g with a fractional
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Q-curvature ), = K on S™ is then reduced to the solvability of the following
fractional Nirenberg equation:

P Pgou:c(n,a)Kuztgg,
7 Nu>0 on S™,

o € (0,%). When o = 1, (P,) corresponds to the well-known scalar curvature
problem (or Nirenberg problem). When ¢ = 2, it is the Paneitz curvature problem.
When o € N, o > 3, it is the higher-order Nirenberg problem related to the so-called
GJMS operators. For these topics, we refer to [7, 9] 10} 111, [17, 18], 20} 211, 28], 29} [35]
and references therein.

For o ¢ N, problem (P,) has been the subject of several works after the seminal
papers [13], [14] and [22]. We refer to [2] 3, [15] [19, 24] 25] for o € (0, 1), [36] 20]
for o € (0,%) and [37, 38] for o > . Regarding some recent results on related
fractional problems, we refer to [5], 4} 12} 31, 34 [33] [27].

In [36] Abdullah Sharaf and Chtioui studied problem (P,), o € (0,%). Their

2
main hypothesis is the so-called non-degeneracy condition. Namely,
(nd): K is a C?-function on S™ having only non-degenerate critical points and
satisfies
AK(y) #0 if VK(y) = 0.

Under the above hypothesis, Abdullah Sharaf and Chtioui studied the lack of
compactness of (P,) by characterizing the critical points at infinity of the problem
and proved existence results through Euler—Hopf-type formulas.

Convinced that the (nd)-condition would exclude interesting classes of func-
tions K and aiming to include a larger class of prescribed functions in the study of
problem (P, ), we opted in the present work for the following S-flatness hypothesis.
Let

K={yeS" VK(y) =0}.

(f)p: K is a C! function on S™ such that around any y € K, K is expanded as

n

K(z) = K(y) + > @)@ — )™ + ol — @)
k=1

in some geodesic normal coordinate system. Here, 8(y) = 8 > 1, bi(y) = bx €
R\ {0} forall k=1,...,n, > p_; be(y) # 0 and
1 n 1 < 2
Bry)  By) n—2
where 8*(z) = min(8(z),n).
It is easy to see that for o € (0,5 — 1), the (nd)-condition coincides with the
(f)p-condition with S(y) = 2 for any y € K. Let

Yy #y' €k,

»= {u e H(S™), |[u? = /S PSouudugy = 1},
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where H?(S™) is the fractional Sobolev space of order o. It is straightforward to
see that the solutions of problem (P,) correspond to the positive critical points of
the functional
1
J(u) = u € .

n—2c 9

(fsn Ku%dvgo)

Due to the compactness defect of the fractional Sobolev embedding H?(S™) —
L5 (S™), J fails to satisfy the Palais-Smale condition. It is the occurrence of
the critical points at infinity; that are the ends of the non-precompact flow lines of
the gradient of J; see [6] Definition 09]. The characterization of the critical points
at infinity leads to identifying the locations in the variational space where the lack
of compactness of the problem occurs and plays a fundamental role in the existence
and non-existence results of problem (P, ).
Let a € S™ and A > 0. We define

n—2oc

A2
5((1,/\)(x) =Co n—20 )

(1+302 = 1)1~ cosd(a.2)))

where cg is a fixed positive constant. Following [24], 44, 5), a € S™, A > 0, are the
only solutions of

g n+2o0 n
Py =un=2, u>0onS".

We shall prove the following result prescribing the lack of compactness of the
problem. Let

St={ueX, u>0onS5"},
and

Kt={yek, =3} _ b >0}
For any y € I, we set

i(y) = #{br(y), 1 <k <n, st. b(y) <0}.

Theorem 1.1. Let K : S™ — R be a positive function satisfying the (f)g-condition.
Assume that J has no critical point in ©1. There exists a positive constant ag such
that if 1 < 8 < n + g, the critical points at infinity of J in ¥ are

p
1
(y17"'7yp)00 = E n—2c0 6(1}1300)7
i=1 K(yZ) n

where y; € KT Vi=1,...,p andy;, #y; V1 <i+# j <p. Moreover, the index of J
at (Y1, Yp)oo 15 equal to i(Y1, ..., Yploo =P — 1+Z§:1n—i(yj).
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In what follows, we denote by C'* the set of all the critical points at infinity of
problem (P,). Under the assumptions of Theorem

M@

20 yl,oo) Y; € Kt vi= 1,.

n—2c

Coo:{(yla-nayp K(y

i=1

andyﬂéijgz'#js;o}.

