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RICCI–BOURGUIGNON SOLITONS ON REAL
HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE

IMSOON JEONG AND YOUNG JIN SUH

Abstract. We give a complete classification of Ricci–Bourguignon solitons on
real hypersurfaces in the complex projective space CP n = SUn+1/S(U1 · Un).
Next, as an application, we give some non-existence properties for gradient
Ricci–Bourguignon solitons on real hypersurfaces with isometric Reeb flow
and contact real hypersurfaces in the complex projective space CP n.

1. Introduction

Among the class of Hermitian symmetric spaces with rank 1 of compact type, we
have complex projective space CP n = SUn+1/S(U1 · Un), which is geometrically
quite different from the case of rank 2. It has a Kähler structure and Fubini–
Study metric g of constant holomorphic sectional curvature 4 (see Romero [27, 26],
and Smyth [28]). The complex projective space CP n is considered as a kind of real
Grassmann manifold of compact type with rank 1 (see Kobayashi and Nomizu [20]).
In Hermitian symmetric space of rank 2, Jeong and Suh [18] gave a classification of
Ricci soliton real hypersurfaces in the complex two-plane Grassmannian G2(Cn+2),
and the other geometric properties of G2(Cn+2) are investigated in Suh [29, 30, 31].

Recently, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds and
3-dimensional N(k)-contact manifolds have been investigated by De, Chaubey, and
Suh [12, 13]. Moreover, the study of the Yamabe flow was initiated in the work of
Hamilton [16], Morgan and Tian [21] and Perelman [24] as a geometric method to
construct Yamabe metrics on Riemannian manifolds.

A time-dependent metric g(t) on a Riemannian manifold M is said to be evolved
by the Yamabe flow if the metric g satisfies

∂

∂t
g(t) = −γg(t), g(0) = g0
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on M , where γ denotes the scalar curvature on M . From such a viewpoint, in this
paper we want to give a complete classification of Yamabe solitons and gradient
Yamabe solitons on Hopf real hypersurfaces in the complex projective space CP n.

On the other hand, it is well known that there exist two focal submanifolds
of real hypersurfaces in Hermitian symmetric spaces of compact type and only
one focal submanifold in Hermitian symmetric spaces of non-compact type (see
Berndt and Suh [1] and Helgason [17]). Since the complex projective space CP n

is an Hermitian symmetric space of compact type, any real hypersurface has two
focal submanifolds (see Djorić and Okumura [14], Pérez [25]). Among them we
consider two kinds of real hypersurfaces in CP n with isometric Reeb flow or contact
hypersurfaces. In CP n, Cecil and Ryan [9] and Okumura [22] gave a classification
of real hypersurfaces with isometric Reeb flow as follows:

Theorem A. Let M be a real hypersurface of the complex projective space CP n,
n ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part
of a tube of radius 0 < r < π

2 around a totally geodesic CP k ⊂ CP n for some
k ∈ {0, . . . , n − 1} or a tube with radius π

2 − r over CP ℓ, where k + ℓ = n − 1.

When a real hypersurface M in the complex projective space CP n satisfies the
formula Aϕ + ϕA = kϕ, k ̸= 0 and constant, we say that M is a contact real
hypersurface in CP n. In the papers by Blair [3], Okumura [22], and Yano and
Kon [35], these authors introduce the classification of contact real hypersurfaces in
CP n as follows:

Theorem B. Let M be a connected orientable real hypersurface in the complex
projective space CP n, n ≥ 3. Then M is a contact real hypersurface if and only
if M is congruent to an open part of a tube of radius 0 < r < π

4 around an
n-dimensional real projective space RP n or a tube of radius π

4 − r over Qn−1,
where 0 < r < π

4 .

Motivated by these results, in this paper we give some characterizations of real
hypersurfaces in the complex projective space CP n regarding a family of geometric
flows introduced by J. P. Bourguignon. We call this the Ricci–Bourguignon flow,
which generalizes the Ricci flow. It is an intrinsic geometric flow on Riemannian
manifolds whose fixed points are solitons. Indeed, we know that a solution of the
Ricci flow equation ∂

∂t g(t) = −2 Ric(g(t)) is given by
1
2(LV g)(X, Y ) + Ric(X, Y ) = Ωg(X, Y ),

where the function Ω is constant and LV denotes the Lie derivative along the di-
rection of the vector field V (see Chaubey, De, and Suh [11], Morgan and Tian [21],
Perelman [24], and Wang [33, 34]). Then this solution (M, V, Ω, g) is said to be a
Ricci soliton with potential vector field V and Ricci soliton constant Ω. In the com-
plex two-plane Grassmannian G2(Cn+2), Jeong and Suh [18] gave a classification
of Ricci soliton for real hypersurfaces.

As a generalization of the notion of Ricci flow, the Ricci–Bourguignon flow (see
Bourguignon [4, 5], Catino, Cremaschi, Djadli, Mantegazza, and Mazzieri [6]) is
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given by
∂

∂t
g(t) = −2(Ric(g(t)) − θγg(t)), g(0) = g0.

This family of geometric flows with θ = 0 reduces to the Ricci flow ∂
∂t g(t) =

−2 Ric(g(t)), g(0) = g0. If the constant θ = 1
2 , it is said to be the Einstein flow.

