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GROUND STATE SOLUTIONS FOR SCHRÖDINGER

EQUATIONS IN THE PRESENCE OF A MAGNETIC FIELD

ZHENYU GUO AND YAN DENG

Abstract. In this paper, we are dedicated to studying the Schrödinger equa-
tions in the presence of a magnetic field. Based on variational methods, es-
pecially the mountain pass theorem, we obtain ground state solutions for the
system under certain assumptions.

1. Introduction

The linear Schrödinger equation is a basic tool of quantum mechanics, and it
provides a description of the dynamics of a particle in a non-relativistic setting.
The nonlinear Schrödinger equation arises in different physical theories, e.g., the
description of Bose–Einstein condensates and nonlinear optics, see [7] and the ref-
erences cited there. Both the linear and the nonlinear Schrödinger equations have
been widely considered in the literature, see [1, 15, 13, 16, 14]. The authors in [8]
considered the following problem:



















−∆u = λu+ |u|2∗−2v in Ω,

−∆v = µ|v|2∗−1 + |u|2∗−1 in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain of R
N , N ≥ 4, 2∗ = 2N

N−2 , λ ∈ R and µ ≥ 0.
They obtained existence and nonexistence results, depending on the value of the
parameters λ and µ.

In the nonlocal framework, only few and recent works deal with fractional mag-
netic Schrödinger equations like

(−∆)s
Au+ V (x)u = f(x, |u|2)u in R

N .
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Up to normalization constants, (−∆)s
A can be defined on smooth complex valued

functions u ∈ C∞
c (RN ,C) as

(−∆)s
Au(x) = lim

ε→0+

∫

Bc
ε(x)

e−i(x−y)·A( x+y
2 )u(x) − u(y)

|x− y|N+2s
dy in R

N ,

where Bε(x) denotes a ball in R
N with radius ε > 0 centered at x ∈ R

N .
To the best of our knowledge, the earliest existence result for the nonlinear mag-

netic Schrödinger equation is the paper by Esteban and Lions where the magnetic
field is assumed to be constant. Their approach was generalized to the periodic
magnetic fields by Arioli and Szulkin [3].

For instance, d’Avenia and Squassina in [9] studied the existence of ground state
solutions to the above equation, when ϵ = 1, V is constant and f is a subcritical
or critical nonlinearity. Fiscella proved the multiplicity of nontrivial solutions for a
fractional magnetic problem with homogeneous boundary conditions in [10]. Then,
in [6], Zhang obtained the existence of mountain pass solutions which tend to the
trivial solution as ϵ → 0 for a fractional magnetic Schrödinger equation involving
critical frequency and critical growth.

Moreover, Vincenzo Ambrosio [2] studied the following fractional Schrödinger–
Poisson equation with magnetic field:

ϵ2s(−∆)s
A\ϵu+ V (x)u+ ϵ−2t(|x|2t−3 ∗ |u|2)u = f(|u|2) + |u|2∗

s−2u in R
3,

where ϵ > 0 is a small parameter, s ∈ ( 3
4 , 1), t ∈ (0, 1), 2∗

s = 6
3−2s is the fractional

critical exponent, (−∆)s
A is the fractional magnetic Laplacian, V : R3 → R is a

positive continuous potential, A : R
3 → R

3 is a smooth magnetic potential and
f : R → R is a subcritical nonlinearity. Under a local condition on the potential V ,
they studied the multiplicity and concentration of nontrivial solutions as ϵ → 0.
In particular, they related the number of nontrivial solutions with the topology of
the set where the potential V attains its minimum.

On the other hand, for quite a long time, some interesting papers (see [4, 5, 11]
and the references therein) dealt with Schrödinger equations like

(−i∇ +A)2u =
|u|2∗(s)−2u

|x|s , u ∈ D
1,2
A (RN ),

and related systems thereof, viz.


























(−i∇ +A)2u = µ1
|u|2∗(s)−2u

|x|s +
αγ

2∗(s)

|u|α−2u|v|β
|x|s ,

(−i∇ +B)2v = µ2
|v|2∗(s)−2v

|x|s +
βγ

2∗(s)

|u|α|v|β−2v

|x|s ,

u ∈D1,2
A (RN ), v ∈ D

1,2
B (RN ),

where u, v : RN → C, N ≥ 3, A = (A1, . . . , AN ), B = (B1, . . . , BN ) : RN → R
N

are magnetic vector potentials, 0 ≤ s < 2, λ, λ1, λ2, µ1, µ2, γ > 0, α, β > 1 with

α + β = 2∗(s) := 2(N−s)
N−2 , and Ω is a smooth bounded domain containing the
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origin as an interior point. Under proper conditions, the existence of ground state
solutions to the above equation and systems was established.

However, the conclusion about Schrödinger equations in the presence of a mag-
netic field needs further study. Thus, by the above works, we consider the problem











(−i∇ +A)2u = λu+ |u|2∗−2v, x ∈ Ω,

(−i∇ +A)2v = µ|v|2∗−2v + |u|2∗−2u, x ∈ Ω,

u = v = 0, x ∈ R
N \ Ω,

(1.1)

where Ω is an open bounded domain of R
N with Lipschitz boundary, N ≥ 4,

2∗ := 2N
N−2 is the Sobolev critical exponent, λ > 0 and µ ≥ 0. A = (A1, . . . , AN ) :

R
N → R

N is a vector (or magnetic) potential. Let B := curlA. For N = 3, this is
the usual curl operator and for general N , B = (Bjk), 1 ≤ j, k ≤ N , where

Bjk := ∂jAk − ∂kAj .

A can also be thought of as the 1-form:

A =

N
∑

j=1

Ajdx
j ;

then B = dA, i.e.,

B =
∑

j<k

Bjkdx
j ∧ dxk,

where Bjk are as above. Here B represents an external magnetic field whose source
is A.

Below we specify our assumptions. Suppose A ∈ L2
loc(RN ,RN ). Write ∇Au =

(∇ + iA)u and let

H1
A(Ω) := {u ∈ L2(Ω) : ∇Au ∈ L2(Ω)}

and
D

1,2
A (RN ) := {u ∈ L2∗

(RN ) : ∇Au ∈ L2(RN )}.
Both H1

A(Ω) and D
1,2
A (RN ) are Hilbert spaces with inner product

Re

(
∫

Ω

∇Au · ∇Av dx

)

and Re

(
∫

RN

∇Au · ∇Av dx

)

respectively, where the bar denotes complex conjugation. The norm in Lp(RN ) is
denoted by

|u|pp =

∫

RN

|u|p dx.

The norm in Lp(Ω) is denoted by

|u|pp,Ω =

∫

Ω

|u|p dx.

Define

SA := inf
(u,v)∈DA(RN )\{(0,0)}

∥(u, v)∥2
DA

(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

,
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SA,λ := inf
(u,v)∈HA(RN )\{(0,0)}

∥(u, v)∥2
HA

(∫

Ω
|u|2∗ + µ|v|2∗ + |u|2∗−1v dx

)
2

2∗

,

where DA := D
1,2
A (RN ) ×D

1,2
A (RN ), endowed with norm

∥(u, v)∥2
DA

:= |∇Au|22 + |∇Av|22
and HA := H1

A(Ω) ×H1
A(Ω), endowed with norm

∥(u, v)∥2
HA

:= |∇Au|22,Ω − λ|u|22,Ω + |∇Av|22,Ω − λ|v|22,Ω.