If (Y1,--,Yp)oo € C, let W (y1,. .-, Yp)oo and W (y1,...,¥p)oo designate its
unstable and stable manifolds respectively. According to [7], we have

dim W2 (y1, .-+ Yp)oo = cOAIM W (Y1, ..., Up)oo = (Y1, -+, Yp)oo

In order to state our first existence result, we need to introduce the following
notations. Let kg € N and let Ng° be a subset of

C%oko = {(yl, L ayp)oo € C*™ s.t. i(yl, Ce 7yp)oc < ]{10}
Define
W2 (Nig) = U Wy, - Yp)oo
(Y15 Yp)oo ENZE

Wi (Nge) defines a stratified set of top dimension less than or equal to kg. To
simplify, we assume that it is equal to kq. Since ¥ T is a contractible space and since
Wee(Np2) € BT, there exists at least a contraction 6(We°(Ng°)) of W (Ng2)
in ¥ 7. We then have

Theorem 1.2. Let K : S™ — R be a positive function satisfying the (f)g-condition,
1 < B <n+ag. If there exist an integer ko € N and a subset Npw C CZ, - such
that
@ Yy,
(yl,,“,yp)ooeNoo
(b) H(quo(NE(?)) AW, Yploo =0V (Y1, - Yp)oo € OZ 11\ Ny
then problem (P,) has at least a solution.

As an application of the above theorem, we state the following existence result.
Let yo and zp be two points in S™ such that K(yp) = maxgn K(z) and K(z9) =
ming» K(x). It is easy to see that, under the (f)g-condition, yo € KT and zy €
K\KT.

Theorem 1.3. Let K : S™ — R be a positive function satisfying the (f)z-condition,

B € (1,n+ ag), such that ﬁgg; < 2772 . If there exists ko € N such that

@ Y (UL
yek+, n—i(y)<ko
(b’) for any y € KT we have n —;(y) # ko + 1,
then (P,) admits a solution.

It is easy to see that any integer ky > n satisfies condition (b’). Therefore the
following existence result is an immediate consequence of Theorem [T.3]
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Theorem 1.4. Assume that K satisfies the (f)g-condition, 1 < < n+ ag. If
3 (- £,
yeKt

then (Py) has a solution provided gg‘;; <27

It should be noted that Theorem covers the perturbation theorem of T. Jin,
Y. Li and J. Xiong [24] in two ways. First, the flatness order of the prescribed
function exceeds the dimension n of its domain. Second, the closeness rate to a
positive constant is estimated in our theorem.

Our aim in what follows is to remove condition (b’) in the existence result of
Theorem [[.3l This leads to another kind of existence result. Nevertheless an
additional condition concerning the closeness of K(yo) with respect to K (zo) will
be imposed.

Theorem 1.5. Let K : S™ — R be a positive function satisfying the (f)z-condition,

1

B € (1,n+ ap), such that ggzsg < (%) n=2 Jf
K+\{y0} # @7

then (Py) has a solution.

Our method is based on the critical points at infinity theory of A. Bahri [0].
We follow closely the ideas developed in [II] and [32] where the prescribed scalar
curvature problem was studied using some topological tools.

In Section 2 we recall some preliminaries related to the associated variational
structure. In Section 3 we perform an asymptotic analysis on the gradient field
of J under condition (f)g, 8 € (1,00), and we construct a suitable pseudo-gradient
allowing us to prove Theorem The proof of the existence results will be per-
formed in Section 4.

2. PRELIMINARIES

We start this section by characterizing the sequences of ¥ which violate the
Palais—Smale condition for the functional J. For p € N, and £ > 0 small enough,
we set

V(p,e) = {ue Y, Jag, ... ap >0,3N1,...,0, > P and ay,...,a, € S™ s.t.
Hu— > ozizs(%)\i)H <e,
‘J(u)#aﬁK(ai)J(u)ﬁ — 1’ <eV1<i<p,
and €;; < e Vi ;éj},

where

_ n—20

VDY 2
€ij = ()\] Aiz + )\ZAJ‘G’Z — (lj|2>

Following [§] and [30], we have
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256 A. ALGHANEMI AND R. BEN MAHMOUD

Proposition 2.1. Let (ug) be a non-precompact sequence in X1 such that J(ug)
is bounded and 0J(uy) tends to zero. There exist p € N, a positive sequence
(ex) tending to zero and a subsequence of (uy), denoted again by (uy), such that
up € V(p,er) Vk > 1.

A parametrization of V(p,€) is given in the following proposition.

Proposition 2.2 ([7]). For any u € V(p,e), the minimization problem

p
U — Z ai(s(ai)\l)
i=1

has a unique solution (&,\,a). Moreover, v = u— Y o_, @il 5, satisfies the
orthogonality condition

86 a,i,)\i 85 ai,)\i .
VO): <U,<P>:O VQDG {5((11',)\1,)’ (a)\ )7 (aa. )7 Zlv"'ap}'

Here (-,-) denotes the inner product of H°(S™).

min
a;>0,X;>0,a;,€8™

Next we deal with the v-part of u. Following [2] and [8] we have

Proposition 2.3. For any > ©_, @i0(a;, ;) € V(p,€), the minimization problem

min J < Z @i, 2, T v)
i=1

v satisfies (Vo)

has a unique solution © = v(a, a, ). In addition, there exists a change of variables
V = v — T such that the following expansion holds:

P p
J(Zaié(%m + v> = J<Zai5(ai,)\i) +U) + V2.
i=1 i=1

Moreover, under the (f) 5—condition we have following estimate:

7] < cz 4 [VE(@)] | (log i) ]

- ni2oc
i )\Z )‘z 2
n+t2o0
_ 2n
252(71 2<1) (10g5ij1> . n > 37
+ C Z;é] n—20
Zaij<loga;j1> n n=2.

i#]
We now define a critical point at infinity [6].