The critical point of the Einstein flow

∂

∂t
g(t) = −2(Ric(g(t)) − 1

2γg(t)), g(0) = g0,

implies that the Einstein gravitational tensor Ric(g(t)) − 1
2 γg(t) vanishes. For a

4-dimensional spacetime M4, this is equivalent to the vanishing Ricci tensor by
virtue of dγ = 2 div(Ric). In this case M4 becomes vacuum. That is, g(t) = g(0),
the metric is constant along the time (see O’Neill [23]). For θ = 1

n , the tensor
Ric − γ

n g is said to be the traceless Ricci tensor, and for θ = 1
2(n−1) , it is said to be

the Schouten tensor.
Now let us introduce the Ricci–Bourguignon soliton (M, V, Ω, θ, γ, g), which is a

solution of the Ricci–Bourguignon flow as follows:
1
2(LV g)(X, Y ) + Ric(X, Y ) = (Ω + θγ)g(X, Y )

for any tangent vector fields X and Y on M , where Ω is a soliton constant, θ
any constant and γ the scalar curvature on M , and LV denotes the Lie derivative
along the direction of the vector field V (see Morgan and Tian [21]). Then (M, g)
is said to be a Ricci–Bourguignon soliton with potential vector field V and Ricci–
Bourguignon soliton constant Ω. In recent years, many authors studied the Ricci–
Bourguignon soliton on Riemannian manifolds. In [8], Catino, Mazzieri, and Mon-
godi classified noncompact gradient Ricci–Bourguignon solitons (M, ∇f, Ω, θ, γ, g)
with bounded non-negative sectional curvature. Moreover, Blaga and Tastan [2]
and Dwivedi [15] obtained some results on Ricci–Bourguignon solitons and almost
Ricci–Bourguignon solitons on Riemannian manifolds.

On the other hand, when the Reeb vector field ξ satisfies Aξ = αξ for the shape
operator A on a real hypersurface M in the complex projective space CP n, M is
said to be Hopf. By using this notion, in Section 4 it can be easily seen that a Hopf
Ricci–Bourguignon soliton (M, Df, Ω, θ, γ, g) in the complex projective space CP n

also satisfies the generalized pseudo-anti-commuting property mentioned above.
We now introduce some background on the study of real hypersurfaces in the

complex projective space CP n, which serves as a key foundation for our theorems.
If the Ricci operator Ric of a real hypersurface M in CP n satisfies

Ric(X) = aX + bη(X)ξ

for smooth functions a, b on M , then M is said to be pseudo-Einstein. Then
by virtue of the classification for pseudo-Einstein Hopf real hypersurfaces in the
complex projective space CP n due to Cecil and Ryan [9] and Propositions 3.3
and 3.4 below, we introduce the following theorem.
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Theorem C. Let M be a pseudo-Einstein real hypersurface in the complex projec-
tive space CP n, n ≥ 3. Then M is locally congruent to one of the following:

(i) a geodesic hypersphere, a = 2n + 2(n − 1) cot2(r), and b = −2n;
(ii) a tube of radius r around a totally geodesic CP k, 0 < k < n − 1, where

0 < r < π
2 , cot2 r = k

n−k−1 , a = 2n, and b = −2;
(iii) a tube of radius r around a complex quadric Qn−1 where 0 < r < π

4 ,
cot2 2r = n − 2, a = 2n, and b = −2n − 1.

Now let us consider an Einstein hypersurface in the complex quadric CP n. Then
the Ricci tensor of M becomes Ric = λg. In case (i) in above Theorem C, there do
not exist any Einstein hypersurfaces in CP n, because the case (i) has two distinct
constant principal curvatures, the function b = −2n is non-vanishing. Moreover,
the tubes in (ii) and (iii) are known to be three distinct constant principal curva-
tures. So it can be easily checked that the smooth functions b = −2 for (ii), and
b = −2(n − 1) for (iii) in Theorem C are non-vanishing (see Cecil and Ryan [9] and
Takagi [32]). From such a viewpoint we can conclude the following result.

Theorem D. There does not exist an Einstein real hypersurface in the complex
projective space CP n, n ≥ 3.

In Section 4, we show that every Hopf Ricci–Bourguignon soliton real hyper-
surface in the complex projective space CP n satisfies the generalized pseudo-anti-
commuting property. Then by virtue of the classification due to Ki and Suh [19],
we introduce a classification given in Proposition 4.1. After doing this, we should
check whether a geodesic hypersphere of type A1, a pseudo-Einstein real hyper-
surface in type A2 or of type B could admit a Ricci–Bourguignon soliton or not.
Then we can assert the following theorem.

Main Theorem 1. There does not exist a Hopf Ricci–Bourguignon soliton (M, ξ, Ω,
θ, γ, g) in the complex projective space CP n, n ≥ 3.

By virtue of Theorem 1, we can assert the following corollary.

Corollary 1.1. There does not exist a Hopf Ricci soliton (M, ξ, Ω, g) in the complex
projective space CP n, n ≥ 3.