We look for solutions to the problem (1.1) as critical points of the C1-functional J :
H1

A(Ω) ×H1
A(Ω) → R given by

J(u, v) =
1

2

∫

Ω

|∇Au|2 dx− 1

2
λ

∫

Ω

|u|2 dx+
1

2(2∗ − 1)

∫

Ω

|∇Av|2 dx

− µ

2∗(2∗ − 1)

∫

Ω

|v|2∗

dx− 1

2∗ − 1

∫

Ω

|u|2∗−1v dx.

We are concerned with ground state solutions to (1.1), namely solutions (u, v) ∈
H1

A(Ω) × H1
A(Ω) together with both u ̸≡ 0 and v ̸≡ 0. It is standard that the

ground states are the solutions to (1.1) that minimize J on the Nehari manifold

N =
{

(u, v) ∈ H1
A(Ω) ×H1

A(Ω) \ {(0, 0)} : F (u, v) = (0, 0)
}

, (1.2)

where

F (u, v) =

(
∫

Ω

|∇Au|2 dx− λ

∫

Ω

|u|2 dx−
∫

Ω

|u|2∗−1v dx,

∫

Ω

|∇Av|2 dx− µ

∫

Ω

|v|2∗

dx−
∫

Ω

|u|2∗−1v dx

)

.

The main results of this paper are as follows.

Theorem 1.1. For N ≥ 4, if one of the conditions

(a1) A ∈ LN
loc(RN ,RN ), curlA ≡ 0, or

(a2) A ∈ L2
loc(RN ,RN ), A is continuous at x, and σ(−∆A − λ) ⊂ (0,+∞),

and µ ≥ 0, λ ∈ (0, λ1(Ω)) are satisfied, then problem (1.1) has a ground state

solution.

Theorem 1.2. If N > 4, µ ≥ 0 and (a1) or (a2) are satisfied, then for every ϵ > 0,
(

m
1

2∗
−2

0 uϵ,m
3−2∗

2∗
−2

0 uϵ

)

is a ground state solution of (2.12) and

J0

(

m
1

2∗
−2

0 uϵ,m
3−2∗

2∗
−2

0 uϵ

)

= M = M ′ =
1

N

(

k2
0 +

l20
2∗ − 1

)

S
N/2
A ,

where (k0, l0) is a solution to (3.2). The definition of uϵ and problem (2.12) are

given in Section 3 and Section 2, respectively.
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Theorem 1.3. If N = 4, µ ≥ 0 and (a1) or (a2) are satisfied, then for every ϵ > 0,
(√

m0uϵ,
1√
m0
uϵ

)

is a ground state solution of (2.12) and

J0

(√
m0uϵ,

1√
m0

uϵ

)

= M = M ′ =
1

4

(

k̃2 +
1

3
l̃2
)

S2
A,

where k̃, l̃ is the unique solution to (3.7).

2. Preliminaries

Define

S := inf
u∈D1,2(RN )\{0}

|∇u|22
|u|22∗

,

where

D1,2(RN ) = {u ∈ L2∗

(RN ) : |∇u| ∈ L2(RN )}.
Then S is attained by functions of the form

(Uϵ(x), Vϵ(x)) :=
(

ϵ−
N−2

2 U
(x

ϵ

)

, ϵ−
N−2

2 V
(x

ϵ

))

(2.1)

and

(uϵ(x), vϵ(x)) := (ϕ(x)Uϵ(x), ϕ(x)Vϵ(x)) ,

where ϕ ∈ C1
0 (B2r) is a cut-off function satisfying ϕ ≡ 1 in Br. Br is the ball

centered at 0 with radius r > 0 and ϵ > 0. We have
∫

Ω

|∇uϵ|2 dx =

∫

Ω

|∇(ϕUϵ)|2 dx ≤
∫

RN

|∇U |2 dx+O(ϵN−2), (2.2)

∫

Ω

|∇vϵ|2 dx =

∫

Ω

|∇(ϕVϵ)|2 dx ≤
∫

RN

|∇V |2 dx+O(ϵN−2), (2.3)

∫

Ω

|uϵ|2
∗

dx =

∫

Ω

U2∗

ϵ dx−
∫

Ω

(1 − ϕ2∗

)U2∗

ϵ dx ≥
∫

RN

U2∗

dx+O(ϵN ), (2.4)

∫

Ω

|vϵ|2
∗

dx =

∫

Ω

V 2∗

ϵ dx−
∫

Ω

(1 − ϕ2∗

)V 2∗

ϵ dx ≥
∫

RN

V 2∗

dx+O(ϵN ), (2.5)

∫

Ω

|uϵ|2
∗−1vϵ dx ≥

∫

RN

|U |2∗−1V dx+O(ϵN ). (2.6)

Define

S0 := inf
(u,v)∈D(RN )\{(0,0)}

∥(u, v)∥2
D

(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

,

where D := D1,2(RN ) ×D1,2(RN ), endowed with norm

∥(u, v)∥2
D := |∇u|22 + |∇v|22.

Then S0 is attained by (U, V ), where U , V are positive and satisfy the decay
conditions

U(x) + V (x) ≤ C(1 + |x|)2−N , |∇U(x)| + |∇V (x)| ≤ C(1 + |x|)1−N . (2.7)

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)
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Lemma 2.1. If A ∈ LN
loc(RN ,RN ), then SA = S0.

This equality is generally known, but for the readers’ convenience, we will briefly
outline the proof.

Proof. For any (u, v) ∈ DA \ {(0, 0)}, by the Sobolev and the diamagnetic inequal-
ities, we have

SA ≥ |∇Au|22 + |∇Av|22
(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

≥
∣

∣∇|u|
∣

∣

2

2
+
∣

∣∇|v|
∣

∣

2

2
(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

≥ S0,

By (2.1)–(2.6), we deduce that {uϵ} is bounded in L2∗

(RN ) and uϵ → 0 a.e. in R
N

as ϵ → 0. Thus for any ϕ ∈ L
2∗

2∗
−1 (RN ),

∣

∣

∣

∣

∫

RN

uϵϕ dx

∣

∣

∣

∣

≤
(
∫

RN

u2∗

ϵ dx

)
1

2∗
(
∫

RN

|ϕ| 2∗

2∗
−1 dx

)

2∗
−1

2∗

→ 0,

that is, uϵ ⇀ 0 weakly in L2∗

(RN ). Hence, u2
ϵ ⇀ 0 weakly in L

2∗

2 (RN ), where

the duality product is taken with respect to L
N
2 (RN ) and L

2∗

2 (RN ). By the same
argument,

∫

RN

|Auϵ|2 dx =
〈

|A|2, |uϵ|2
〉

→ 0 as ϵ → 0.

