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PRINCIPALITY BY REDUCED IDEALS IN PURE CUBIC
NUMBER FIELDS

JAMAL BENAMARA AND MOHAMMED TALBI

Abstract. This paper describes a method for determining the list of reduced
ideals of any pure cubic number field, which we can use for testing the prin-
cipality of these fields and give a generator for a principal ideal.

1. Introduction

The notion of a reduced ideal can be used to compute the regulator and the class
number of a number field, see [3, 10]. Besides, it can be used in cryptography as
in [4, 12] where the authors sketched the first Diffie–Hellman protocol which does
not require a group structure, namely on the set of reduced principal ideals of a
real quadratic field. Most of the work on reduced ideals is realized on quadratic
fields, see for example [8]. In [7] (respectively [2]), the authors describe a method
for finding all reduced ideals of the ring of integers of a monogenic pure cubic
field (respectively of a special order of any pure cubic field). In this paper, we
give a complete overview on the reduced ideals in any pure cubic number field and
we provide a method which allows us to determine the set of reduced ideals. In
addition, we develop the notion of a minimum of an ideal and its relation with
the reduced ideal to study the principality of the ring of integers. Then, we give a
procedure to find a generator of a principal ideal. Finally, we illustrate the results
by two examples to improve the readability and the flow paper.

Throughout this paper, we consider a pure cubic number field K = Q( 3
√
D),

where D > 1 is a cube-free integer. We may assume with no loss of generality that
D = rs2, where r and s are square-free and (r, s) = 1. It is well known (see for
example [1, 6]) that if D ̸≡ ±1 (mod 9), then the ring of integers OK has a basis[
1, θ, δ = θ2/s

]
, where θ = 3

√
D and the discriminant of K is ∆K = −27r2s2. In

this case, K is called a pure cubic field of the first kind. If D ≡ ±1 (mod 9), then
OK =

[
1, θ, δ = (1 + rθ + θ2)/3

]
, ∆K = −3r2s2 and K is called a pure cubic field

of the second kind. When there exists ϑ ∈ OK such that OK = Z[ϑ], we say that
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K is monogenic (for example, when D is square-free (s = 1) and D ̸≡ ±1 (mod 9),
OK = Z[θ]); in this case, we find the results as in [7].

We also recall that an order O of K is a sub-ring of K which as a Z-module is
finitely generated and of maximal rank [K : Q] = 3, see [11]. This is equivalent to
say that O ⊂ OK and [OK : O] < ∞ (for example O = Z[θ]); in this case, we find
the results as in [2].

In general, we denote by λ′ and λ′′ the conjugate roots of any λ ∈ K. Therefore
the norm of λ is N (λ) = λλ′λ′′ and we know that θ′ = θζ and θ′′ = θζ2, where
ζ = exp(2iπ/3). Note: in a field Q( 3

√
D),

N (x+ y
3
√
D + z

3√
D2) = x3 + y3D + z3D2 − 3xyzD.

And by the Dirichlet theorem, we know that the units group UK of K is of rank
one and we denote by ε0 the fundamental unit of K.

2. Arithmetic of ideals in pure cubic fields

We will be treating ideals as special kinds of Z-modules. We recall that I is an
ideal of OK if I ⊂ OK and for all α, β ∈ I and λ ∈ OK we have α + β ∈ I and
λα ∈ I.

Proposition 2.1. Let K be a pure cubic number field and O = [1, ϕ, ψ] be an order
of K. Then every non-zero ideal I of O has a representation

I = [a, b+ cϕ, d+ eϕ+ fψ] ,

where a, b, c, d, e, f ∈ Z, 0 ≤ b < a, 0 ≤ d < a, 0 ≤ e < c and 0 < f . This basis
will be called the HNF basis (Hermite normal form) of I. In addition, the integer a
is the smallest positive element of I ∩ Z and the norm of I is N(I) = acf . The
integer a is called the length of I and we denote it by ℓ(I).

Proof. Every ideal of O is a sub-Z-module of O. The rest follows by [5, Theo-
rem 4.7.3] and [5, Proposition 4.7.4]. □

Theorem 2.2 (Uniqueness of the coefficients). Let O = [1, ϕ, ψ] be an order of K.
Let I1 and I2 be two ideals of O with HNF basis [a1, b1 + c1ϕ, d1 + e1ϕ+ f1ψ] and
[a2, b2 + c2ϕ, d2 + e2ϕ+ f2ψ] successively. Then I = J if and only if a1 = a2,
b1 = b2, c1 = c2, d1 = d2, e1 = e2 and f1 = f2.