Now let us denote by Df the gradient vector field of the function f on M
defined by g(Df, X) = g(grad f, X) = X(f) for any tangent vector field X on M .
We consider the gradient Ricci–Bourguignon soliton (M, Df, Ω, θ, γ, g) (see Catino
and Mazzieri [7], Cernea and Guan [10]) defined by

Hess(f) + Ric = (Ω + θγ)g,

where Hess(f) is defined by Hess(f) = ∇Df for any tangent vector fields X and
Y on M in such a way that

Hess(f)(X, Y ) = g(∇XDf, Y ).
Then the gradient Ricci–Bourguignon soliton can be given by

∇XDf + Ric(X) = (Ω + θγ)X
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for any vector field X tangent to M in CP n. Then first by virtue of Theorem A
we can give a non-existence theorem for the gradient Ricci–Bourguignon soliton
(M, Df, Ω, θ, γ, g) as follows:

Main Theorem 2. There does not exist a real hypersurface with isomeric Reeb
flow in the complex projective space CP n, n ≥ 3, admitting the gradient Ricci–
Bourguignon soliton.

Next by Theorem B for a contact real hypersurface in the complex projective
space CP n, we can assert the following for the gradient Ricci–Bourguignon soliton
(M, Df, Ω, θ, γ, g).

Main Theorem 3. There does not exist a contact real hypersurface in the complex
projective space CP n, n ≥ 3, admitting the gradient Ricci–Bourguignon soliton.

2. The complex projective space

This section is due to Berndt and Suh [1]. Let (M̄, g, J) be a Kähler manifold
and R̄ the Riemannian curvature tensor of (M̄, g). Since ∇̄J = 0, we immediately
see that

R̄(X, Y )JZ = JR̄(X, Y )Z
holds for all X, Y, Z ∈ Tx(M̄), x ∈ M̄ . From the curvature identities in Kobayashi
and Nomizu [20] we also get

g(R̄(X, Y )Z, W ) = g(R̄(JX, JY )Z, W ) = g(R̄(X, Y )JZ, JW ).
Let GJ

2 (TM̄) be the Grassmann bundle over M̄ consisting of all 2-dimensional
J-invariant linear subspaces V of TpM̄ , p ∈ M . Thus every V ∈ GJ

2 (TM̄) is
a complex line in the corresponding tangent space of M̄ . The restriction of the
sectional curvature function K to GJ

2 (TM̄) is called the holomorphic sectional
curvature function on M̄ , and K(V ) is called the holomorphic sectional curvature
of M̄ with respect to V ∈ GJ

2 (TM̄).
A Kähler manifold M is said to have constant holomorphic sectional curvature if

the holomorphic sectional curvature function is constant. Now we want to introduce
the following.

Theorem 2.1. A Kähler manifold (M̄, g, J) has constant holomorphic sectional
curvature c ∈ R if and only if its Riemannian curvature tensor R̄ is of the form

R̄(X, Y )Z = c

4

{
g(Y, Z)X − g(X, Z)Y

+ g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ
}

for any vector fields X, Y , and Z on M̄ .

The complex vector space Cn (n ∈ N) is in a canonical way an n-dimensional
complex manifold. For p ∈ Cn denote by πp : TpCn → Cn the canonical isomor-
phism. We define a Riemannian metric g on Cn by

gp(u, v) = ⟨πp(u), πp(v)⟩
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for all u, v ∈ TpCn and p ∈ Cn, where ⟨·, ·⟩ is the real part of the standard Hermitian
inner product on Cn, that is,

⟨a, b⟩ = Re
(

n∑
ν=1

aν b̄ν

)
(a, b ∈ Cn).

The metric g is called the canonical Riemannian metric on Cn. The complex
structure J on Cn is given by the equation πp(Ju) = iπp(u). It is easy to verify that
(Cn, g, J) is a Kähler manifold. In fact, (Cn, g, J) is a complex Euclidean space
with vanishing constant holomorphic sectional curvature. The Kähler manifold
(Cn, g, J) is known to be the n-dimensional complex Euclidean space.

We define an equivalence relation ∼ on Cn+1 \{0} by z1 ∼ z2 if and only if there
exists λ ∈ C\{0} such that z2 = z1λ. We denote by CP n the quotient space (Cn+1\
{0})/∼. By construction, the points in CP n are in one-to-one correspondence with
the complex lines through 0 ∈ Cn+1. We equip CP n with the quotient topology
with respect to the canonical projection τ : Cn+1 \ {0} → CP n. Then CP n is a
compact Hausdorff space and τ is a continuous map. There exists a unique complex
manifold structure on CP n so that τ is a holomorphic submersion. In this way CP n

becomes an n-dimensional complex manifold (CP n, J). For z ∈ Cn+1 \ {0} we also
write [z] = τ(z) ∈ CP n.

Let S2n+1 be the unit sphere in Cn+1 and denote by π the restriction of τ to
S2n+1. We consider S2n+1 with the Riemannian metric induced from Cn+1, which
is the standard metric on S2n+1 turning it into a real space form with constant
sectional curvature 1. The map π : S2n+1 → CP n is a surjective submersion
whose fibers are 1-dimensional circles. There exists a unique Riemannian metric
g on CP n so that π becomes a Riemannian submersion. In such a way, the map
π : S2n+1 → CP n is known as the Hopf map from S2n+1 onto CP n and the
Riemannian metric g is known as the Fubini–Study metric on CP n. The manifold
(CP n, J, g) is a Kähler manifold and called the n-dimensional complex projective
space. The complex projective space (CP n, J, g) is a complex space form with
constant holomorphic sectional curvature 4.

By virtue of Theorem 2.1, the Riemannian curvature tensor R̄ of CP n can be
given for any vector fields X, Y and Z in Tz(CP n), z ∈ CP n, as follows:

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ.