Let δ > 0. Choosing ϵ small enough, we have

SA ≤ |∇Auϵ|22 + |∇Avϵ|22
(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

=
|∇uϵ|22 + |∇vϵ|22 + |Auϵ|22 + |Avϵ|22
(∫

RN |u|2∗ + µ|v|2∗ + |u|2∗−1v dx
)

2
2∗

≤ |∇U |22 + |∇V |22 + |Auϵ|22 + |Avϵ|22 +O(ϵN−2)
(∫

RN |U |2∗ + µ|V |2∗ + |U |2∗−1V dx+O(ϵN )
)

2
2∗

= S0 + δ,

that is, SA ≤ S0. Thus SA = S0. □

Lemma 2.2. The embedding H1
A(Ω) ↪→ Lp(Ω) is continuous for 1 ≤ p ≤ 2∗ and

it is compact for 1 ≤ p < 2∗. The embedding D
1,2
A (RN ) ↪→ L2∗

(RN ) is continuous.

Proof. Let {un} be a bounded sequence in H1
A(Ω); then there exists a subsequence

of {un}, still denoted by un. Thus un ⇀ u weakly in H1
A(Ω), and then un ⇀ u

weakly in L2∗

(Ω) and |un − u| is bounded in H1
0 (Ω). Hence, up to a subsequence,

|un − u| ⇀ 0 weakly in H1
0 (Ω) and un → u a.e. on Ω.

By the Rellich–Kondrachov theorem, we see that

un → u strongly in Lq(Ω), where 1 ≤ q < 2∗.
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Since H1
A(Ω) ↪→ L2∗

(Ω), there exists a constant C such that |un − u|2∗

2∗,Ω ≤ C. For
any ϵ > 0, let

Ωϵ := Ω ∩Bϵ and Ωc
ϵ := Ω \ Ωϵ,

where Bϵ is the ball centered at 0 with radius ϵ. We have

∫

Ωϵ

|un − u|p dx ≤
(
∫

Ωϵ

|un − u|2∗

dx

)

p

2∗
(
∫

Ωϵ

1
2∗

2∗
−p dx

)

2∗
−p

2∗

≤ C
(

ϵN
)

2∗
−p

2∗

= O
(

ϵ
(N−2)(2∗

−p)
2

)

.

Moreover, it follows from the Rellich–Kondrachov compactness theorem that
∫

Ωc
ϵ

|un − u|p dx = o(1).

Thus

lim
n→∞

|un − u|pp,Ω = 0.

So the embedding H1
A(Ω) ↪→ Lp(Ω) is continuous for 1 ≤ p ≤ 2∗ and compact for

1 ≤ p < 2∗. □

Lemma 2.3. If A ∈ LN
loc(RN ,RN ), then SA is attained by a u ∈ D

1,2
A (RN ) \ {0}

if and only if curlA ≡ 0.

Proof. (Necessary condition) Assume that SA is attained at (u, v), which satisfies
∫

RN

|u|2∗

+ µ|v|2∗

+ |u|2∗−1v dx = 1.

Using the diamagnetic inequality and Lemma 2.1, we obtain

SA = |∇Au|22 + |∇Av|22 ≥
∣

∣∇|u|
∣

∣

2

2
+
∣

∣∇|v|
∣

∣

2

2
≥ S0 = SA.

Therefore

|∇Au| =
∣

∣∇|u|
∣

∣ =

∣

∣

∣

∣

Re

(

∇u u|u|

)∣

∣

∣

∣

=

∣

∣

∣

∣

Re(∇u+ iAu)
u

|u|

∣

∣

∣

∣

,

|∇Av| =
∣

∣∇|v|
∣

∣ =

∣

∣

∣

∣

Re

(

∇v v|v|

)∣

∣

∣

∣

=

∣

∣

∣

∣

Re(∇v + iAv)
v

|v|

∣

∣

∣

∣

.

Then, we have Im
(

∇u u
|u|
)

= 0 and Im
(

∇v v
|v|
)

= 0, which are equivalent to A =

− Im
(∇u

u

)

= − Im
(∇v

v

)

. Since curl
(∇u

u

)

= 0 and curl
(∇v

v

)

= 0, we infer that
curlA = 0.

(Sufficient condition) Assume curlA = 0. By [12], there exists ϑ ∈ W
1,N
loc (RN ,R)

such that ∇ϑ = A. Let

(uϵ(x), vϵ(x)) =
(

Uϵ(x)e−iϑ(x), Vϵ(x)e−iϑ(x)
)

,

where ϵ > 0 and (Uϵ, Vϵ) is defined in (2.1). It follows from Lemma 2.1 that (uϵ, vϵ)
is a minimizer for SA. □
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Lemma 2.4. Assume that A ∈ L2
loc(RN ,RN ), N > 4 and σ(−∆A −λ) ⊂ (0,+∞),

where σ(·) is the spectrum in L2(RN ). If there exists x ∈ R
N such that λ > 0 and

A is continuous at x, then SA,λ is attained by some (u, v) ∈ HA such that u ̸≡ 0,

v ̸≡ 0.

Proof. Without loss of generality, assume x = 0. Setting

θ(x) := −
N
∑

j=1

Aj(0)xj ,

we have

∇θ(x) = (−A1(0), . . . ,−AN (0)) = −A(0),

which implies that (∇θ + A)(0) = 0. Then by continuity, there exists δ > 0
satisfying

|(∇θ +A)(x)|2 ≤ λ

2
for all |x| < δ. (2.8)

There exists ρ > 0 such that Bρ ⊂ Ω. Let 2r := min{δ, ρ} and

(uϵ(x), vϵ(x)) =
(

ϕ(x)Uϵ(x)eiθ(x), ϕ(x)Vϵ(x)eiθ(x)
)

.

From (2.2), (2.3) and (2.8), we deduce that
∫

Ω

(

|∇Auϵ|2 − λ|uϵ|2 + |∇Avϵ|2 − λ|vϵ|2
)

dx

=

∫

Ω

(

|∇(ϕUϵ)|2 + ϕ2U2
ϵ |∇θ +A|2 − λϕ2U2

ϵ

)

dx

+

∫

Ω

(

|∇(ϕVϵ)|2 + ϕ2V 2
ϵ |∇θ +A|2 − λϕ2V 2

ϵ

)

dx

≤
∫

RN

(|∇U |2 + |∇V |2) dx+O(ϵN−2) +
λ

2

∫

B2r

ϕ2U2
ϵ dx

− λ

∫

B2r

ϕ2U2
ϵ dx+

λ

2

∫

B2r

ϕ2V 2
ϵ dx− λ

∫

B2r

ϕ2V 2
ϵ dx

≤
∫

RN

(|∇U |2 + |∇V |2) dx+O(ϵN−2) − λ

2

∫

Br

(U2
ϵ + V 2

ϵ ) dx.