Proof. If I1 = I2, then I1 ⊆ I2, hence a1, b1 + c1ϕ and d1 + e1ϕ+ f1ψ ∈ I2, which
means that a2 | a1, c2 | c1, f2 | f1, b1c2 ≡ b2c1 (mod a2c2), e1f2 ≡ e2f1 (mod c2f2)
and d1c2f2 + b2f1e2 ≡ b2e1f2 + c2d2f1 (mod a2c2f2). On the other hand, we have
I2 ⊆ I1, then a2, b2 + c2ϕ and d2 + e2ϕ+ f2ψ ∈ I1, which means that a1 | a2, c1 | c2,
f1 | f2, b2c1 ≡ b1c2 (mod a1c1), e2f1 ≡ e1f2 (mod c1f1) and d2c1f1 + b1f2e1 ≡
b1e2f1 + c1d1f2 (mod a1c1f1). Directly, we get a1 = a2, c1 = c2 and f1 = f2,
therefore b1 ≡ b2 (mod a1), and since 0 ≤ b1 < a1 and 0 ≤ b2 < a1, we get b1 = b2.
In the same way we get e1 = e2 and d1 = d2. □

Sometimes we write I = [a, α, β] with α = b+ cϕ and β = d+ eϕ+ fψ.
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Definition 2.3. Let O = [1, ϕ, ψ] be an order of K. We will say that an ideal I of
O is primitive if there is no integer n > 1 such that I ⊂ nO.

The ideal I = [a, b+ cϕ, d+ eϕ+ fψ] is primitive if gcd(a, b, c, d, e, f) = 1.

Theorem 2.4 (Criterion for ideal equality). If I = [a, α, β] is a primitive ideal of
OK , then I = [a,ma± α, na+ pα± β] for any m,n, p ∈ Z.

Proof. We have  a
ma± α

na+ pα± β

 =

 1 0 0
m ±1 0
n p ±1

 a
α
β


and

M =

 1 0 0
m ±1 0
n p ±1


is in GL3(Z), the group of all 3 × 3 matrices with integer entries and determinant
equal to ±1. □

Note that the converse of Proposition 2.1 is false. Indeed, if we consider O =
Z [θ] =

[
1, θ, θ2]

, the sub-Z-module I =
[
6, 5 + 3θ, 4 + 2θ + 5θ2]

is not an ideal of
O because 6θ /∈ I. For the converse to be true, we need more conditions on the
coefficients a, b, c, d, e and f .

Theorem 2.5. Let K be a pure cubic field of the first kind. Then, a sub-Z-module
I of OK with HNF basis [a, b+ cθ, d+ eθ + fδ] is an ideal of OK if and only if the
following conditions are satisfied.

(1) a ≡ b ≡ cs ≡ d ≡ es ≡ 0 (mod f).
(2) a ≡ b ≡ 0 (mod c).
(3) ea ≡ eb ≡ df − e2s ≡ f2r − de ≡ 0 (mod cf).
(4) bces − b2f − c2ds ≡ c2frs + b2e − bcd ≡ cf2rs − bdf + be2s − cdes ≡

cefrs− bf2r + bde− cd2 ≡ 0 (mod acf).

Proof. Let I =
[
a, b+ cθ, d+ eθ + f

θ2

s

]
be a sub-Z-module of OK . We know that

I is an ideal of OK if and only if for all α ∈ I and β ∈ OK we have αβ ∈ I. For

this, let α ∈ OK and β ∈ I; then α = x + yθ + z
θ2

s
and β = x′a + y′(b + cθ) +

z′
(
d+ eθ + f

θ2

s

)
with x, y, z, x′, y′, z′ ∈ Z. Therefore,

αβ = xβ + yθβ + zθ2

s
β

= xβ + yx′aθ + yy′(bθ + cθ2) + yz′
(
dθ + eθ2 + Df

s

)
+ zx′ aθ

2

s
+ zy′

(
bθ2

s
+ cD

s

)
+ zz′

(
dθ2

s
+ eD

s
+ Dfθ

s2

)
,
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hence αβ ∈ I if and only if the elements aθ, bθ+cθ2, dθ+eθ2+Df

s
, aθ

2

s
, bθ

2

s
+cD/s

and d
θ2

s
+ eD/s+Df

θ

s2 belong to I.
But we have

aθ ∈ I ⇐⇒ aθ = x′′a+ y′′(b+ cθ) + z′′
(
d+ eθ + f

θ2

s

)
with x′′, y′′, z′′ ∈ Z

⇐⇒


ax′′ + by′′ + dz′′ = 0
cy′′ + ez′′ = a

z′′f = 0
⇐⇒


ax′′ + by′′ = 0
cy′′ = a

z′′ = 0
⇐⇒


cx′′ = −b
cy′′ = a

z′′ = 0
⇐⇒

{
c | a
c | b.