3. Some general equations

Let M be a real hypersurface in the complex projective space CP n and denote
by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that ξ = −JN ,
where N is a (local) unit normal vector field of M . Then the vector field ξ is
said to be the Reeb vector field on M in CP n. The tangent bundle TM of M
splits orthogonally into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex
subbundle of TM . The structure tensor field ϕ restricted to C coincides with the
complex structure J restricted to C, and ϕξ = 0.

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



RICCI–BOURGUIGNON SOLITONS IN CP n 283

In another way, the complex projective space CP n is defined by using the fibra-
tion

π̃ : S2n+1(1) → CP n, z → [z],
which is said to be a Riemannian submersion. Then naturally we can consider the
following diagram for a real hypersurface in the complex projective space CP n:

M ′ = π̃−1(M) ĩ−−−−→ S2n+1(1) ⊂ Cn+1

π

y π̃

y
M

i−−−−→ CP n

We now assume that M is a Hopf hypersurface. Then we have
Aξ = αξ,

where A denotes the shape operator of M in CP n and the smooth function α is
defined by α = g(Aξ, ξ) on M . When we consider the transformed vector field JX
by the Kähler structure J on CP n for any vector field X on M in CP n, we may
write

JX = ϕX + η(X)N.

Then, by using Kähler structure ∇J = 0, we get the following:
(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ and ∇Xξ = ϕAX.

Now we consider the equation of Codazzi
g((∇XA)Y − (∇Y A)X, Z) = η(X)g(ϕY, Z) − η(Y )g(ϕX, Z) − 2η(Z)g(ϕX, Y ).

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface
M in CP n induced from the curvature tensor R̄ of CP n can be described in terms
of the almost contact structure tensor ϕ and the shape operator A of M in CP n

as follows:
R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ

+ g(AY, Z)AX − g(AX, Z)AY

(3.1)

for any vector fields X, Y, Z ∈ TzM , z ∈ M . From this, contracting Y and Z on
M in CP n, we get the Ricci tensor of a real hypersurface M in CP n as follows:

Ric(X) = (2n + 1)X − 3η(X)ξ + (Tr A)AX − A2X. (3.2)
Then, by contracting the Ricci operator in (3.2), the scalar curvature γ of M in

CP n is given by

γ =
2n−1∑
i=1

g(Ric(ei), ei) = 4(n2 − 1) + h2 − Tr A2, (3.3)

where the function h denotes the trace of the shape operator A of M in CP n.
Putting Z = ξ in the Codazzi equation, we get

g((∇XA)Y − (∇Y A)X, ξ) = −2g(ϕX, Y ).
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Since we have assumed that M is Hopf in CP n, differentiating Aξ = αξ gives

(∇XA)ξ = (Xα)ξ + αϕAX − AϕAX.

From this, the left side of the above equation becomes

g((∇XA)Y − (∇Y A)X, ξ)
= g((∇XA)ξ, Y ) − g((∇Y A)ξ, X)
= (Xα)η(Y ) − (Y α)η(X) + αg((Aϕ + ϕA)X, Y ) − 2g(AϕAX, Y ).

Putting X = ξ in the above two equations and using the almost contact structure
of (M, g), we have

Y α = (ξα)η(Y ).
Inserting this formula into the two previous equations implies that

0 = 2g(AϕAX, Y ) − αg((ϕA + Aϕ)X, Y ) − 2g(ϕX, Y ).

By virtue of this equation, we can assert the following lemma.

Lemma 3.1. Let M be a Hopf real hypersurface in CP n, n ≥ 3. Then we obtain

2AϕAX = α(Aϕ + ϕA)X + 2ϕX

for any tangent vector field X on M .

In the proof of our Theorems 1 and 2, we want to give more information about
Hopf real hypersurfaces in the complex projective space. By using the formulas
given in Section 3 we introduce an important lemma due to Okumura [22] and
Yano and Kon [35].

Lemma 3.2. Let M be a Hopf real hypersurface in CP n. Then the Reeb function α
is constant. Moreover, if X ∈ C is a principal curvature vector of M with principal
curvature λ, then 2λ ̸= α and ϕX is a principal curvature vector of M with principal
curvature αλ+2

2λ−α on M .

Now, by using (3.2) and (3.3), we introduce an important proposition due to
Cecil and Ryan [9] and Djorić and Okumura [14].

Proposition 3.3. Let M be the tube of radius 0 < r < π
2 around the totally

geodesic CP k, k ∈ {1, . . . , n − 2} in CP n. Then the following statements hold:
(1) M is a Hopf hypersurface.
(2) The principal curvatures and corresponding principal curvature spaces of M

are given by

principal curvature eigenspace multiplicity

λ = cot(r) Tλ 2ℓ

µ = − tan(r) Tµ 2k

α = 2 cot(2r) Tα = RJN 1

where ℓ = n − k − 1.
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(3) The shape operator A commutes with the structure tensor field ϕ:
Aϕ = ϕA.

(4) The trace h of the shape operator A and its square h2 become the following,
respectively:

h = (2ℓ + 1) cot(r) − (2k + 1) tan(r),
h2 = (2ℓ + 1)2 cot2(r) + (2k + 1)2 tan2(r) − 2(2ℓ + 1)(2k + 1).

(5) The trace of the matrix A2 is given by
Tr A2 = (2ℓ + 1) cot2(r) + (2k + 1) tan2(r) − 2.