Moreover,
∫

Br

|Uϵ|2 dx ≥
∫

|x|≤r

ϵ2−N
∣

∣

∣
U
(x

ϵ

)∣

∣

∣

2

dx = ϵ2
∫

RN

|U(y)|2 dy − ϵ2
∫

|y|≥ r
ϵ

|U(y)|2 dy

≥ Cϵ2 − Cϵ2
∫

|y|≥ r
ϵ

|y|4−2N dy = Cϵ2 − Cϵ2
∫

|y|≥ r
ϵ

∫

Σr

r3−N dr

= Cϵ2 +O(ϵN−2),

and
∫

Br

|Vϵ|2 dx ≥ Cϵ2 +O(ϵN−2),
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where Σr is the area of a sphere with radius r. By (2.4)–(2.6), we have

SA,λ ≤ ∥(uϵ, vϵ)∥2
HA

(

|uϵ|2∗

2∗,Ω + µ|vϵ|2∗

2∗,Ω +
∫

Ω
|uϵ|2∗−1vϵ dx

)
2

2∗

≤
∫

RN (|∇U |2 + |∇V |2) dx− Cϵ2 +O(ϵN−2)
(

|U |2∗

2∗ + µ|V |2∗

2∗ +
∫

RN |U |2∗−1V dx
)

2
2∗

< Sλ.

(2.9)

Let {(un, vn)} be a minimizing sequence for SA,λ normalized as

|un|2∗

2∗,Ω + µ|vn|2∗

2∗,Ω +

∫

Ω

|un|2∗−1vn dx = 1,

that is,

|∇Aun|22,Ω − λ|un|22,Ω + |∇Avn|22,Ω − λ|vn|22,Ω = SA,λ + o(1). (2.10)

Observing that {un}, {vn} are bounded in H1
A(Ω), by Lemma 2.2, we have

un ⇀ u, vn ⇀ v in H1
A(Ω),

un → u, vn → v in L2(Ω),

un → u, vn → v a.e. on Ω,

and

|un|2∗

2∗,Ω + µ|vn|2∗

2∗,Ω +

∫

Ω

|un|2∗−1vn dx ≤ 1.

Setting
wn := un − u, zn := vn − v,

then wn ⇀ 0, zn ⇀ 0 weakly in H1
A(Ω) and wn → 0, zn → 0 a.e. on Ω. By the

diamagnetic inequality and (2.10), we have

|∇Aun|22,Ω + |∇Avn|22,Ω ≥
∣

∣∇|un|
∣

∣

2

2,Ω
+
∣

∣∇|vn|
∣

∣

2

2,Ω
≥ Sλ,

SA,λ + λ
(

|un|22,Ω + |vn|22,Ω

)

+ o(1) ≥ Sλ.

From (2.9), we see that

λ
(

|un|22,Ω + |vn|22,Ω

)

≥ Sλ − SA,λ > 0,

which means (u, v) ̸≡ (0, 0). Since wn ⇀ 0, zn ⇀ 0 weakly in H1
A(Ω), we obtain

|∇Aun|22,Ω =

∫

Ω

|∇Awn|2 dx+

∫

Ω

|∇Au|2 dx+ 2

∫

Ω

∇Awn · ∇Au dx

= |∇Awn|22,Ω + |∇Au|22,Ω + o(1),

and
|∇Avn|22,Ω = |∇Azn|22,Ω + |∇Av|22,Ω + o(1).

Then (2.10) yields

SA,λ = |∇Awn|22,Ω + |∇Au|22,Ω − λ|u|22,Ω + |∇Azn|22,Ω + |∇Av|22,Ω − λ|v|22,Ω + o(1).
(2.11)
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From the Brezis–Lieb Lemma, one has

1 = |u+ wn|2∗

2∗,Ω + µ|v + zn|2∗

2∗,Ω +

∫

Ω

|u+ wn|2∗−1|v + zn| dx

= |u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1v dx+ |wn|2∗

2∗,Ω + µ|zn|2∗

2∗,Ω

+

∫

Ω

|wn|2∗−1|zn| dx+ o(1).

Noting

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1v dx ≤ 1

and

|wn|2∗

2∗,Ω + µ|zn|2∗

2∗,Ω +

∫

Ω

|wn|2∗−1|zn| dx ≤ 1,

we have

1 ≤
(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1|v dx

)
2

2∗

+

(

|wn|2∗

2∗,Ω + µ|zn|2∗

2∗,Ω +

∫

Ω

|wn|2∗−1|zn| dx

)
2

2∗

+ o(1)

≤
(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1|v dx

)
2

2∗

+
1

Sλ

(

∣

∣∇|wn|
∣

∣

2

2,Ω
+
∣

∣∇|zn|
∣

∣

2

2,Ω

)

+ o(1)

≤
(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1|v dx

)
2

2∗

+
1

Sλ

(

|∇Awn|22,Ω + |∇Azn|22,Ω

)

+ o(1).

Using (2.9), (2.11) and the fact that SA,λ > 0, we obtain

|∇Au|22,Ω − λ|u|22,Ω + |∇Av|22,Ω − λ|v|22,Ω

≤ SA,λ

(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1|v dx

)
2

2∗

+

(

SA,λ

Sλ
− 1

)

(

|∇Awn|22,Ω + |∇Azn|22,Ω

)

+ o(1)

< SA,λ

(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +

∫

Ω

|u|2∗−1|v dx

)
2

2∗

+ o(1).

Combining with (u, v) ̸≡ (0, 0), we have

|∇Au|22,Ω − λ|u|22,Ω + |∇Av|22,Ω − λ|v|22,Ω
(

|u|2∗

2∗,Ω + µ|v|2∗

2∗,Ω +
∫

Ω
|u|2∗−1|v dx

)
2

2∗

≤ SA,λ.

In summary, SA,λ is attained by (u, v). □
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In order to obtain Theorem 1.1, we consider the limit case (Ω = R
N and λ = 0)















(−i∇ +A)2u = |u|2∗−2v, x ∈ R
N ,

(−i∇ +A)2v = µ|v|2∗−2v + |u|2∗−2u, x ∈ R
N ,

u, v ∈ D
1,2
A (RN ).

(2.12)

Thus, we search nontrivial solutions to (2.12) as critical points of the functional

J0(u, v) =
1

2

∫

RN

|∇Au|2 dx+
1

2(2∗ − 1)

∫

RN

|∇Av|2 dx

− 1

2∗(2∗ − 1)
µ

∫

RN

|v|2∗

dx− 1

2∗ − 1

∫

RN

|u|2∗−1v dx

defined in D
1,2
A (RN ) × D

1,2
A (RN ). In particular, we investigate ground state solu-

tions of (2.12) of the form (kuϵ, luϵ) with k, l > 0. So we consider

N0 :=
{

(u, v) ∈
(

D
1,2
A (RN ) ×D

1,2
A (RN )

)

\ {(0, 0)} : F0(u, v) = (0, 0)
}

, (2.13)

where

F0(u, v) =

(
∫

RN

|∇Au|2 dx−
∫

RN

|u|2∗−1v dx,

∫

RN

|∇Av|2 dx− µ

∫

RN

|v|2∗

dx−
∫

RN

|u|2∗−1v dx

)

,

N ′
0 :=

{

(u, v) ∈
(

D
1,2
A (RN ) ×D

1,2
A (RN )

)

\ {(0, 0)} : H0(u, v) = 0
}

, (2.14)

and

H0(u, v) =

∫

RN

|∇Au|2 dx+
1

2∗ − 1

∫

RN

|∇Av|2 dx

− 2∗

2∗ − 1

∫

RN

|u|2∗−1v dx− µ

2∗ − 1

∫

RN

|v|2∗

dx.