It is easy to verify in the same way that we also have the following equivalences:

a
θ2

s
∈ I ⇐⇒


cf | be− dc

cf | ea
f | a

bθ + cθ2 ∈ I ⇐⇒


acf | bces− b2f − c2ds

cf | bf − ces

f | cs

b
θ2

s
+ D

s
∈ I ⇐⇒


acf | c2frs+ b2e− bcd

cf | eb
f | b

dθ + eθ2 + Df

s
∈ I ⇐⇒


acf | cf2rs− be2s+ bdf − cdes

cf | df − e2s

f | es

and

d
θ2

s
+ eD

s
+Df

θ2

s
∈ I ⇐⇒


acf | cefrs− bf2r + bde− cd2

cf | f2r − de

f | d.

□

Theorem 2.6. Let K be a pure cubic field of the second kind. Then, a sub-Z-
module I of OK with HNF basis [a, b+ cθ, d+ eθ + fδ] is an ideal of OK if and
only if the following conditions are satisfied.

(1) c divides a and b.
(2) f divides a, 3c, 3e, b+ cr, and d+ er.

(3) cf divides ea, be−cd, eb+cer, f2 1 − r2

3 +df−3e2−2efr, and f2r
s2 − r2

3 −
3de− 3e2r − ef − 2efr2.
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(4) acf divides bcfr+ 3bce− c2f − b2f − 3dc2, c2fr
s2 − 1

3 + bcf
r2 − 1

3 + (be−

cd)(b+cr), cf2r
s2 − 1

3 +bf2 r
2 − 1

3 +(be−cd)(3e+fr)+befr−bdf−cef , and

(be−cd)(d+er)+cefr s
2 − 1

3 +bef 2r2 + 1
3 −cdf r

2 + 2
3 +cf2 2rD − r2 − 1

9 +

bf2r
r2 − s2

9 .

Proof. The proof is similar to that of the first kind with

δ = 1 + rθ + θ2

3 ,

except here we must also show that
r2 − 1

3 ,
s2 − 1

3 ,
2r2 + 1

3 ,
r2 + 2

3 ,
r2 − s2

9 , and 2rD − r2 − 1
9

are integers. Indeed, we have D = rs2 ≡ ±1 (mod 9), which is equivalent to say
that r2 ≡ s2 (mod 9), and this means that r3 ≡ ±1 (mod 9). Therefore r ≡ ±1
(mod 3), and it follows that r2 ≡ 1 (mod 3) (which also means that 2r2 + 1 ≡ 0
(mod 3) and r2 + 2 ≡ 0 (mod 3)); we get also s2 ≡ 1 (mod 3). Finally, we have
(r± 1)2 ≡ 0 (mod 9), and it follows that r2 + 1 ≡ ±2r (mod 9). Since 2rD ≡ ±2r
(mod 9), we get 2rD − r2 − 1 ≡ 0 (mod 9). □

Corollary 2.7. The number of ideals of OK with a given length is finite.

Proof. Let I = [a, b+ cθ, d+ eθ + fδ] be an ideal of OK . Given that ℓ(I) = a, we
will only have a finite number of integers b, c, d, e, and f according to the conditions
of Theorems 2.5 and 2.6. □

Proposition 2.8. Let I be an ideal of OK with HNF basis [a, b+ cθ, d+ eθ + fδ].
Then, I is primitive if and only if gcd(c, e, f) = 1.

Proof. Let t = gcd(c, e, f). If K is of the first kind, then by Theorem 2.5 (1)
t divides the integers a, b and d. If K is of the second kind, then by Theorem 2.6 (1)
t | a and t | b and by Theorem 2.6 (2) t | d. In both cases we have t | gcd(a, b, c, d, e, f)
and I ⊂ tOK , hence, if t > 1, then I is not primitive.

Conversely, suppose that gcd(c, e, f) = 1. Let m ∈ N be such that I ⊂ mOK .
We have d + eθ + fδ ∈ mOK . Therefore, m | f and m | e, and we have b + cθ ∈
mOK . Then m | c, and it follows that m is a common divisor of c, e, and f , hence
m = 1. □

An important case is when we consider the special order O = Z [θ] =
[
1, θ, θ2]

of K, which coincides with the ring of integers OK in the case where K is of the
first kind with s = 1.

Corollary 2.9. Let O = Z [θ] and let I be a sub-Z-module of O with HNF basis[
a, b+ cθ, d+ eθ + fθ2]

. Then I is a primitive ideal of O if and only if the following
conditions are satisfied.

(1) f = 1.
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(2) a ≡ b ≡ d− e2 ≡ D − de ≡ 0 (mod c).
(3) bce−b2−c2d ≡ c2D+b2e−bcd ≡ cD−bd+be2−cde ≡ ceD−bD+bde−cd2 ≡

0 (mod ac).

Proof. We get these conditions by Theorem 2.5 with s = 1 and r = D. □

3. Reduced ideals

Let L be an algebraic number field of degree n, and OL its ring of integers and
σi, 1 ≤ i ≤ n, the real and complex Q-isomorphisms of K into C. We say that an
ideal I of OL is reduced if I is primitive and if there is no element ω ̸= 0 in I such
that |σi(ω)| < ℓ(I) ∀i ∈ {1, 2, . . . , n} (see [5]). In the case of pure cubic number
fields we have |ω′| = |ω′′|, hence we can write:

Definition 3.1. We say that an ideal I of OK is reduced if it is primitive and if
there is no element ω ̸= 0 in I such that |ω| < ℓ(I) and |ω′| < ℓ(I).