(6) The scalar curvature γ of the tube M is given by
γ = 4(n − 1)n − 8kℓ + 2(2ℓ + 1)ℓ cot2(r) + 2(2k + 1)k tan2(r).

(7) M is pseudo-Einstein, that is,
Ric(X) = 2nX − 2η(X)ξ

for cot2(r) = k
n−k−1 .

The tube of radius r around totally geodesic and totally real projective space
RP n has therefore three distinct constant principal curvatures: 2 tan(2r), − cot(r),
and tan(r). It also can be regarded as a tube of radius π

4 − r over a totally
geodesic complex quadric Qn−1. Then, by (3.2) and (3.3), we want to give the
following important proposition due to Berndt and Suh [1], Cecil and Ryan [9],
and Takagi [32].

Proposition 3.4. Let M be the tube of radius 0 < r < π
4 , around the complex

quadric Qn−1 which is a complex hypersurface in CP n. Then the following state-
ments hold:

(1) M is a Hopf hypersurface.
(2) The principal curvatures and corresponding principal curvature spaces of M

are
principal curvature eigenspace multiplicity

λ = − cot( π
4 − r) Tλ n − 1

µ = tan( π
4 − r) Tµ n − 1

α = 2 cot(2r) RJN 1

(3) The shape operator A and the structure tensor field ϕ satisfy
Aϕ + ϕA = kϕ, k ̸= 0 constant.

(4) The trace h of the shape operator A and its square h2 become the following,
respectively:

h = Tr A = 2 cot(2r) − 2(n − 1) tan(2r),
h2 = 4 cot2(2r) + 4(n − 1)2 tan2(2r) − 8(n − 1).
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(5) The trace of the matrix A2 is given by
Tr A2 = 4 cot2(2r) + 4(n − 1) tan2(2r).

(6) The scalar curvature γ of the tube M is given by
γ = 4(n − 1)2 + 4(n − 1)(n − 2) tan2(2r).

(7) M is pseudo-Einstein, that is,
Ric(X) = 2nX − 2(n − 1)η(X)ξ

for cot2(2r) = n − 2.

4. Hopf Ricci–Bourguignon soliton real hypersurfaces

Now let us introduce the Ricci–Bourguignon soliton (M, V, Ω, θ, γ, g), which is a
solution of the Ricci–Bourguignon flow as follows:

1
2(LV g)(X, Y ) + Ric(X, Y ) = (Ω + θγ)g(X, Y )

for any tangent vector fields X and Y on M , where Ω is a Ricci–Bourguignon soliton
constant, θ any constant and γ the scalar curvature on M , and LV denotes the
Lie derivative along the direction of the vector field V (see Morgan and Tian [21]).
Then let us consider the Reeb vector field ξ as the Ricci–Bourguignon soliton vector
field V as follows:

1
2(Lξg)(X, Y ) + Ric(X, Y ) = (Ω + θγ)g(X, Y ). (4.1)

Then, by virtue of the Lie derivative (Lξg)(X, Y ) = g(∇Xξ, Y ) + g(∇Y ξ, X), the
formula (4.1) can be given by

Ric(X) = 1
2(Aϕ − ϕA)X + (Ω + θγ)X. (4.2)

From this, by applying the structure tensor ϕ to both sides, we get the following
two formulas:

Ric(ϕX) = 1
2(Aϕ2 − ϕAϕ)X + (Ω + θγ)ϕX,

ϕ Ric(X) = 1
2(ϕAϕ − ϕ2A)X + (Ω + θγ)ϕX.

By using the almost contact structure (ϕ, ξ, η, g) in the right side above, we know
that the generalized pseudo-anti-commuting property holds as follows:

Ric(ϕX) + ϕ Ric(X) = 2(Ω + θγ)ϕX.

Now we want to introduce an important proposition due to Ki and Suh [19] and
Yano and Kon [35], which will be used in the proof of our Theorem 1.

Proposition 4.1. Let M be a connected complete Hopf real hypersurface in the
complex projective space CP n. If M satisfies the generalized pseudo-anti-commuting
property, then M is locally congruent to a geodesic hypersphere in type A1, a
pseudo-Einstein hypersurface in type A2, or M is locally congruent to a real hyper-
surface of type B.
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Among real hypersurfaces of type A2, only pseudo-Einstein real hypersurfaces
satisfy the generalized pseudo-anti-commuting property (4.2). Then it is exactly
the second case in Theorem C. That is, M is locally congruent to a tube of
radius r around a totally geodesic CP k, 0 < k < n − 1, where 0 < r < π

2 and
cot2(r) = k

n−k−1 .
Now geodesic hyperspheres and pseudo-Einstein real hypersurfaces are included

in the class of type A1 and A2, respectively. So by Theorem A, they are character-
ized by the commuting shape operator. That is, Aϕ = ϕA. Accordingly, from the
notion of Ricci–Bourguignon soliton (M, ξ, Ω, θ, γ, g) of M , (4.1) becomes

Ric = (Ω + θγ)g.

This means that those hypersurfaces are Einstein. But, by Theorem D, there do
not exist such hypersurfaces in the complex projective space CP n.