For the limit case, define M := inf
(u,v)∈N0

J0(u, v) and M ′ := inf
(u,v)∈N ′

0

J0(u, v). Then

we obtain the following proof.

3. Proof of the main results

3.1. The limit problem for N > 4.

Lemma 3.1. Define a function fN : (0,+∞) → R,

fN (m) = m2∗−1 −m2∗−3 + µ.

Then the function fN is strictly increasing and satisfies

lim
m→0+

fN (m) = −∞ and lim
m→+∞

fN (m) = +∞,

namely, fN has at least one zero point. Let k, l > 0 satisfy

k2 +
1

2∗ − 1
l2 ≤ 2∗

2∗ − 1
k2∗−1l +

1

2∗ − 1
µl2

∗

. (3.1)

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



174 ZHENYU GUO AND YAN DENG

Considering the system










k2∗−3l = 1,

µl2
∗−1 + k2∗−1 = l,

k, l > 0,

(3.2)

we have

k2
0 +

1

2∗ − 1
l20 = min

i=1,2,...,n

{

k2
i +

1

2∗ − 1
l2i

}

≤ k2 +
1

2∗ − 1
l2, (3.3)

where (ki, li) are solutions of system (3.2), and (k0, l0) is a particular solution of

system (3.2).

Proof. By a simple calculation of system (3.2), we obtain

(

k

l

)2∗−1

−
(

k

l

)2∗−3

+ µ = 0.

Clearly, fN has at most finite multiple solutions and system (3.2) has some solutions
correspondingly.

(i) If fN has a unique zero point m1, then system (3.2) has a unique solution
denoted as (k1, l1).

(ii) If fN has n zero points, which are denoted as mi (i = 1, 2, . . . , n), we can
assume m1 < m2 < · · · < mn, then system (3.2) has n solutions correspondingly

denoted as (ki, li) =

(

m
1

2∗
−2

i ,m
3−2∗

2∗
−2

i

)

. Thus, there exists a minimum one, which

is denoted as (k0, l0) :=

(

m
1

2∗
−2

0 ,m
3−2∗

2∗
−2

0

)

. Then

k2
0 +

1

2∗ − 1
l20 := min

i=1,2,...,n

{

k2
i +

1

2∗ − 1
l2i

}

,

where (k0, l0) is one of the solutions of system (3.2).

Fix k, l > 0 satisfying (3.2) and let h := (2∗−1)k2+l2

l(2∗k2∗
−1+µl2∗

−1)
. Then

ki = kh
1

2∗
−2 , li = lh

1
2∗

−2 ,

which implies that ki

li
= k

l , so (ki, li) are solutions of system (3.2). Since

0 < ki ≤ k, 0 < li ≤ l, (3.4)

we have

k2
i +

1

2∗ − 1
l2i ≤ k2 +

1

2∗ − 1
l2.

Thus

k2
0 +

1

2∗ − 1
l20 = min

i=1,2,...,n

{

k2
i +

1

2∗ − 1
l2i

}

≤ k2 +
1

2∗ − 1
l2.

□
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Proof of Theorem 1.2. Assume (auϵ, buϵ) ∈ N0. Then F0(auϵ, buϵ) = (0, 0), that
is,



















∫

RN

|∇A(auϵ)|2 dx−
∫

RN

|auϵ|2
∗−1buϵ dx = 0,

∫

RN

|∇A(buϵ)|2 dx− µ

∫

RN

|buϵ|2
∗

dx−
∫

RN

|auϵ|2
∗−1buϵ dx = 0.

Then the above can be rewritten as























∫

RN |∇Auϵ|2 dx
∫

RN |uϵ|2∗ dx
= a2∗−3b,

1

b2∗−2
·
∫

RN |∇Auϵ|2 dx
∫

RN |uϵ|2∗ dx
− µ− a2∗−1

b2∗−1
= 0;

therefore

(a

b

)2∗−1

−
(a

b

)2∗−3

+ µ = 0.

Since fN admits a minimum nontrivial zero point m0, we assume m0 = a
b . Then

we obtain

a =

[

m0

∫

RN

|∇Auϵ|2 dx

(
∫

RN

|uϵ|2
∗

dx

)−1
]

1
2∗

−2

,

b =

[

m3−2∗

0

∫

RN

|∇Auϵ|2 dx

(
∫

RN

|uϵ|2
∗

dx

)−1
]

1
2∗

−2

.

Thus

([

m0

∫

RN

|∇Auϵ|2 dx

(
∫

RN

|uϵ|2
∗

dx

)−1
]

1
2∗

−2

uϵ,

[

m3−2∗

0

∫

RN

|∇Auϵ|2 dx

(
∫

RN

|uϵ|2
∗

dx

)−1
]

1
2∗

−2

uϵ

)

∈ N0

and system (3.2) has a solution (k0, l0) =

(

m
1

2∗
−2

0 ,m
3−2∗

2∗
−2

0

)

. Since N0 ⊂ N ′
0, we

have M ′ ≤ M . Also by J ′
0 (k0uϵ, l0uϵ) = 0 and (k0uϵ, l0uϵ) ∈ N0 ⊂ N ′

0, we have

M ′ ≤ M ≤ J0

(

m
1

2∗
−2

0 uϵ,m
3−2∗

2∗
−2

0 uϵ

)

=
1

N

(

k2
0 +

1

2∗ − 1
l20

)

S
N/2
A .
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Let{(un, vn)} ⊂ N ′
0 be a minimizing sequence, such that J0(un, vn) → M ′. By the

Sobolev embedding theorem and Hölder’s inequality, we have

SA

(

|un|22∗ +
1

2∗ − 1
|vn|22∗

)

≤ |∇Aun|22 +
1

2∗ − 1
|∇Avn|22

=
2∗

2∗ − 1

∫

RN

|un|2∗−1vn dx+
µ

2∗ − 1

∫

RN

|vn|2∗

dx

≤ 2∗

2∗ − 1

∫

RN

|un| 2∗
−1

2∗ dx

∫

RN

|vn|2∗

dx+
µ

2∗ − 1

∫

RN

|vn|2∗

dx.

(3.5)

By direct computation, we obtain

(

S
2−N

4

A |un|2∗

)2

+
1

2∗ − 1

(

S
2−N

4

A |vn|2∗

)2

≤ 2∗

2∗ − 1

(

S
2−N

4

A |un|2∗

)2∗−1
(

1

2∗ − 1
S

2−N
4

A |vn|2∗

)

+
µ

2∗ − 1

(

S
2−N

4

A |un|2∗

)2∗

.

Then it follows from Lemma 3.1 that

k2
0 +

1

2∗ − 1
l20 ≤ S

1− N
2

A

(

|un|22∗ +
1

2∗ − 1
|vn|22∗

)

.