Lemma 3.2. Let K of the first kind and let ω = x+ yθ + zδ ∈ OK (x, y, z ∈ Z).
If |ω| < λ1 and |ω′| < λ2 (λ1, λ1 ∈ R+), then

|x| < λ1 + 2λ2

3 , |y| < λ1 + 2λ2

3θ , and |z| < s(λ1 + 2λ2)
3θ2 .

Proof. We have ω = x + yθ + z
θ2

s
, therefore ω′ = x + yθζ + z

θ2

s
ζ2 and ω′′ =

x+yθζ2 + z
θ2

s
ζ. Hence ω+ω′ +ω′′ = 3x, which means that |3x| = |ω+ω′ +ω′′| <

|ω| + |ω′| + |ω′| < λ1 + 2λ2, hence |x| < λ1 + 2λ2

3 . For y, we have ω+ω′ζ2 +ω′′ζ =

3yθ, therefore |3yθ| < |ω| + |ω′ζ2| + |ω′ζ| < λ1 + 2λ2, hence |y| < λ1 + 2λ2

3θ . For z

we use the fact that ω + ω′ζ + ω′′ζ2 = 3z θ
2

s
. □

This lemma shows that the number of elements ω ∈ OK such that |ω| < λ1 and
|ω′| < λ2 is finite.

Theorem 3.3. Let K be of the first kind and let I be a primitive ideal of OK given

in terms of the HNF basis
[
a, b+ cθ, d+ eθ + f

θ2

s

]
. Then I is reduced if and only

if the only triple (x, y, z) of integers that satisfies the conditions
• f | z,
• cf | fy − ze,
• acf | cfx− bfy + (be− cd)z,

•
∣∣∣∣x+ yθ + z

θ2

s

∣∣∣∣ < ℓ(I),

•
(
x− y

2θ − z

2
θ2

s

)2

+ 3
4θ

2
(
y − z

θ

s

)2
< ℓ(I)2,

is (0, 0, 0).
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Proof. For any α ∈ K, let α′ and α′′ denote the conjugates of α; we have θ′ = ζθ
and θ′′ = ζ2θ, where ζ = e2iπ/3 is a primitive cube root of unity and therefore
|α′| = |α′′|.

Let I =
[
a, b+ cθ, d+ eθ + f

θ2

s

]
be a primitive ideal of OK . If α ∈ I, then

α = Xa+Y (b+ cθ) +Z

(
d+ eθ + f

θ2

s

)
with X,Y, Z ∈ Z and we can easily verify

that

|α′|2 =
(
aX + bY + dZ − cY + eZ

2 θ − fZ

2
θ2

s

)2

+ 3
4θ

2
(
cY + eZ − fZ

θ

s

)2
.

The ideal I is reduced if and only if, for all α ∈ I, we have that |α| < ℓ(I) and
|α′| < ℓ(I) implies that α = 0. Now we have

α ∈ I

|α| < ℓ(I)
|α′| < ℓ(I).

if and only if 

X,Y, Z ∈ Z∣∣∣∣aX + bY + dZ + (cY + eZ)θ + fZ
θ2

s

∣∣∣∣ < ℓ(I)

|α′|2 =
(
aX + bY + dZ − cY + eZ

2 θ − fZ

2
θ2

s

)2

+ 3
4θ

2
(
cY + eZ − fZ

θ

s

)2
< ℓ(I)2.

We shall use the substitution x = aX + bY + dZ, y = cY + eZ, z = fZ, having the
inverse

X = cfx− bfy + (be− cd)z
acf

, Y = fy − ez

cf
, and Z = z

f
.

Therefore, we see that the ideal I is reduced if and only if (0, 0, 0) is the only
solution of 

x, y, z ∈ Z
f | z
cf | fy − ze

acf | cfx− bfy + (be− cd)z∣∣∣∣x+ yθ + z
θ2

s

∣∣∣∣ < ℓ(I)(
x− y

2θ − z

2
θ2

s

)2

+ 3
4θ

2
(
y − z

θ

s

)2
< ℓ(I)2.

The theorem is proved. □

We have a similar result for a pure cubic field of the second kind.
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Theorem 3.4. Let K be of the second kind, and let I be a primitive ideal of OK

given in terms of the HNF basis [a, b+ cθ, d+ eθ + fδ]. Then, I is reduced if and
only if the only triple of integers (x, y, z) which satisfies the conditions

• f | z,
• 3cf | fy − (3e+ fr)z,
• 3acf | cfx− bfy + (3be+ dfr − 3cd− cf)z,
• |x+ yθ + zθ2| < 3ℓ(I),
•

(
x− y

2θ − z

2θ
2
)2

+ 3
4θ

2(y − zθ)2 < 9ℓ(I)2,

is (0, 0, 0).