Next, in the remaining case let us check real hypersurfaces of type B in CP n.
They are characterized by Aϕ + ϕA = kϕ, where k ̸= 0 is constant. Moreover,
by Proposition 3.4, the principal curvatures are given by λ = − cot( π

4 − r), µ =
tan( π

4 − r) and α = 2 cot(2r). So k = λ + µ = − 4
α . For any X ∈ Tλ the vector

field ϕX ∈ Tµ. So the Ricci–Bourguignon soliton (4.1) gives the following:(
− µ − 2

α

)
ϕX + Ric X = (Ω + θγ)X

for any X ∈ Tλ. Since the first term is skew-symmetric, by taking symmetric part
the first term vanishes. So it becomes Ric(X) = (Ω + θγ)X for any X ∈ Tλ.

Similarly, for any Y ∈ Tµ we get Ric(Y ) = (Ω + θγ)Y . Of course, if we put
X = ξ in (4.2), we get Ric(ξ) = (Ω + θγ)ξ. Consequently, Ric = λg. That is, it is
Einstein. But, by Theorem D, there does not exist such a type B on a hypersurface
in complex projective space CP n. From this fact we can assert our Main Theorem 1
in the Introduction.

5. Gradient Ricci–Bourguignon soliton on isometric Reeb flow
in CP n

In this section, let M be a tube of radius r, 0 < r < π
2 , over a totally geodesic

CP k, k ∈ {0, 1, . . . , n − 2, n − 1} in CP n, which is said to be of type A1 and of
type A2. In Theorem A, we have mentioned that the Reeb flow on M in CP n

is isometric if and only if M is locally congruent to a totally geodesic CP k in
CP n for k ∈ {0, 1, . . . , n − 1}. Then, for k = 0 or k = n − 1, we say that M
is a geodesic hypersphere which is said to be of type A1 and it has two distinct
principal curvatures. For k ∈ {1, . . . , n − 2}, M is locally congruent to a tube over
CP k in CP n. Moreover, it is said to be of type A2 and has three distinct constant
principal curvatures.
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Then the shape operator of M in the complex projective space CP n with iso-
metric Reeb flow can be expressed as

A =



α 0 · · · 0 0 · · · 0
0 cot(r) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · cot(r) 0 · · · 0
0 0 · · · 0 − tan(r) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · − tan(r)


for three constant principal curvatures α = 2 cot(2r), cot(r), and − tan(r) with
multiplicities 1, 2ℓ, and 2k, respectively, where ℓ = n − k − 1.

Then, by putting X = ξ in (3.2), and using Aξ = αξ, we have the following:

Ric(ξ) = (2n + 1)ξ − 3ξ + hAξ − A2ξ

= 2(n − 1)ξ + (hα − α2)ξ
= κξ,

where we have put κ = 2(n − 1) + hα − α2. So, by Proposition 3.3, the constant κ
is given by

κ = 2(n − 1) + (hα − α2)
= 2(n − 1) + {(2ℓ + 1) cot(r) − (2k + 1) tan(r)}2 cot(2r) − (2 cot(2r))2

= 2(n − 1) + 2{ℓ cot2(r) + k tan2(r) − (k + ℓ)}
= 2ℓ cot2(r) + 2k tan2(r).

Then, by taking the covariant derivative, we get the following two formulas:

(∇X Ric)ξ = κϕAX − Ric(ϕAX),
(∇ξ Ric)X = h(∇ξA)X − (∇ξA2)X.

Since M admits a gradient Ricci–Bourguignon soliton (M, Df, Ω, θ, γ, g), we
could consider the soliton vector field W as W = Df for any smooth function on M .
In the Introduction we have noted that Hess(f) is defined by Hess(f) = ∇Df for
any tangent vector fields X and Y on M in such a way that

Hess(f)(X, Y ) = g(∇XDf, Y ).

Then the gradient Ricci–Bourguignon soliton (M, Df, Ω, θ, γ, g) can be given by

∇XDf + Ric(X) = (Ω + θγ)X

for any tangent vector field X on M . Then, by taking the covariant derivative and
using the fact that the scalar curvature γ is constant for an isometric Reeb flow,
we obtain

∇X∇Y Df + (∇X Ric)(Y ) + Ric(∇XY ) = (Ω + θγ)∇XY
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for any vector field X and Y tangent to M in CP n. From this, together with the
above two formulas, it follows that

R(ξ, Y )Df = ∇ξ∇Y Df − ∇Y ∇ξDf − ∇[ξ,Y ]Df

= (∇Y Ric)ξ − (∇ξ Ric)Y
= κϕAY − Ric(ϕAY ) − h(∇ξA)Y + (∇ξA2)Y.

(5.1)

Then, from (3.1), we have the following for a real hypersurface M in CP n with
isometric Reeb flow:

R(ξ, Y )Df = g(Y, Df)ξ − g(ξ, Df)Y + g(AY, Df)Aξ − g(Aξ, Df)AY. (5.2)

From this, let us take a vector field Y ∈ Tλ, λ = cot(r). Moreover, we can
decompose the tangent space TCP n as

TCP n = Tλ ⊕ Tµ ⊕ Tα ⊕ RN,

where λ = cot(r), µ = − tan(r), and α = 2 cot(2r). If M is of type A1, that is, a
geodesic hypersphere in CP n, it can be decomposed as

TCP n = Tλ ⊕ Tα ⊕ RN,

or otherwise
TCP n = Tµ ⊕ Tα ⊕ RN.