Thus

M ′ + on(1) = J0(un, vn)

=
1

2
|∇Aun|22 +

1

2(2∗ − 1)
|∇Avn|22 − µ

2∗(2∗ − 1)

∫

RN

|vn|2∗

dx

− 1

2∗ − 1

∫

RN

|un|2∗−2unvn dx

=
1

N

(

|∇Aun|22 +
1

2∗ − 1
|∇Avn|22

)

≥ SA

N

[

(
∫

RN

|un|2∗

dx

)
2

2∗

+
1

2∗ − 1

(
∫

RN

|vn|2∗

)
2

2∗

dx

]

≥ 1

N

(

k2
0 +

l20
2∗ − 1

)

S
N/2
A .

So M ′ = 1
N

(

k2
0 +

l2
0

2∗−1

)

S
N/2
A and we have that

(

m
1

2∗
−2

0 uϵ,m
3−2∗

2∗
−2

0 uϵ

)

is a ground

state solution of (2.12). □

3.2. The limit problem for N = 4. In this subsection, we consider the limit
problem for general N = 4. We notice that in the previous subsection the key
points consist in the existence of a zero point of the function fN and the solution
of the system (3.2). Similarly to the proof of Theorem 1.1, we have

f(m) = m3 −m+ µ, m > 0, (3.6)
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









kl = 1,

µl3 + k3 = l,

k, l > 0.

(3.7)

To prove Theorem 1.2, we give the following properties.

Proposition 3.2. Let µ ∈ [0, 1
4 ).

(i) If µ = 0, N ′
0 does not contain semitrivial couples.

(ii) If µ ∈ (0, 1
4 ), N ′

0 does not contain semitrivial couples (u, 0) and

M ′ < inf
(0,v)∈N ′

0

J0(0, v).

Proof. (i) If µ = 0, then

H0(u, v) = |∇Au|22 +
1

3
|∇Av|22 − 4

3

∫

R4

|u|3v dx.

Assume (u, v) ∈ N ′
0. If u = 0, v ̸= 0, then H0(u, v) = H0(0, v) = |∇Av|22, which is

in contradiction with the definition of N ′
0. Likewise, if v = 0, u ̸= 0, we also get a

contradiction.
(ii) It is obvious that if µ ∈ (0, 1

4 ), N ′
0 does not contain semitrivial couples (u, 0).

Next we prove the second part of (ii). Let (0, v) ∈ N ′
0; we have

H0(0, v) =
1

3

(

|∇Av|22 − µ

∫

R4

|v|4 dx

)

= 0

and

J0(0, v) =
1

6
|∇Av|22 − 1

12
µ

∫

R4

|v|4 dx =
1

6
|∇Av|22 − 1

12
|∇Av|22 =

1

12
|∇Av|22.

For every r > 0,
(

t(r)rv, t(r)v
)

∈ N ′
0 with t(r) =

(

(3r2+1)2µ
4r3+µ

)
1
2

and then

M ′ ≤ J0

(

t(r)rv, t(r)v
)

=
(3r2 + 1)2µ

12(4r3 + µ)
|∇Av|22.

So, according to the definition of infimum, we obtain

M ′ ≤ (3r2 + 1)2µ

4r3 + µ
inf

(0,v)∈N ′

0

J0(0, v).

As µ ∈ (0, 1
4 ) and r = 4µ, we have (3r2+1)2µ

4r3+µ < 1. Thus M ′ < inf
(0,v)∈N ′

0

J0(0, v). □

Proof of Theorem 1.3. As we said before, assume (auϵ, buϵ) ∈ N0. Then we have
F0(auϵ, buϵ) = (0, 0), i.e.,















∫

R4

|∇A(auϵ)|2 dx−
∫

R4

|auϵ|3buϵ dx = 0,

∫

R4

|∇A(auϵ)|2 dx− µ

∫

R4

|buϵ|4 dx−
∫

R4

|auϵ|3buϵ dx = 0,
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similar to the proof of Theorem 1.2, we have

a =

[

m0

∫

R4

|∇Auϵ|2 dx

(
∫

R4

|uϵ|4 dx

)−1
]

1
2

,

b =

[

1

m0

∫

R4

|∇Auϵ|2 dx

(
∫

R4

|uϵ|4 dx

)−1
]

1
2

.

Then system (3.2) has a minimum solution
(

k̃, l̃
)

=
(√

m0,
1√
m0

)

. Since N0 ⊂
N ′

0, we have

M ′ ≤ M ≤ J0

(√
m0uϵ,

1√
m0

uϵ

)

=
1

4

(

k̃2 +
1

3
l̃2
)

S2
A = M ′,

that is,
(√

m0uϵ,
1√
m0
uϵ

)

is a ground strate solution of (2.12).

If µ ∈ [0, 1
4 ), let {(un, vn)} ⊂ N ′

0 be a minimizing sequence such that J0(un, vn) →
M ′. By Proposition 3.2, we assume un ̸= 0 and vn ̸= 0. Then

M ′ + on(1) = J0(un, vn) =
1

4

(

|∇Aun|22 +
1

3
|∇Avn|22

)

≥ 1

4
SA

(

|un|24 +
1

3
|vn|24

)

≥ 1

4

(

k̃2 +
1

3
l̃2
)

S2
A,

thus M ′ = 1
4

(

k̃2 + 1
3 l̃

2
)

S2
A. We have

(√
m0uϵ,

1√
m0
uϵ

)

is a nontrivial ground state

solution of (2.12). □

3.3. Ground state solution for (1.1). In this section, we study the existence of
ground state solutions of problem (1.1) and we will give the proof of Theorem 1.1.
Before proving the main result, we show some lemmas. Since

F ′(u, v)[u, v] =

(

(2 − 2∗)

(
∫

Ω

|∇Au|2 dx−
∫

Ω

|u|2 dx

)

, (2 − 2∗)

∫

Ω

|v|2∗

dx

)

̸= (0, 0)

for all (u, v) ∈ N , we have that N is a C1-manifold, where N is defined in (2.12).

Lemma 3.3. If λ ∈ (0, λ1(Ω)) and µ ≥ 0, then N ≠ ∅.

Proof. Take u ∈ H1
A(Ω), and

θ =
|∇Au|22,Ω

|∇Au|22,Ω − λ|∇Au|22,Ω

, θ :=
|∇Au|22,Ω − λ|∇Au|22,Ω

|u|2∗

2∗,Ω

.

Then m0 is a strictly positive solution of

m2∗−1 − θm2∗−3 + µ = 0,
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so we have
(

(m0θ)
1

2∗
−2u, (m3−2∗

0 θ)
1

2∗
−2u

)

∈ N . □

Now, let

B := inf
w∈Γ

max
t∈[0,1]

J(w(t)),

where Γ :=
{

w ∈ C
(

[0, 1],H1
A(Ω) ×H1

A(Ω)
)

: w(0) = (0, 0), J(w(1)) < 0
}

.

Lemma 3.4. If λ > 0 and µ ≥ 0, then B < M .