Proof. Let I be a primitive ideal of OK with HNF basis[
a, b+ cθ, d+ eθ + f

1 + rθ + θ2

3

]
.

Let α ∈ I. Then

α = Xa+ Y (b+ cθ) + Z

(
d+ eθ + f

1 + rθ + θ2

3

)
for some X,Y, Z ∈ Z, otherwise written,

α = 1
3

(
3(aX + bY + dZ) + fZ + (3(cY + eZ) + frZ)θ + fZθ2)

.

After calculating α′ we get

|α′|2 = 1
9

(
3(aX + bY + dZ) + fZ − (3(cY + eZ) + frZ)θ2 − fZ

θ2

2

)2

+ 3
4θ

2(3(cY + eZ) + frZ − fZθ)2.

By Definition 3.1, the ideal I is reduced if and only if
α ∈ I

|α| < ℓ(I)
|α′| < ℓ(I)

⇒ α = 0

considering the following substitution: x = 3(aX + bY + dZ) + fZ, y = 3(cY +
eZ) + frZ, z = fZ, then 3acfX = cfx− bfy + (3be+ bfr − 3cd− cf)z, 3cfY =
fy − (3e+ rf)z and fZ = z. Hence the ideal I is reduced if and only if (0, 0, 0) is
the unique solution of the following system:

x, y, z ∈ Z,
f | z,
3cf | fy − (3e+ fr)z,
3acf | cfx− bfy + (3be+ bfr − 3cd− cf)z,
|x+ yθ + zθ2| < 3ℓ(I),(
x− y

2θ − z

2θ
2
)2

+ 3
4θ

2(y − zθ)2 < 9ℓ(I)2. □
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Theorem 3.5. Let K be of the first kind, and let I be a primitive ideal of OK . If
ℓ(I) < θ

s , then I is reduced.

Proof. Let
[
a, b+ cθ, d+ eθ + f

θ2

s

]
be the HNF basis of I. Let (x, y, z) ∈ Z3 be

such that f | z, cf | fy − ze, acf | cfx− bfy + (be− cd)z, and
∣∣∣∣x+ yθ + z

θ2

s

∣∣∣∣ < ℓ(I)(
x− y

2θ − z

2
θ2

s

)2

+ 3
4θ

2
(
y − z

θ

s

)2
< ℓ(I)2.

If we put ω = x+yθ+z θ
2

s
, we have |ω| < ℓ(I) and |ω′| < ℓ(I), hence by Lemma 3.2

we have 
|x| < ℓ(I)

|y| < ℓ(I)
θ

|z| < sℓ(I)
θ2 .

If ℓ(I) < θ

s
, then |z| < sℓ(I)

θ2 <
s

θ2
θ

s
= 1

θ
< 1, hence z = 0. For y, we have

|y| < ℓ(I)
θ

<
1
s

≤ 1, hence y = 0. For x, we have acf | cfx − bfy + (be − cd)z,
therefore ℓ(I) |x, and |x| < ℓ(I), hence x = 0. Finally, we have x = y = z = 0,
hence by Definition 3.1, I is reduced. □

Remark 3.6. We have θ

s
= 3

√
r

s
. Hence, the previous theorem is especially

important when r ≫ s, as it allows us to obtain more reduced ideals with less
effort.

We have a similar result for K of the second kind.

Theorem 3.7. Let K be of the second kind, and let I be a primitive ideal of OK .
If ℓ(I) < θ

3 , then I is reduced.

Proof. Let
[
a, b+ cθ, d+ eθ + f

1 + rθ + θ2

3

]
be the HNF basis of I. Let (x, y, z) ∈

Z3 satisfy 

f | z
3cf | fy − (3e+ fr)z
3acf | cfx− bfy + (3be+ bfr − 3cd− cf)z
|x+ yθ + zθ2| < 3ℓ(I)(
x− y

2θ − z

2θ
2
)2

+ 3
4θ

2(y − zθ)2 < 9ℓ(I)2.
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If we put ω = x + yθ + zθ2, then we have |ω| < 3ℓ(I) and |ω′| < 3ℓ(I), and by
Lemma 3.2 (with s = 1) we have 

|x| < 3ℓ(I)

|y| < 3ℓ(I)
θ

|z| < 3ℓ(I)
θ2 .

Now, if ℓ(I) < θ

3 , then 
|x| < 3ℓ(I)
|y| < 1
|z| < 1.

Therefore, z = 0 and y = 0. For x, by hypothesis we have 3acf | cfx− bfy+(3be+
bfr − 3cd− cf)z, therefore 3ℓ(I) |x and |x| < 3ℓ(I). Hence, x = 0, and finally we
have x = y = z = 0, so by Theorem 3.4, I is reduced. □

Theorem 3.8. Let I be an ideal of OK . If I is reduced, then ℓ(I) ≤ 6
√

3D
π

.