Definition 2.4. A critical point at infinity of the functional J is an end of a
non-precompact flow line u(s) of the gradient vector field (—9J). According to
Propositions and m u(s) can be described at infinity in the form

Zaz ai(s),Ai(s)) =+ U(S)a
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where ||v(s)]] = 0 and A;(s) > oo Vi=1,...,p. If we set y; := lims_, 4 a;(s) and
a; =limg 00 ai(s) Vi=1,...,p, then

p
Wi Up)oo = D, id(y,,00)
i=1

denotes a critical point at infinity.

3. PROOF OF THEOREM [L.1]

In this section we characterize the critical points at infinity of problem (P,),
o € (0, %), under condition (f)g. We construct in V(p,e), p > 1, a suitable pseudo-
gradient W for which J decreases and the Palais—Smale condition is satisfied along
its flow lines as long as these flow lines do not enter the neighborhood of the
critical points y1,...,y, € Kt such that y; # y; V1 < i # j < p. We shall prove
the following result.

Theorem 3.1. Let K : S™ — R be a positive function satisfying the (f)g-condition.

There exists ag > 0 such that if 8 € (1,n+ ), the following holds: For any p > 1
there exists a bounded pseudo-gradient W in V (p,e), € > 0 small enough, such that

() (2] (), W (w)) < —c(i (Agtﬁ) ) )

i=1 i#]
i = v N1 |VK(a)
() (270 +7),W(w) + 5 W) < C<i_1 ()\f(yi) + A >+
ZEij) , for any u € V(p,e).
i#]
Moreover,
(iii) For any i =1,...,p, max Ai(s) is bounded unless a;(s) — y; € KT Vi =

1,...,p with y; # y; V1< # j < p. In this case all the parameters \;(s)
increase and tend to co.

The first step in the construction of the required pseudo-gradient W is to describe
the variation of the energy functional J with respect to the parameters \; and a;,
i=1,...,p, of V(p,e).

Proposition 3.2. Let K be a positive function satisfying the (f)g-condition. There
exists ag > 0 such that if B(y) € (1,n + ap) for any y € K, the following holds:
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258 A. ALGHANEMI AND R. BEN MAHMOUD

For any u= 3", @b, r;) € V(p,€) such that a; € B(y;,p), yi € K, we have

(07, ey

ﬁ(l—i—o(l)) if B(ys) #n,
log \; '
)\O?’%yi) (I+0(1) ifBy)=n

| Byi)—1
—aJ(u Zala] Oij +O(‘a2 _yi|B(yi)> +O<a2y;\|>
Jj#i i

+Zo(aij),

J#i
/ dz
1= T
(1+[7) =

BPOP -
/" (1 + |t|2)n+1 dt Zfﬁ(yl) < n7

=41 Zf B(yl) =n,

B(yi)—n
% if Bly) > n

Proof. Using a computation like the one in [I, Proposition 3.2], we have

= J(U)Eiom ; br (y:)

where

and

65 ai,Ai 2n_2¢ nin” Z+25 8 @isAi
<8J(u),ai)\i%> ~20() " aTT [ K @), TN (;A dvg,
—2¢1J(u) E ozla»/\agij (3.1)
1 1A a)\l . .

Let mn be the stereographic projection with respect to the north pole N of S™. To
simplify, we will identify any x of S™ with its projection in R™. Also, we identify
the functional K with its composition with 7. By an elementary calculation we
have

ni2o 35(%,)\” _n- 20 (1 — /\l2|l‘ — ai|2))\?

(;ﬂ_'%, >\z — n :
(ai, M) O\ 2 1+ Nz —a]?) o
It follows that
n+20 8(5 >\
I 57 A (as, )d
. K(2)8,. %5, O

nt2o0 96 (ai,

:/n(K(x)f ( ))5(7; 2;))‘ a)\/\)d
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since
n+t2o 86(a. As)
n—2c i \i _
/" O (o) i on dx = 0.
Let p > 0 be small enough. In B(a;, pp)¢ we have
nt20 8(5(a. i)
K .73) — K(y; (57;7_2(? by = dx
/B(GW)C ( ( ( )) (@i, A:) O\
< (K (1= A2|z — a;[*) A\ do (3.2)
~C n .
B(ai,p)¢ (1 + X2z — ai|2) +

o n—1|1 _ .2 1
SC(K)/ MS()( )
A

o (72t V
In B(ai, p), we use (f)s expansion. We obtain

nt20 3(5(a, )\.)
K(x) = K(y:)) 8, 5 Ny da
/B(ai’po) ( (ai,\i) O\

n— 20

= bk(yi)/
2 ; B(auﬂ)

N2y — a.l2|\n
el [ e et
B(ai,p)

(14 22|z — a2)" "
n— 20

t+ Ni(a; *yi)k‘ﬁ 1—t]?
2 kZ:l o (5:) B(0,\ip) AB(w:) (1+22)"

I+ Mo —w)e " 11—t
+o 50 dt |,
B(0,x:p) A

(1+¢2)"