Proof. In order to prove B < M , we may assume 0 ∈ Ω without loss of generality.
Then by the definition of S, we have

|Uϵ|2
∗

2∗,Ω = SN/2 +O(ϵN ),

|Uϵ|22,Ω ≥ CψN (ϵ) +O(ϵN−2),

|∇Uϵ|22,Ω = SN/2 +O(ϵN−2)

for some C > 0, where

ψN (ϵ) =

{

ϵ2 if N > 4,

ϵ2| log ϵ| if N = 4.

Define (uϵ, vϵ) := (kUϵ, lUϵ), where (k, l) ∈ R
2, k, l > 0 and (kUϵ, lUϵ) is a

ground state solution of the limit problem (2.12). Then

|uϵ|22,Ω ≥ Cψ(ϵ) +O(ϵN−2),

|vϵ|2
∗

2∗,Ω = l2
∗

SN/2 +O(ϵN ),

|∇uϵ|22,Ω = k2SN/2 +O(ϵN−2),

|∇vϵ|22,Ω = l2SN/2 +O(ϵN−2),
∫

Ω

u2∗−1
ϵ vϵ dx = k2∗−1lSN/2 +O(ϵN ).

Noting that

k2 +
1

2∗ − 1
l2 =

2∗

2∗ − 1
k2∗−1l +

µ

2∗ − 1
l2

∗

,
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we have

J(tuϵ, tvϵ) =
1

2
|∇(tu)ϵ|22,Ω − 1

2
λ

∫

Ω

|tuϵ|2 dx+
1

2(2∗ − 1)
|∇(tv)ϵ|22,Ω

− µ

2∗(2∗ − 1)

∫

Ω

|tvϵ|2
∗

dx− 1

2∗ − 1

∫

Ω

|tuϵ|2
∗−1tvϵ dx

≤ 1

2
t2
[(

k2 +
l2

2∗ − 1

)

SN/2 − λCψ(ϵ) +O(ϵN−2)

]

− t2
∗

2∗

[(

k2 +
l2

2∗ − 1

)

SN/2 +O(ϵN )

]

=
1

2
t2
(

NA− λCψ(ϵ) +O(ϵ2)
)

− 1

2∗
s

t2
∗ (

NA+O(ϵN )
)

.

We consider

h(t) :=
t2

2
aϵ − t2

∗

2∗ bϵ,

where

aϵ = NA− λCψ(ϵ) +O(ϵ2), bϵ = NA+O(ϵN ).

Obviously, for ϵ > 0 and small enough,

max
t>0

h(t) =
1

N

(

aϵ

b
(N−2)/N
ϵ

)
N
2

< M,

thus

B ≤ max
t>0

J(tuϵ, tvϵ) < M. □

Now we define some notions which will be useful in this paper.

N ′ =
{

(u, v) ∈
(

H1
A(Ω) ×H1

A(Ω)
)

\ {(0, 0)} : H(u, v) = 0
}

,

where

H(u, v) =

∫

Ω

|∇Au|2 dx− λ

∫

Ω

|u|2 dx+
1

2∗ − 1

∫

Ω

|∇Av|2 dx

− µ

2∗ − 1

∫

Ω

|v|2∗

dx− 2∗

2∗ − 1

∫

Ω

|u|2∗−1v dx

and

A :=

{

(u, v) ∈
(

H1
A(Ω) ×H1

A(Ω)
)

: µ

∫

Ω

|v|2∗

dx+ 2∗
∫

Ω

|u|2∗−1v dx > 0

}

denotes the set of admissible pairs. Moreover, if λ ∈ (0, λ1(Ω)) for all (u, v) ∈ N ′,
we have that N ′ is a C1-manifold and

H ′(u, v)[u, v] = (2 − 2∗)

(
∫

Ω

|∇Au|2 dx− λ

∫

Ω

|u|2 dx+
1

2∗ − 1

∫

Ω

|∇Av|2 dx

)

̸= 0.

Since N ⊂ N ′ ⊂ A, we have

H(u, v) ≥ ∥(u, v)∥2 − C∥(u, v)∥2∗

, (3.8)
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where C > 0 and

∥(u, v)∥2 :=

∫

Ω

|∇Au|2 dx− λ

∫

Ω

|u|2 dx+
1

2∗ − 1

∫

Ω

|∇Av|2 dx.

Proposition 3.5. If λ ∈ (0, λ1(Ω)) and µ ≥ 0, then

inf
(u,v)∈N ′

J(u, v) = inf
(u,v)∈A

max
t≥0

J(tu, tv) = B > 0.

Proof. Let (u, v) ∈ A and

t̃ =

[

(

|∇Au|22,Ω − λ|u|22,Ω + |∇Av|22,Ω

)(

µ
2∗−1 |v|2∗

2,Ω + 2∗

2∗−1

∫

Ω
|u|2∗−1v dx

)−1
]

1
2∗

−2

.

Then
(

t̃u, t̃v
)

∈ N ′ and J
(

t̃u, t̃v
)

≥ inf
(u,v)∈N ′

J(u, v). If (u, v) ∈ A, then there exists

t > 0 such that J(tu, tv) < 0 and

inf
(u,v)∈A

max
t≥0

J(tu, tv) ≥ B. (3.9)

Morever, if (u, v) ∈ N ′, then t̃ = 1 and we have

inf
(u,v)∈N ′

J(u, v) ≥ inf
(u,v)∈A

max
t≥0

J(tu, tv). (3.10)

Taking w = (w1, w2) ∈ Γ, then for a small t we have H(w(t)) > 0 and

H(w(1)) = 2J(w(1)) − 2

N(2∗ − 1)

(

µ

∫

Ω

|w2(1)|2∗

dx+ 2∗
∫

Ω

|w1(1)|2∗−1w2(1) dx

)

< 0,

which implies that there exists t′ > 0 such that H(w(t′)) = 0, i.e., w(t′) ∈ N . Then

B ≥ inf
(u,v)∈N ′

J(u, v). (3.11)

By (3.9), (3.10), (3.11), we have

inf
(u,v)∈N ′

J(u, v) = inf
(u,v)∈A

max
t≥0

J(tu, tv) = B.

Next, we prove B > 0. If J(un, vn) → 0 and (un, vn) ∈ N ′, then ∥(un, vn)∥ → 0,
which is in contradiction with the inequality (3.8). So we have inf

(u,v)∈N ′

J(u, v) =

B > 0. □

Now we show a relative property before we prove the main result of this section.

Proposition 3.6. Let λ ∈ (0, λ1(Ω)) and µ ≥ 0. If a ground state solution (u, v)
of (1.1) exists, then (u, v) is nontrivial.