Proof. Let I be an ideal of OK with HNF basis [ℓ(I), α, β], where α = b + cθ
and β = d + eθ + fδ. By Definition 3.1, there is no element ω ∈ I, ω ̸= 0,
that satisfies |ω| < ℓ(I) and |ω′| < ℓ(I), and by [9, Theorem 5.3, p. 32], we have
ℓ(I)3 ≤ 2

π

√
|∆K |N(I).

• K of the first kind implies that ℓ(I)3 ≤ 6
√

3rs
π

N(I), therefore

ℓ(I)2 ≤ 6
√

3D
π

cf

s
. (3.1)

If we put g = gcd(f, s), then f = gf ′ and s = gs′ with gcd(f ′, s′) = 1. By
Theorem 2.5 (1), we have f | cs and f | es. Therefore, gf ′ | cgs′ and gf ′ | egs′, which
implies that f ′ | cs′ and f ′ | es′, hence f ′ | c and f ′ | e, and since I is primitive, by
Proposition 2.8 we get f ′ = 1, thus f = g and f | s. We have also c | a = ℓ(I), then
we get

cf

s
≤ a (3.2)

From (3.1) and (3.2) we obtain the result.

• K of the second kind implies that ℓ(I)3 ≤ 2
√

3rs
π

N(I), thus

ℓ(I)2 ≤ 6
√

3D
π

cf

3s . (3.3)

Reasoning as for the first kind, we get f | 3s, and therefore
cf

3s ≤ a. (3.4)
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The result is obtained by (3.3) and (3.4). □

Remark 3.9. We know that every ideal class contains a reduced ideal [2]. On the
other hand, by the last theorem and Corollary 2.7, the number of reduced ideals
of OK is finite (noted rK), hence we have

hK ≤ rK .

4. Principality

In this section, we develop the notion of a minimum of an ideal, which will help
us study principality in the field under consideration.
Definition 4.1. Let I be a fractional ideal of OK . We say that a non-zero element
µ ∈ I is a minimum of I if I does not contain any non-zero element α satisfying
|α| < |µ| and |α′| < |µ′|.
Corollary 4.2. Let I be a primitive ideal of OK . Then, I is reduced if and only
if ℓ(I) is a minimum of I.

If I is an ideal of OK , then any element in I of a minimal non-zero absolute
norm is a minimum of I. In particular, any unit ε of K is a minimum of OK .

If µ is a minimum of I, then it is easy to show that αµ is a minimum of αI
∀α ∈ K∗. In particular, µε is a minimum of I for any ε ∈ UK , hence the set of
minimums of an ideal I is infinite; we denote it by MI .

Now, we consider the following equivalence relation in MI . For µ, ν ∈ MI ,
µ ∼ ν ⇐⇒ µ = νε for some unity ε.

We denote by Cl(MI) the set of all equivalence classes of MI . The class of µ ∈ MI

is denoted by [µ], and we have the following result.
Theorem 4.3. If I is an ideal of OK , then Cl(MI) is finite. We denote by nI its
cardinal.
Proof. Let I be an ideal of OK . If [µ] is an element of Cl(MI), then there is no
non-zero element α ∈ I satisfying |α| < |µ|, |α′| < |µ′|, and |α′′| < |µ′′|. Therefore,
by [9, Theorem 5.3, p. 32], we have |µ| |µ′| |µ′′| ≤ 2

π

√
|∆K |N(I), hence |N (µ)| ≤

2
π

√
|∆K |N(I), and up to multiplication by units, there are only finitely many

elements in I whose absolute norm is majorized by the constant 2
π

√
|∆K |N(I).

Hence the result. □

Definition 4.4. A system representative of classes of MI is called a cycle of
minimums of I. We denote it by CI .

In fact, we can choose a special system as follows.
Theorem 4.5. Let I be an ideal of OK and let µ be the smallest element of MI

that is ≥ ℓ(I). Then, there is one and only one cycle of minimums of I in the
interval [µ, µε0[. We call this cycle a fundamental cycle of minimums of I, and we
denote it by CF

I .
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Proof. Let η ∈ MI (η > 0). If η ≥ µε0, let k be the greatest positive integer for
which we still have η ≥ µεk

0 (it is clear that k ≥ 1). Therefore, η < µεk+1
0 , so

µεk
0 ≤ η < µεk+1

0 ,

hence
µ ≤ ηε−k

0 < µε0.

Then we put ν = ηε−k
0 .

If η < µ, let k be the least positive integer for which we have µε−k
0 ≤ η.

Therefore, η < µε
−(k−1)
0 , and then we have

µε−k
0 ≤ η < µε−k+1

0 .