) (L= Al = aiP) A da
@ = i (1+>\§|x—ai|2)"+1

by setting ¢ = A;(a; — y;). Observe that

/ I+ Nilas — )" 1 e
B(0,\ip) /\iﬂ(yi) (1 N |t|2)n+1

B (1 1412
[ s,
B

(0,Xip) )\Z_ﬁ(yi)(1+ \t|2)n+1

a; — Y; HBW)=111 _ 1412] dt |
+0 / | ;ﬁ |),|1 | n|+|1\ N O(!ai _yi|6(yq,)).
B(0,Xip) PV (1 + |t|2)

1 .
=—¢(1+o(1)) lolg)\i +O(\ai _yi|ﬁ<yi))’
/\,@(yi) if ﬁ(yz) =n
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where
PO -1
. P A0 <
¢G=41 if B(yi) =n,
Blys)—nqy )
W if Byi) > n.
It follows from the above estimate and (3.2)) that
1 .
9 n W if Bly:) #n
n—20 _ ;
I =— 3 C; (1+0(1))(Zbk(yz)> lég/\l )
k=1 Aﬁ*(y’) if B(yl) =n

+ O(|ai - yﬂmyi)) + O(}\%)

Observe that in the above expansion, the remainder term O(%n) is very small

with respect to W if B(y;) < n and ;\%g(j") if B(y;) = n. However, if B(y;) > n,
O(%) is of the same size than ﬁ This presents the difficulty of studying the

i

problem for any flatness order (y) > n, since the sign of the leading term in the

above expansion is unknown. Nevertheless, for n < 5(y;) < n + «p, where ay is a

small positive constant, the remainder term O %n is very small with respect to

n—1
WW. In this case the latest expansion will be reduced to

1

" NCEOD) if Bly:) #n
n—20 _ i
=5 o) (X)) {
k=1 )\,37(3/:) if Bly:) =n
+0(la; =y ¥). (3.3)

The expansion of Proposition follows from (3.1]), (3.3)) and the relation
74” n
a " K(a;)J(u)m=2 =1+4+0(1) Vi=1,...,p. O

Proposition 3.3. Assume that K is positive on S™ and satisfies the (f)g-condition.
For any u =" ;i 0(a;.n) € V(p,€) such that a; € B(y;, p), yi € K, we have

(673 88\(ai7)\i)
<8J(u)7 i 9@ >
2n—20 la; — yi|5(yz‘)*1

_2n
= 70205;’_20 J(u) n—2o 5(yz)bk(yz) sign [(az - yz)k] /\— + R,
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where (a;)g, k =1,...,n, denotes the k-th component of a; in the geodesic coordi-

nate system,
n—20 / |t|? dt
cy = ,
’ no Jre (L4 [¢2)nH

and
B(yi E(B” (i) — Byl
AR S e
v 1=2 i j#i

O(Ai;yi)) if Bly:) <,

+ 1
o(57 )7 € (nmin(n+1,5(u)) ¥ 5lui) > n

Proof. Following [1l Proposition 3.3], we have

(67 (‘36(a. ) 2 nt2e ] 8(5 (@i Ai)
_t 10\ — _2 T 20 —20 K n—2o 7
(00, G0 ) = <25 ¥F ol [ K@l E 1 au,

Performing a stereographic projection, for any x € R™ we have

nt2e 1 0d(a, ) _ (- 920 Nz — ag),
@AIN Bl 0+ 22— )™
It follows that
n+420 a
I:= 52 N gy
R" K)o X d(a;)k

nize 1 99y, 1) ( 1 )
K(z) — K(a;))6 %, — 22+ 0 .
~/B’(ai,p)< ( ) ( )) (a;,\ )/\ a(ai)k )\;htl

By a Taylor expansion up to order E(3*(y;)), we have

E(B"(yi)) 1 l
D'K(a;)(x — a;
K(@) ~ K(a) = ()l = )
=1 ’
O(|$—ai|ﬂ(yi)) if B(y;) < mn,

o(lx —ail), v € (n,Bys)) if Blys) > n.
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262 A. ALGHANEMI AND R. BEN MAHMOUD

Therefore, by setting t = \;(z — a;), we get

E(B"(yi)) 1
D K al)() tk

I— -2 dt

(n =20) Z / Bosy N (L + ()t

1
O( B( i)) lfﬁ(yl)gn
A +O(1 >

1 .
0(/\7> if By:) >n
E(B" (vi))

)(t) b (lx - ailﬁ“«'”—l)
(n — 20) / dt + o —"—r
B(0,Aip) (1 + [¢[2)n*? Z Al

=2 g

+

Observe that

/ tDK(a)(t) . ¥ 5o (ai) / tut; dt
BO.xp) Ai(1+ [t[2)"H! = A b [P
_ ngk(@i)/ 2 dt
Ai JBoap) (LF[E2)H

9
1 g, (@) |t]? 1
Ry (/ e T O\N) )

Moreover, by (f)s expansion we have

0K

on B(yi)—

a;) = Bly:)bi(yi) [ sign(ai — yi)x]| (a; - " o(fas - v

It follows that

oo |B(yi)—1 ) —
1= 3y () s (o0 — )] 15U oo 07

_|_

1 .
BB (vi)) la; — ] P O(Aﬁ“’”) if B(yi) <n .
o) cof )

+
2 N

This concludes the proof of Proposition [3.3] O
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In order to prove Theorem we introduce the following subsets of V(p,e),
p>1. Let

V {“—Zaz‘s(al z) € Vp,e) s.t. a; € By, p),
ylGICVizl,...,pandyi;«éij1§i;éjgp}.