Then, for Y ∈ Tλ, (5.2) gives
R(ξ, Y )Df = g(Y, Df)ξ − g(ξ, Df)Y + αλg(Y, Df)ξ − αλg(ξ, Df)Y

= (1 + αλ){g(Y, Df)ξ − g(ξ, Df)Y }.
(5.3)

Then, by taking the inner product of (5.3) with the Reeb vector field ξ and using
(5.1), it follows that (1 + αλ)g(Y, Df) = cot2(r)g(Y, Df) = 0. But cot2(r) ̸= 0 for
the radius 0 < r < π

2 of isometric Reeb flow M in CP n. It implies the following,
for any Y ∈ Tλ:

g(Y, Df) = 0.

Now let us check (5.2) for Y ∈ Tµ, µ = − tan(r). Then (5.2) gives

R(ξ, Y )Df = g(Y, Df)ξ − g(ξ, Df)Y + αµg(Y, Df)ξ − αµg(ξ, Df)Y. (5.4)

Then, by taking the inner product (5.4) with the Reeb vector field ξ and Y ∈ Tµ

respectively and using (5.1), we get

(1 + αµ)g(Y, Df) = 0 and (1 + αµ)g(ξ, Df) = 0, (5.5)

where g(R(ξ, Y )Df, ξ) = 0 and the left side g(R(ξ, Y )Df, Y ) = 0 is given by virtue
of the following formulas:

g(ϕAY, Y ) = µg(ϕY, Y ) = 0,

Ric(ϕAY ) = µ{(2n + 1) + µh − µ2}ϕY,

and
g((∇ξA)Y, Y ) = −µg(∇ξY, Y ) = 0.
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Since 1 + αµ = 1 + (cot(r) − tan(r))(− tan(r)) = tan2(r) ̸= 0 for 0 < r < π
2 for

isometric Reeb flow M in CP n, (5.5) implies that
g(Y, Df) = 0 and g(ξ, Df) = 0 (5.6)

for any Y ∈ Tµ, µ = − tan(r). For a geodesic hypersphere of type A1 in CP n,
it holds either g(Y, Df) = 0 for Y ∈ Tλ = C or for Y ∈ Tµ = C from the above
decomposition, where C denotes the orthogonal complement of the Reeb vector
field ξ in the tangent space TM of M in CP n. Of course, it also holds g(ξ, Df) = 0
for a geodesic hypersphere in CP n.

Summing up (5.3), (5.6), and the above discussion, the gradient of the smooth
function f is identically vanishing, that is, g(Y, Df) = 0 for any tangent vector
field Y ∈ TzM , z ∈ M . Consequently, we can conclude that the gradient Ricci–
Bourguignon soliton (M, Df, Ω, θ, γ, g) is trivial. So it becomes Einstein. That
is, Ric(X) = λX. Then, by Theorem D, we get a complete proof of our Main
Theorem 2 in the Introduction.

6. Gradient Ricci–Bourguignon solitons on contact real
hypersurfaces in CP n

In this section, we want to give a property for gradient Ricci–Bourguignon soli-
tons on a contact real hypersurface M in the complex projective space CP n. Of
course, by Theorem B we know that the scalar curvature γ is constant. The
(M, Df, Ω, θ, γ, g) gives the following for any tangent vector field X on M in CP n:

∇XDf + Ric(X) = (Ω + θγ)X. (6.1)
Then, by differentiating (6.1), the curvature tensor of grad f is given by

R(X, Y )Df = ∇X∇Y Df − ∇Y ∇XDf − ∇[X,Y ]Df

= −(∇X Ric)Y − Ric(∇XY ) + (Ω + θγ)∇XY

+ (∇Y Ric)X + Ric(∇Y X) − (Ω + θγ)∇Y X

+ Ric([X, Y ]) − (Ω + θγ)[X, Y ]
= (∇Y Ric)X − (∇X Ric)Y,

(6.2)

where we have used the Ricci soliton constant ν and the gradient Ricci–Bourguignon
soliton constant θ, and the scalar curvature γ is constant on a contact real hyper-
surface M in CP n in Proposition 3.4.

Now let us assume that M is a contact real hypersurface in CP n, which is
characterized by

Aϕ + ϕA = κϕ, where κ ̸= 0 is constant.
Then it is Hopf and the Ricci operator is given by

Ric(X) = (2n + 1)X − 3η(X)ξ + hAX − A2X

for any tangent vector field X on M . From this, let us put X = ξ. Then M being
Hopf and Aξ = αξ implies

Ric(ξ) = ℓξ,
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where ℓ = 2(n − 1) + hα − α2 is constant, and the mean curvature h = Tr A is
constant for a contact hypersurface M in CP n. Then, by taking covariant derivative
to the Ricci operator, we have

(∇X Ric)ξ = ∇X(Ric(ξ)) − Ric(∇Xξ) = ℓϕAX − Ric(ϕAX)
and

(∇ξ Ric)X = ∇ξ(Ric X) − Ric(∇ξX)
= h(∇ξA)X − (∇ξA2)X.

From (6.2), together with the above formula, by putting X = ξ we have the fol-
lowing for a contact hypersurface M in CP n:

R(ξ, Y )Df = (∇Y Ric)ξ − (∇ξ Ric)Y
= ℓϕAY − Ric(ϕAY ) − h(∇ξA)Y + (∇ξA2)Y.

(6.3)

Then, the diagonalization of the shape operator A of the contact real hypersurface
in the complex hyperbolic quadric CP n is given by

A =



2 cot(2r) 0 · · · 0 0 · · · 0
0 − cot( π

4 − r) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · − cot( π
4 − r) 0 · · · 0

0 0 · · · 0 tan( π
4 − r) · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · 0 0 · · · tan( π

4 − r)


.