Hence,
µ ≤ ηεk

0 < µε0

and we put ν = ηεk
0 . Consequently, every element η of MI is associated with a

minimum ν of I belonging to [µ, µε0[, so, if C ′
I = {η1, . . . , ηm} is any cycle of the

minimums of I, then ∀i ∈ {1, . . . ,m} there is νi ∈ [µ, µε0[ and a unity εi such that
νi = εiηi. Therefore, the cycle we want to find is CI = {ν1, . . . , νm}.

Suppose that there is another cycle C ′′
I = {ρ1, . . . , ρm} of minimums of I in

[µ, µε0[. Then ρj = νiε
k
0 for some i, j ∈ {1, . . . ,m} and k ∈ Z. If ρj < νi, then we

will have
µ ≤ νiε

k
0 < νi < µε0.

So by νiε
k
0 < νi we have k < 0, and by µε−k

0 ≤ νi < µε0, we have −1 < k, a
contradiction. A similar reasoning applies if ρj > νi. □

Corollary 4.6. Let I be a reduced ideal of OK . Then, the fundamental cycle of
the minimums of I is in [ℓ(I), ℓ(I)ε0[. In particular, the fundamental cycle of the
minimums of OK is in [1, ε0[.

The notion of minimum also allows us to determine the fundamental unit using
any reduced ideal, namely:

Corollary 4.7. Let I be a reduced ideal of OK . If µ is the smallest minimum of I

such that µ > ℓ(I), µ

ℓ(I) ∈ OK , and N
(

µ

ℓ(I)

)
= 1, then

ε0 = µ

ℓ(I) .

Proof. If µ

ℓ(I) ∈ OK and N
(

µ

ℓ(I)

)
= 1, then µ

ℓ(I) = εk
0 with k ∈ Z, precisely

k > 0 because ℓ(I) < µ, hence the smallest value for µ is ℓ(I)ε0. □

The following result will help us determine the elements of an ideal I qualified
to be an element of CF

I .
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Theorem 4.8. Let K be a pure cubic field of the first kind and let I be a reduced
ideal of OK . If µ = x+ yθ + zδ ∈ CF

I such that µ < λ for some λ ∈ R+, then

−ℓ(I)
3 < x <

λ+ 2ℓ(I)
3

−ℓ(I)√
3θ

< y <
λ+ ℓ(I) + ℓ(I)

√
3

3θ
−ℓ(I)√

3δ
< z <

λ+ ℓ(I) + ℓ(I)
√

3
3δ .

Proof. If µ = x+ yθ + zδ is in CF
I , then ℓ(I) < µ < λ and necessarily |µ′| < ℓ(I).

Therefore, 
ℓ(I) < x+ yθ + zδ < λ

(x− y

2θ − z

2δ)
2 + 3

4(yθ − zδ)2 < ℓ(I)2,

which implies that
ℓ(I) < x+ yθ + zδ < λ, (4.1)

−ℓ(I) < x− y

2θ − z

2δ < ℓ(I), (4.2)

−2ℓ(I)√
3

< yθ − zδ <
2ℓ(I)√

3
. (4.3)

By (4.1) and (4.2) we get
−ℓ(I)

3 < x <
2ℓ(I) + 2

3 .

By (4.1) and (4.3) we get

ℓ(I) − 2ℓ(I)√
3

< x+ 2yθ < λ+ 2ℓ(I)√
3

(4.4)

and
ℓ(I) − 2ℓ(I)√

3
< x+ 2zδ < λ+ 2ℓ(I)√

3
. (4.5)

By (4.2) and (4.3) we get

−ℓ(I) − ℓ(I)√
3
< x− yθ < ℓ(I) + ℓ(I)√

3
(4.6)

and
−ℓ(I) − ℓ(I)√

3
< x− zδ < ℓ(I) + ℓ(I)√

3
. (4.7)

Now by (4.4) and (4.6) we get

ℓ(I) − 2ℓ(I)√
3

− ℓ(I) − ℓ(I)√
3
< 3yθ < λ+ ℓ(I) + ℓ(I)

√
3,

hence
−ℓ(I)√

3θ
< y <

λ+ ℓ(I) + ℓ(I)
√

3
3θ .
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Finally, by (4.5) and (4.7) we get

ℓ(I) − 2ℓ(I)√
3

− ℓ(I) − ℓ(I)√
3
< 3zδ < λ+ ℓ(I) + ℓ(I)

√
3.

Consequently, we have

−ℓ(I)√
3δ

< z <
λ+ ℓ(I) + ℓ(I)

√
3

3δ . □

Let I be an ideal of OK and CF
I = {µ1, µ2, . . . , µt} its fundamental cycle of

minimums. By [2, Theorem 5.4], for all i ∈ {1, . . . , t} the ideal Ii = ℓ(Ii)
µi

I is
reduced, hence we get a set

{I1, I2, . . . , It}

of reduced ideals in the class of I. This set is called a cycle of reduced ideals of I
and denoted by RI .