Proof. Assume (u, v) ∈ N is such that J(u, v) = inf(u,v)∈N J . If v = 0, then
⟨J ′(u, 0), (u, 0)⟩ = 0 implies u = 0. Now suppose that u = 0. If µ = 0, then v = 0.
So let µ > 0 and let v be a nontrivial solution to

{

(−i∇ +A)2v = µ|v|2∗−2v, x ∈ Ω,

v = 0, x ∈ R
N \ Ω.
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Notice that

inf

{

J(0, w) : w ∈ H1
A(Ω) \ {0}, |∇Aw|22,Ω = µ

∫

Ω

|w|2∗

dx

}

≤ J(0, v)

= inf
N
J = inf

{

J(0, w) : w ∈ H1
A(Ω) \ {0}, |∇Aw|22,Ω = µ

∫

Ω

|w|2∗

dx

}

and

inf

{

J(0, w) : w ∈ H1
A(Ω) \ {0}, |w|22,Ω = µ

∫

Ω

|w|2∗

dx

}

=
1

N(2∗ − 1)
inf

{

|∇Aw|22,Ω : w ∈ H1
A(Ω) \ {0}, |∇Aw|22,Ω = µ

∫

Ω

|w|2∗

dx

}

=
µ

2−N
2

N(2∗ − 1)
inf
{

|∇Aw|N2,Ω : w ∈ H1
A(Ω), |w|2∗,Ω = 1

}

.

Then ṽ =
(

µ
|∇Av|2

2,Ω

)
1

2∗

v satisfies |ṽ|2∗,Ω = 1 and

|v|N2,Ω = N(2∗ − 1)µ(N−2)/2J(0, v) = inf{|∇Aw|N2,Ω : w ∈ H1
A(Ω), |w|2∗,Ω = 1},

which is a contradiction. Thus, if (u, v) is a ground state solution of (1.1), then
(u, v) is nontrivial. □

Theorem 3.7. If λ ∈ (0, λ1(Ω)), µ ≥ 0, then there exists a ground state (u, v)
of J such that J(u, v) = inf

N
J = inf

N ′

J = B.

Proof. The functional J satisfies the geometrical assumptions of the mountain pass
theorem. By the Sobolev and Poincaré inequalities, we have

J(u, v) ≥ C(|∇Au|22,Ω + |∇Av|22,Ω − |∇Av|2∗

2,Ω − |∇Au|2∗−1
2,Ω |∇Av|2,Ω) ≥ d

for some d > 0 and ρ =
√

|∇Au|22,Ω + |∇Av|22,Ω sufficiently small.

If (u, v) ∈ H1
A(Ω) ×H1

A(Ω) satisfies µ
∫

Ω
|v|2∗

dx+ 2∗ ∫
Ω

|u|2∗−1v dx > 0, then

J(tu, tv) =
t2

2

(

|∇Au|22,Ω − λ

∫

Ω

|u|2 dx+
1

2∗ − 1
|∇Av|22,Ω

)

− t2
∗

2∗ − 1

(

µ

2∗

∫

Ω

|v|2∗

dx+

∫

Ω

|u|2∗−1v dx

)

→ −∞ as t → +∞.

So there exists a (PS)B-sequence {(un, vn)} ∈ H1
A(Ω) × H1

A(Ω) for J at level B,
namely, a sequence such that J(un, vn) → B and J ′(un, vn) → 0. Since

C(|∇un|22,Ω + |∇Avn|22,Ω) ≤ J(un, vn) − 1

2∗ ⟨J ′(un, vn), (un, vn)⟩

≤ (B + 1) +
√

|∇Aun|22,Ω + |∇Avn|22,Ω

for some constant C > 0, we have that the sequence {(un, vn)} is bounded. Thus,
up to a subsequence, according to the Sobolev embedding theorem, there exists
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(u, v) ∈ H1
A(Ω) ×H1

A(Ω) such that

un ⇀ u in H1
A(Ω), un → u in L2(Ω), un → u a.e. on Ω,

vn ⇀ v in H1
A(Ω), vn → v a.e. on Ω,

|un|2∗−1 ⇀ |u|2∗−1 in L2∗/(2∗−1)(Ω),

|vn|2∗−1 ⇀ |v|2∗−1 in L2∗/(2∗−1)(Ω),

|un|2∗−3unvn ⇀ |u|2∗−3uv in L2∗/(2∗−1)(Ω).

So, for every (ξ, η) ∈ H1
A(Ω) ×H1

A(Ω), we have

|⟨J ′(un, vn), (ξ, η)⟩ − ⟨J ′(u, v), (ξ, η)⟩|

=

∣

∣

∣

∣

(|∇Aun|2,Ω − |∇Au|2,Ω) |ξ|2,Ω −
∫

Ω

(|un|2∗−2vn − |u|2∗−2v)η dx

+
1

2∗ − 1
(|∇Avn|2,Ω − |∇Av|2,Ω) |∇Aη|2,Ω

− λ

∫

Ω

(un − u) ξ dx− µ

2∗ − 1

∫

Ω

(

|vn|2∗−1 − v2∗−1
)

η dx

− 1

2∗ − 1

∫

Ω

(

|un|2∗−1 − |u|2∗−1
)

η dx

∣

∣

∣

∣

→ 0.

Thus J ′(u, v) = 0. We claim that (u, v) ̸= (0, 0). Otherwise,

un → 0 in L2(Ω). (3.12)

Since J is continuous and J(un, vn) → B > 0, (un, vn) cannot converge to (0, 0)
in H1

A(Ω) × H1
A(Ω). Thus, up to a subsequence, we may assume that (un, vn) ̸=

(0, 0) and ∥(un, vn)∥ ≥ C > 0, (un, vn) ∈ A for all N ∈ N. Taking a subsequence
{(unk

, vnk
)} of {(un, vn)} in

(

H1
A(Ω) ×H1

A(Ω)
)

∩ Ac, we have

⟨J ′(unk
, vnk

), (unk
, vnk

)⟩ ≥ ∥(unk
, vnk

)∥2. (3.13)

Since

⟨J ′(unk
, vnk

), (unk
, vnk

)⟩ → 0 as k → +∞,

we get a contradiction. If we take

tn =

[

(

(2∗ − 1)|∇Aun|22,Ω + |∇Avn|22,Ω

)(

µ|vn|2∗

2∗,Ω + 2∗
∫

Ω

|un|2∗−1vn dx

)−1
]

1
2∗

−2

and we denote in the same way the functions in H1
A(Ω) and their extensions in R

N

putting the function equal to zero in R
N \ Ω, we have (tnun, tnvn) ∈ N ′

0 and so

⟨J ′
0(tnun, tnvn), (tnun, tnvn)⟩ = 0. (3.14)

In addition, by (3.12),

⟨J ′
0(un, vn), (un, vn)⟩ = ⟨J ′(un, vn), (un, vn)⟩ + o(1) = o(1). (3.15)
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Then, using (3.14) and (3.15) we have tn → 1. Therefore by Lemma 3.4 and
Theorem 1.2, we have

B < A = A′ ≤ lim
n
J(tnun, tnvn) = B,

getting a contradiction. Thus (u, v) ̸= (0, 0) and (u, v) ∈ N ⊂ N ′. Likewise, we
find tn → 1 such that (tnun, tnvn) ∈ N ′, and according to Proposition 3.5 we get

inf
N
J ≤ J(u, v) ≤ lim

n→∞
J(tnun, tnvn) = B = inf

N ′

J ≤ inf
N
J,

so the proof is completed, that is, the problem (1.1) has a ground state solution. □
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