Here, by Proposition 3.4, the principal curvatures are given by α = 2 cot(2r),
λ = − cot( π

4 − r), and µ = tan( π
4 − r), with multiplicities 1, n − 1, and n − 1,

respectively. All of these principal curvatures satisfy

κ = λ + µ = − cot
(π

4 − r
)

+ tan
(π

4 − r
)

= −2 tan(2r) = − 4
α

.

On the other hand, the curvature tensor R(X, Y )Z of M induced from the
curvature tensor R̄(X, Y )Z of the complex projective space CP n gives

R(ξ, Y )Df = g(Y, Df)ξ − g(ξ, Df)Y
+ g(AY, Df)Aξ − g(Aξ, Df)AY

= (1 + αλ){g(Y, Df)ξ − g(ξ, Df)Y }
(6.4)

for any Y ∈ Tλ, λ = − cot( π
4 − r) for a contact real hypersurface M in the complex

projective space CP n. Consequently, (6.3) and (6.4) give
ℓϕAY − Ric(ϕAY ) − h(∇ξA)Y + (∇ξA2)Y = (1 + αλ){g(Y, Df)ξ − g(ξ, Df)Y }.

From this, by taking the inner product with the Reeb vector field ξ, we have
(1 + αλ)g(Y, Df) = 0. (6.5)

Then, for any Y ∈ Tλ in (6.5), it follows that
g(Y, Df) = 0, (6.6)
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where we have noted that 1 + αλ = 1 + 2 cot(2r)(− cot( π
4 − r)) ̸= 0. Because if we

assume that 2 cot(2r) cot( π
4 − r) = 1, then tan(2r) = 2 cot( π

4 − r). Then it follows
that

(cos(r) − sin(r)) sin(r) cos(r) = (cos(r) + sin(r))2(cos(r) − sin(r)),

which gives sin(r) cos(r) = −1. This implies a contradiction for 0 < r < π
4 .

Accordingly, the gradient vector field Df is orthogonal to the eigenspace Tλ, that
is, g(Y, Df) = 0 for any Y ∈ Tλ.

Next, we consider for Y ∈ Tµ, µ = tan( π
4 − r) in Proposition 3.4. Then, using

these properties in (6.3) and (6.4) implies the following:

ℓϕAY − Ric(ϕAY ) − h(∇ξA)Y + (∇ξA2)Y = (1 + αµ){g(Y, Df)ξ − g(ξ, Df)Y }.

From this, by taking the inner product with the Reeb vector field ξ, we get

g(Y, Df) = 0 for any Y ∈ Tµ, (6.7)

where 1 + αµ ̸= 0. If we assume that 1 + αµ = 0, then, by Proposition 3.4, we
can write 1 + 2 cot(2r) tan( π

4 − r) = 0. Then we obtain − tan(2r) = 2 cos(r)−sin(r)
cos(r)+sin(r) .

Since tan(2r) = sin(2r)
cos(2r) , we get the following:

(cos(r) + sin(r)) sin(r) cos(r) = −(cos(r) − sin(r))(cos2(r) − sin2(r))
= −(cos(r) − sin(r))2(cos(r) + sin(r)).

Since cos(r) + sin(r) ̸= 0 for 0 < r < π
4 , we get sin(r) cos(r) = 1, which gives also

a contradiction.
Finally, let us take the inner product to the above formula with Y ∈ Tµ, and

use AY = µY , AϕY = λϕY for a contact hypersurface in CP n, we have
−(1 + αµ)g(ξ, Df) = ℓg(ϕAY, Y ) − g(Ric(ϕAY ), Y )

− hg((∇ξA)Y, Y ) + g((∇ξA2)Y, Y )
= 0,

(6.8)

where in the second equality we have used the following formulas:
Ric(ϕAY ) = (2n + 1)ϕAY + hAϕAY − A2ϕAY

= µ{(2n + 1) + λh − λ2}ϕY,

g((∇ξA)Y, Y ) = g(∇ξ(AY ) − A∇ξY, Y )
= g(µ∇ξY − A∇ξY, Y ) = 0,

and
g((∇ξA2)Y, Y ) = g(∇ξ(A2Y ) − A2∇ξY, Y )

= g(µ2∇ξY − A2∇ξY, Y )
= µ2g(∇ξY, Y ) − µ2g(∇ξY, Y ) = 0.

From this, together with (6.8), it follows that

g(ξ, Df) = 0. (6.9)
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Consequently, from (6.6), (6.7), and (6.9) it follows that the gradient vector field
Df is identically vanishing. Then Df = 0 in (6.1) means that M is Einstein. But
Theorem D in the Introduction gives that there does not exist an Einstein real
hypersurface in the complex projective space CP n. From this, we give a complete
proof of our Main Theorem 3 in the Introduction.

Remark 6.1. The metric g of a Riemannian manifold M of dimension n ≥ 3 is
said to be a gradient Einstein soliton [7] if there exists a smooth function f on M
such that

Ric +∇2f =
(

Ω + 1
2γ
)

g,

where γ denotes the scalar curvature of M and θ = 1
2 a constant on M . Here

∇2f denotes the Hessian operator of g and f the Einstein potential function of
the gradient Einstein soliton. So this soliton is an example of gradient Ricci–
Bourguignon soliton.
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