In [2] it is proved that there is no critical point at infinity in V(p,e)\ V(p, ). More
precisely:

Proposition 3.4 (|2, Section 3]). There exists a bounded pseudo-gradient W €
Vip,e) \ ‘7(73,5) satisfying inequalities (i) and (ii) of Theorem for any u =
S il € Vpie)\ V(p,e). Moreover,

(ili’) maxi<i<p Ai(s) remains bounded as long as the associated flow line u(s) =

> @i(8)0(as ()0 (s)) TEmains in V(p,e) \ V(p,e)
The next proposition describes the concentration phenomenon in ‘7(1), €).

Proposition 3.5. Under the assumption that K is positive on S™ and satisfies
the (f)g-condition, B € (1, n + ap), there exists a bounded pseudo-gradient W in
V(p,e) such that the assertions (i), (ii) and (iii) of Theorem hold.

Proof. Let vy be a small positive constant. For any y € K and for any A > ¢~ !, we

define a neighborhood V) (y) of y as follows:

Va(y) = {a €S, la— y|’8('y) < )\;O(y) }

We divide ‘7(1), ¢) into the following three subsets:

le, {u—Za, (ai X EV(p, g) s.t. aiEVAi(yi),yielC"’Vi:l,...,p},

Va(p,e —{ Z a“Ai)E‘N/(p,s) st.a; €V, (yi), 1 eKVi=1,....p

and 3 at least an index i s.t. y; ¢ IC*},

Vg {u = Za, (ai ) € V(p, €) s.t. 3 at least an index 4
s.t.oa; ¢ U V,\(y)}
yek

We define on each subset ‘N/j(p, €), j = 1,2,3, an appropriate pseudo-gradient Wj.
The required pseudo-gradient W of Proposition [3.4] will be defined by a convex
combination of Wj, j =1,2,3.
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Pseudo-gradient in V; (p,e). Let u=3" | @ib(a,.n,) € % (p,e). We define
P 90 a“)\ )

E a’L’L

Along Wi (u), all the parameters A;, i = 1,...,p, increase according to the differ-
ential \; = \;. Using the asymptotic expansion of Proposition we have
1 .

(0J(u), Wi(w)) < —c > lc:g)r +3 O(es), (3.4)
i=1 Lif By =n i

)\@(Z/i)

since — Y p_, be(yi) >0Vi=1,...,p
Claim 1. For any i # j we have

1 1
€ij = O(Aﬁ*(yi)) + 0<>\@*(yj)> as e — 0.
i J

Indeed, since y; # y; Vi # j, we have

ij S~ azas
(/\i/\j) :

—20
Let 1 be a small positive constant. If )\ > em )\B (wa) =557 , then

C E'Yl
€ij < ey

It follows that €;; = 0(%) ase — 0.
n—220o0 n—2o
It )\j 2 <egm )\ﬁ (wi) =57 , then for vy < 252 2" the exponent S*(y;) — ’Tza
is positive (if not, the parameter A; will be less than e~ 1). Tt follows that
n — 20 —2v
/\Qﬂ*(yi)*(”*QU) - 52f8*(yi)*(”*2‘7)
j
Therefore,
n—20 B =) L
,172 <e R ohE Ce A 487 (i) —2(n=20)
Ai

Thus,

(n—20)v; 22 (14 g2
€ij Sce T 2B% (i) —(n=20) )\ a ( s (yi)_(n_%)).

Using the fact that

1 2
50 T T > ozer We get

n—20 B*(ys) B* (y5)
__n29m =B (y;)— sprry o —(n2e) tnoto) B (yi)+B" (y;) 22—
€4j < c g 2%(y)—(n—20) )\ (ws)= 26 (y">_(n_20)( s) (w5) no2e )
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Using also the fact that A; > ™1, we obtain

- * * 28" (y4) B* (y5)
w(y?)fz&,zo)(ﬁ (ya)+B (%)*TUJ*%) 1

< .
cij = ce VB W)
J

Thus for v < B*(y;) + B*(y;) — QM

n—2o

1
Eij O<)\ﬁ*(y7)> as e — 0.
J

This concludes the justification of Claim 1.
Using now the result of Claim 1 and inequality (3.4 @, we get

(D (u), W (Z N +Zem> (3.5)

i#£]

Using (f)s expansion, we have

VK (a;)] ~ |ai - yi‘ﬂ(yi)_l- (3.6)
Therefore, in Vi (p, £) we have
|VK((J,Z)| C
N S e

K2

It follows from (3.5)) that

(87 (u), Wi (u)) < c(zp:&ﬂl@? ’VKG’> Zej>

i=1 i#£]