Theorem 4.9. The following statements hold.

(1) The ring OK is principal if and only if every reduced ideal of OK is prin-
cipal.

(2) If I is a principal reduced ideal of OK , then there exists µ ∈ CF
OK

such that

I = ℓ(I)
µ

OK .

(3) If I is a principal ideal of OK , then there exists η ∈ CF
I such that I = (η).

Proof. (1) Suppose that every reduced ideal of OK is principal. Let J be an ideal
of OK and let CF

J = {µ1, µ2, . . . , µt} be its fundamental cycle of minimums. Then

Ji = ℓ(Ji)
µi

J is reduced, therefore it is principal, hence J is also principal. The
converse is clear.

(2) If CF
OK

= {µ1 = 1, µ2, . . . , µm} is the fundamental cycle of minimums of OK ,

then the principal reduced ideals are Ii = ℓ(Ii)
µi

OK , 1 ≤ i ≤ m, hence I = ℓ(Ii)
µi

OK

for some i.
(3) Let CF

I = {µ1, µ2, . . . , µm} be the fundamental cycle of I. Since I is princi-

pal, all the reduced ideals Ii = ℓ(Ii)
µi

I given by CF
I are principal, hence for some i

we have OK = ℓ(OK)
µi

I. □
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Remark 4.10. (1) Let I be an ideal of OK and CF
I = {µ1, µ2, . . . , µm} its funda-

mental cycle of minimums. If ∀i ∈ {1, 2, . . . ,m} we have N(I) ̸= N (µi), then I is
not principal.

(2) The ring OK is principal if and only if there is an ideal I of OK such that
nI = rK .

5. A numerical example

Example 5.1. Let K = Q( 3
√

20), θ = 3
√

20, so δ = θ2

2 =
3
√

400
2 = 3

√
50.

We have ten reduced ideals (rK = 10) represented with their norms in the
following table:

Reduced ideal with HNF basis Norm

I1 = OK = [1, 3
√

20, 3
√

50] 1
I2 = [2, 3

√
20, 3

√
50] 2

I3 = [2, 3
√

20, 2 3
√

50] 4
I4 = [3, 3 3

√
20, 2 + 3

√
20 + 3

√
50] 9

I5 = [3, 1 + 3
√

20, 1 + 3
√

50] 3
I6 = [6, 3 3

√
20, 2 + 3

√
20 + 3

√
50] 18

I7 = [6, 3 3
√

20, 4 + 2 3
√

20 + 2 3
√

50] 36
I8 = [7, 7 3

√
20, 1 + 5 3

√
20 + 3

√
50] 49

I9 = [7, 7 3
√

20, 4 + 3 3
√

20 + 3
√

50] 49
I10 = [14, 7 3

√
20, 2 + 3 3

√
20 + 2 3

√
50] 196

The fundamental cycle of minimums of I1 = OK is

CF
I1

=
{
µ1 = 1, µ2 = 3 + 3

√
20 + 3

√
50, µ3 = 8 + 3 3

√
20 + 2 3

√
50

}
and we can easily verify that

I8 = 7
µ2
I1 and I6 = 6

µ3
I1.

Therefore, the the cycle of principal reduced ideals is

RI1 =
{

(1),
(

7
µ2

)
,

(
6
µ3

)}
;

hence, by Remark 4.10 (2), OK is not principal.
We can verify this in another way. Indeed, if we consider the ideal I2 =

[2, 3
√

20, 3
√

50] = [2, θ, δ], we get:

CF
I2

= {η1 = 2, η2 = 2 + 3
√

20 + 3
√

50, η3 = 4 + 3
√

20 + 3
√

50, η4 = 8 + 3 3
√

20 + 2 3
√

50}
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and we have
N (η1) = 8, N (η2) = 18, N (η3) = 14, N (η4) = 12.

Therefore,
N(I2) = 2 ̸= N (ηi) ∀i ∈ {1, 2, 3, 4};

hence, by Remark 4.10 (1), I2 is not principal.

Example 5.2. Consider now the ideal I = [6, 4 + θ, 2 + θ2], which is not reduced
because ℓ(I) = 6 is not a minimum of I. The fundamental cycle of minimums of I
is

CF
I = {ν1 = 4 + 2θ + θ2, ν2 = 8 + 3θ + θ2, ν3 = 4 + θ}

and we have
N (ν1) = 144, N (ν2) = 12, N (ν3) = 84.

Thus
N (ν2) = 12 = N(I)

and since  8 + 3θ + θ2

20 + 8θ + 3θ2

30 + 10θ + 4θ2

 =

−1 3 1
−3 8 3
−3 10 4

  6
4 + θ
2 + θ2


with ∣∣∣∣∣∣

−1 3 1
−3 8 3
−3 10 4

∣∣∣∣∣∣ = 1,

I is principal generated by ν2 = 8 + 3θ + θ2.
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