Pseudo-gradient in Va (p,e). Let u=3" | @iba,.n,) € Vs (p,e). Set
I={i,1<i<p, sty ¢ Kt}

90
== ik a“

i€l
Observe that along Zj, all the parameters A;, ¢ € I, decrease accordlng to the
differential equation X = —\i. Using the expansion of Proposition [3.2fand the fact
that — Y p_; bi(y;) <0 Vi e I, we have

We define

1 .
W if 5(%) #n
<(9J(U),Z1(u)> < _CZ log \; +ZO(€”)
iel Aﬁ*(yf) if B(y;) =n  i#5

Using Claim 1, the above inequality can be improved as follows:

(0T (), Zr(u)) < ¢ — B(yl +2 0 (/\1(-”)>

ZGI il %
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Let us denote by 4; an index in I such that Af: i) _ min; ey )\f*(yi). We set

~ . 1 * (s

= {z 1<i<p, st AT@) > )0 ("”1)}.

2 1
We have I C I and the preceding inequality is reduced to
1
(07 (w), 21 CZ @(m Z (A, (yn)'
iel l §§I v

To get inequality (i) of Proposition H we define

8(5(%)\ )
V;(u Zal i .
z¢]

1
According to V+{u), A; increases for all i ¢ I, but does not exceed (2)\2 (i)} Prtvs,
Using the fact that — > ;'_, bi(y;) > 0 Vi §é I, we get by Proposition

1
(97 (w). Vifu) cz F ot o )
iel v
Let
Wo(u) = Z1(u) + Vi{(u).
Using the above two inequalities, relation (3.6 and Claim 1,

<8J(u)7W2(u)> < —C<Z ()\63(%) n ’VK a;) ) Z&g)
i=1 A

i#£j

Pseudo-gradient in Vs (p,e). Let u= Y"1 i0(a, n,) € ‘~/3(p7 ). We set

B(yi) Yo
> 2)\5*(%) }

1={i,1<i<p st fo—uil

We introduce the following lemma that will be proved in the appendix of this paper.

Lemma 3.6. For any i € I there exists a bounded vector field X;(u) which acts
only on the parameter a; of u and satisfies

(0 (u), Xi(u)) < —C<A[;yi) . |VK a:) > + 300

i#]

Using Lemma we have

<8J(u),ZXi(u)> Z < Bl(yl \VK a;) ) LS00

iel Ve
el

Denote by 47 an index of I such that
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Setting

T . N * k3 /8 k2
I:{z, 1<i<p, st AT@) > 2/\71(3’1 }
the above inequality can improved as follows:

(0J(u), Y Xi(w)) < 3 (Af}(yi) }VK a,) ) S 0(ey)

el VE)
el

Using the result of Claim 1, we obtain

<8J(u)7ZXi(u)> s (Aﬁlm |Vligai)}> I Zo(@)

el iel i1 @

Now set u = Y. i1 ~@;i0(q,,2,)- Of course U belongs to ‘71((],6) or %(q,e), where

q= #I ¢. Denote by Y (u) the corresponding vector field defined in the above two

regions: Y (u) = Wi (a) or Y(u) = Wa(u). According to Y (u), the parameters
1

Ai, 1 ¢ T, can increase but they do not exceed ( /\B (i) )m(y”). Moreover, we

27
have
I 1 VK( al
(0J(w),Y (@) < —¢Y ()\’3 o+ | ) > 0.
ZQI J?él
z%[
Let

= Xi(u)+Y(@)

iel
Using Claim 1 and the above two inequalities, we have

Z#J

The required pseudo-gradient W of Proposition [3.4] is defined by a convex com-
bination of Wy, Wy and Ws5. By construction W satisfies the properties (i) and
(iii) of Proposition [3.4] Concerning (ii), it follows from (i) and the estimate of ||7|
given in Proposition [2.1} This finishes the proof of Proposition U

Proof of Theorem [3.1] It results from the construction of Proposition[3.4and Propo-
sition O

Proof of Theorem [I.1]. It follows from Proposition that, under the assumption
that J has no critical point in ©1, there exists a positive constant ¢ such that

|0J(u)| > ¢ Vue U V(p,g). (3.7)

p>1

Let W be a vector field defined by a convex combination of (=0J)inU,>, V(p, 3)
and W in Ule V(p,e). Here W is the pseudo-gradient defined in Theorem
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It results from (3.7) that for any up € X1 there exists p = p(ug) and (s) \y

such that the motion u(s, ug) of W starting from ug ties in V(p, e(s)) for any s > so.
Therefore u(s, ug) can be expressed as

P
u(s,up) = Zai(s)é(ai(s),ki(s)) +3(s) Vs> sq.
i=1

Using the properties of W given in Theorem the flow line u(s,ug) stays in
Vi(p,e(s)) for any sufficiently large s. Thus for any i, 1 < i < p, there exists
y; € K+ such that
B(ys) o

< 9
| = Ni(s)B"(wi)
with y; # y; V1 < i # j < p. Using the fact that \;(s) > e71(s), we get a;(s) — y;
Vi =1,...,p. This ends the characterization of the critical points at infinity of J.

Where each critical point at infinity

u 1
> K= O(ys,00)

i=1 (yz

the functional J can be extended as

J( Zz_p; @ib(a; N T 11>
_ (f: S)n) (3.8)

’ai(s) —Yi

=1 K(yl
P P B(ys) p 1
Yi
X 1—2( be (i) | (@i — yi)k | >—H|2+ NEBE
=1 k=1 =1 >\i

Here H € RP~! and S, is the best constant of Sobolev. Under the assumption
that bg(y;) # 0 Vk,...,n, the index of such a critical point at infinity is equal to

WY1y Yp)oo = D — 1+ >0 (n—i(y)). The proof of Theorem is thereby
completed. 0O

4. PROOF OF THE EXISTENCE RESULTS

We shall prove the existence results of this paper by contradiction. Therefore
throughout this section we assume that the variational functional J has no positive
critical point.

Proof of Theorem [L.2] Under the assumptions of Theorem O(Nge) defines a
contraction of N2° of dimension ko+1. Let W be the pseudo-gradient defined in the

proof of Theorem We use W to deform O(NgS). Since we have supposed that J
has no critical point in ¥F, §(Ng°) retracts by deformation (:~) on a union of the
unstable manifolds of critical points at infinity. By transversality and dimension
arguments, we may suppose that the deformation avoids the unstable manifolds of
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the critical points at infinity of indices larger than or equal to ky + 2. Thus using
the characterization of the critical points at infinity given by Theorem [I.I] we have

(N ~ U W (Y155 Yp)oo
(ylwnvyp)ooEC%OkOJrl
W= (U1,-0ms9p) oo O(Ni )20

= N U U W (s Yp)oo
(y1,--<7yp)m60§°k0+1\N§g
Wsoo(yl,...,yp)ooﬂe(N,fg)#(l)

Under the assumption (b) of Theorem the above retract by deformation will
be reduced to

O(NpY) ~ N2

Using the Euler characteristic of both sides of the above retracts, we get

1= Z (—1)iwntp)oe

(Y15 5Yp) oo ENZE

This contradicts assumption (a) of Theorem O

Proof of Theorem [L.3] Just check the conditions of Theorem [I.2]under the assump-
tions of Theorem Let ko be the integer satisfying conditions (a’) and (b’) of
Theorem We work with

Nko = {(y)oo = W(S(%W) s.t. y € ’C+, and i(y)eo < ko},

and

weEmg) = U W)
yekt
i(y) oo <ko

Tt is easy to see that condition (a’) implies condition (a) of Theorem In order
to complete the proof, it remains only to construct a contraction 6 (W:° (Nko(f)) of
W (NR?) satisfying condition (b) of Theorem

Recall that from expansion the critical value at infinity Coo (Y1, ., Yp)oo
of a critical point at infinity (y1,...,¥p)oo, P > 1, is

2 P 1 "
Coo (Y151 Yp)oo = S ( — s (4.1)
; K(yi) =

Let K(z9) = ming» K(2) and K(yo) = maxgn K(x). It is easy to check that
Sy

Cx(y) < —= Wekh; (4.2)
K(z0) ™™
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moreover, for any p > 2, we have

Coo(ylv"'vyp)oo > T n—20 (43)

Let

Since J decreases along the flow lines of (—0J), we obtain from (4.2))
J(u) <C1 Vue W2 (Ngy),
and therefore W2°(Ng°) C Jg,, where J. = {u € ¥, J(u) < c}.

Denote by J! the variation functional associated to the problem where the pre-
scribed functional is equal to 1. An easy computation shows that

1 1
ﬁ.fl(u) S J(u) S ﬁg}l(u) VU [S 3. (44)
K(yo) ™™ K(z) ™
We obtain
Jo, CJ' e CJ ne2o . 4.5
K(yo)™ n» C1 (;E’:g;) oo ( )
Observe that, under the assumption ggggg < 2%326, we have
Kyo)\ ™ 25,)%
< (y0)> C1 < (7712107
K(ZO) K(yo) n
and therefore by (4.2)) and (4.3), J has no critical point at infinity between the
n—20
levels Cy and (ggg;) " (. Using a retract by the deformation lemma, we have
J( K(yo)) 717”20 >~ Jcl.
K(z0)
It results from (4.5)) that
1
n—2o >~ J .
Ko e
Note that J! .2 18 a contractible set. It then follows from the above retract

K(yo) " » Ci
by deformation that Jc, is a contractible set. Using the fact that W2o(Ng°) is

included in Jg,, there exists at least a contraction 6(We°(Ng°)) of We°(Ng°) in
Jo,. Using (4.3) and assumption (b’) of Theorem the following holds:

OWS (NS MW (Y1, Yp)oo =0 VY1, Yp)oo € Cidpq \ NI
Condition (b) is valid and Theorem [1.2| applies. O
Proof of Theorem [L.5] Let

_ @S
P K ()
It follows from (4.1)) that for any y; # y,; € KT, we have
Coo(yi,yj) < CQ. (46)
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Moreover, we derive from (4.4]) that

J JN e, J e A7
€ K (yo) o Co < (K(yo)) = Cs ( )

Observe that under the assumption ggyog < (%) m=27 we have

K 2 z

K (z0) K(yo) == ~

It follows from and . that J has no critical points at infinity between the

—20
levels Cy and (Kggg) " (9, and therefore,

—20 >~ JCQ' (49)

J n
(%) ™ o

We then derive from (4.7)) that Je, is a contractible space, since, according to (4.9)),

Jc, is a strong retract by deformation of J* ne2e and the latter is contractible.
K(yo) n

Let x be the Euler—Poincaré characteristic. It follows from (4.2 . and .
that

= X(e) =xUe)+ Y (1) (ioien),

yiFy; LT

This implies that

Z (71)1+2n7(5(yi)+5(yj)) =0,
yiFy; ECT

since x(J¢,) = 1. Using the computation of [32, p. 16] we get
#KT =1 andthus K\ {yo} = 0.

This yields a contradiction with the assumption of Theorem O

APPENDIX A. PROOF OF LEMMA [3.6]

Let 7 € I. We distinguish two cases.

Case 1: (B(y;) > n. In this case we define

Xiur) =y (X - yzv\f*(y”)

_ yi)k‘ﬁ(yi)*l 85(ai7/\i)

- bk( |(ai
X sign(a; — i)k — ,

where 1), is a cutoff function such that

q/”yo()—llft>10 and w%()f()lft<%
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Using the expansion of Proposition [3.3] we have

n | ‘ﬂ(yz) 1 [B%(vi)] ’ y ‘ﬁ(yi)—l
(J(u), X;(u)) < cz + Z 0(’)

=1 3

< > + Zo €ij)- (A1)

J#i

Here + is any constant such that n < v < min(n+1, 8(y;)). We claim the following:
For any [ = 2,...,n, we have

Byl o Blya)—1
o y;\! = 0<|al yj\| ) as € = 0. (A.2)
i i

Moreover,

B(Zh) 1
-1 1 i — Yi
for v € (TL(%)-FLmin(ﬁ, n+1)), we have SV O<|ay)\‘> ase — 0.

i 7

(A.3)
Indeed,
|ai_yi|5(yi)*l A B 1
)\i |ai —yl}ﬁ(yl)il (Ai’ai _yi|)l_1
Using the fact that ¢ € I, we get
1 < 2\
’ClL . yi|ﬁ(y7‘,) Yo
SO
1 < (2) By )\BB*(yil))
| yz| Yo !
Thus

1 < ! <2>BL(1’1) )\Bﬁ*éyf)) (-1
(Nilai =5 )1 = A7 o ’

-1
2 B(y;) 1
g() 0 ase—o,
-1 (

B*(y4)
Yo BRCICD) )

%

since 5*(y;) = n and B(y;) > n. Estimate (A.2) follows.
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Now for v € (w + 1, min(8(y;),n + 1)), we have

ﬂ(yl)
1 by 1 1
77 =1 -1 B(yi)—1
A; |ai—yi|ﬁ(y) R r— (vi)
Blu—1 "
<1 <2> Pl /\ S (B(yi)-1)
B /\7_1 Yo
B(y;)—1
2 B(y;) 1
= () oo — 0 ase—0,
o /\<771>7</3<yi>71) G

(3

since v > % + 1. Claim (A.3) follows. Using (A.2) and (A.3)), we get from
D)

@100, ) < =3 104

Using the fact that
2\Bi) =0 byl =0 A V. as e —
and |VK (a;)| ~ |ai - yi|B(yi)_l7 we obtain

(0J (u), X;(u)) < _c(/\_ﬂ%yﬂ * WK s > 20

J#i

Lemma [3.6] follows in this case.

Case 2: [(y;) < n. Let M be a sufficiently large positive constant.
If |a; — yi\B(yi) > /\5%”“ , we consider in this case the vector field

(s '
Xi(u) =¥ ()‘16 i) a; — yi|ﬁ(yl))

& (a; — yi)|P¥D 71 004, ,)

51n i 9
,; A e T T BT B

where 1,/ is a cutoff function such that

1 ift> M,
0 ift <2l

Yur(t) = {

Observe that (0J(u), X;(u)) satisfies inequality (A.1). Moreover, the following
holds: For any [ =2,...,p, we have

|ai _yi|5(yi)*l |az_ _yi’B(yi)*l
Al -7 Y

> as M becomes large
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274 A. ALGHANEMI AND R. BEN MAHMOUD

and
B(yi)—
r |ai - yz‘}
N =0 y as M becomes large.
Thus
n |(al |5(yi)*1
<8J(u)7Xz(u)> < _CZ + ZO(EU)
k=1 i
1 ’VK aZ
= e\ e )7 ;O €.
4 VE]
If |a; — ;| P < 7 M, we use the vector field
Z / |tk + Ni(a; — yi)k’B(yi) dt%a(;(““")
n (14 [¢[2 )"+1 i O(aq)k

Note that X; is used in [2 p. 1293]. Using the same computation of [2, pp. 1307—
1308], we get

1 ’VK aZ
(0J(u), Xi(u)) < —c A0 + N, + ZO €ij)-
7 VED)
The proof of Lemma is thereby completed. O
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