REVISTA DE LA UNION MATEMATICA ARGENTINA
Vol. 68, No. 1, 2025, Pages 309-325

Published online: June 2, 2025

https://doi.org/10.33044 /revuma.3862

PRINCIPALITY BY REDUCED IDEALS IN PURE CUBIC
NUMBER FIELDS

JAMAL BENAMARA AND MOHAMMED TALBI

ABSTRACT. This paper describes a method for determining the list of reduced
ideals of any pure cubic number field, which we can use for testing the prin-
cipality of these fields and give a generator for a principal ideal.

1. INTRODUCTION

The notion of a reduced ideal can be used to compute the regulator and the class
number of a number field, see [3], [10]. Besides, it can be used in cryptography as
in [4, 12] where the authors sketched the first Diffie-Hellman protocol which does
not require a group structure, namely on the set of reduced principal ideals of a
real quadratic field. Most of the work on reduced ideals is realized on quadratic
fields, see for example [§]. In [7] (respectively [2]), the authors describe a method
for finding all reduced ideals of the ring of integers of a monogenic pure cubic
field (respectively of a special order of any pure cubic field). In this paper, we
give a complete overview on the reduced ideals in any pure cubic number field and
we provide a method which allows us to determine the set of reduced ideals. In
addition, we develop the notion of a minimum of an ideal and its relation with
the reduced ideal to study the principality of the ring of integers. Then, we give a
procedure to find a generator of a principal ideal. Finally, we illustrate the results
by two examples to improve the readability and the flow paper.

Throughout this paper, we consider a pure cubic number field K = Q(¥/D),
where D > 1 is a cube-free integer. We may assume with no loss of generality that
D = rs?, where r and s are square-free and (r,s) = 1. It is well known (see for
example [I} [6]) that if D £ +1 (mod 9), then the ring of integers O has a basis
[17976 = 92/8], where § = /D and the discriminant of K is Ax = —27r2s2. In
this case, K is called a pure cubic field of the first kind. If D = £1 (mod 9), then
O = [1,9,6 =(1+r6+ 92)/3], Ag = —3r?s? and K is called a pure cubic field
of the second kind. When there exists ¥ € Ok such that Ox = Z[¥], we say that
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K is monogenic (for example, when D is square-free (s = 1) and D # £1 (mod 9),
Ok = Z[0)); in this case, we find the results as in [7].

We also recall that an order O of K is a sub-ring of K which as a Z-module is
finitely generated and of maximal rank [K : Q] = 3, see [I1]. This is equivalent to
say that O C Ok and [Og : O] < oo (for example O = Z[f]); in this case, we find
the results as in [2].

In general, we denote by A and A the conjugate roots of any A € K. Therefore
the norm of A is N (A) = AN\’ and we know that 8’ = ¢ and 6" = 0¢?, where

¢ = exp(2i7/3). Note: in a field Q(V/D),

And by the Dirichlet theorem, we know that the units group Ui of K is of rank
one and we denote by €o the fundamental unit of K.

2. ARITHMETIC OF IDEALS IN PURE CUBIC FIELDS

We will be treating ideals as special kinds of Z-modules. We recall that I is an
ideal of Ok if I C Ok and for all a, 8 € I and A € O we have a + 8 € I and
Aa e 1.

Proposition 2.1. Let K be a pure cubic number field and O = [1, ¢,1] be an order
of K. Then every non-zero ideal I of O has a representation

I=la,b+co,d+ep+ fi],

where a,b,c,d,e, f € Z, 0 <b<a, 0<d<a, 0<e<cand0 < f. This basis
will be called the HNF basis (Hermite normal form) of I. In addition, the integer a
is the smallest positive element of I N Z and the norm of I is N(I) = acf. The
integer a is called the length of I and we denote it by ¢(I).

Proof. Every ideal of O is a sub-Z-module of O@. The rest follows by [5, Theo-
rem 4.7.3] and [5, Proposition 4.7.4]. O

Theorem 2.2 (Uniqueness of the coefficients). Let O = [1, ¢, 9] be an order of K.
Let I and I3 be two ideals of O with HNF basis [a1,b1 + c1¢,d1 + e1¢ + f1v)] and
[ag, by + cop, do + ead + for)] successively. Then I = J if and only if a1 = as,
by =ba, c1 = ca, d1 = da, e1 = ez and f1 = fo.

Proof. If Iy = I, then I C I, hence ay, by + c1¢ and dy + e1¢ + f1¢ € I, which
means that as | a1, ca|c1, fal| f1, bica = bacy (mod ages), e1fo = eafi (mod cafs)
and dycafa + bafiea = baey fo + cadafi (mod ascafa). On the other hand, we have
I, C I, then ag, by + co¢p and da + e2¢p+ f21) € I1, which means that a; | ag, ¢1 | 2,
f1 |f2, b201 = b162 (HlOd alcl), 62f1 = 61f2 (HlOd lel) and d261f1 + blfgel =
bieaf1 + c1di fo (mod ajcy fi). Directly, we get a1 = ag, ¢1 = co and f1 = fo,
therefore by = by (mod a1), and since 0 < by < a1 and 0 < by < a1, we get by = bs.
In the same way we get e; = e2 and dy = ds. O

Sometimes we write I = [a,a, f] with a« = b+ ¢ and = d + ep + f1).
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Definition 2.3. Let O = [1, ¢, ¢] be an order of K. We will say that an ideal I of
O is primitive if there is no integer n > 1 such that I C nO.

The ideal I = [a,b+ cp,d + ep + f1)] is primitive if ged(a, b, c,d, e, f) = 1.

Theorem 2.4 (Criterion for ideal equality). If I = [a, «, 8] is a primitive ideal of
Ok, then I = [a,ma + a,na + pa + 5] for any m,n,p € Z.

Proof. We have

a 1 0 0 a
ma + « =m £1 0 o
na + pa £ f n p =1 153
and
1 0 O
M=m £1 0
n p =1
is in GL3(Z), the group of all 3 x 3 matrices with integer entries and determinant
equal to +1. O

Note that the converse of Proposition [2.1] is false. Indeed, if we consider O =
710 = [1, 0, 92}, the sub-Z-module I = [6, 5+30,4+ 20 + 592] is not an ideal of
O because 66 ¢ I. For the converse to be true, we need more conditions on the
coefficients a, b, ¢, d, e and f.

Theorem 2.5. Let K be a pure cubic field of the first kind. Then, a sub-Z-module
I of Ok with HNF basis [a,b+ c0,d + ef + f0] is an ideal of O if and only if the
following conditions are satisfied.

(1) a=b=cs=d=es=0 (mod f).

(2) a=b=0 (mod ¢).

(3) ea=eb=df —e?s= f?r —de =0 (mod cf).

(4) bees — b2f — c2ds = c?frs + b%e — bed = cf?rs — bdf + be’s — cdes =

cefrs —bf?r +bde — cd®> =0 (mod acf).
92

Proof. Let I = |a,b+ cf,d+ ef + f— | be a sub-Z-module of Og. We know that
S

I is an ideal of Ok if and only if for all @« € I and 8 € Ok we have af € I. For
92
this, let « € Ok and S € I; thena:x—i—yG—i—z? and 8 = 2'a+y'(b+ ch) +

02
2 <d+et9+f) with z, y, z, o', ¢/, 2 € Z. Therefore,
s

262

aff = xf+yo5+ B

s
,af? ,(b0?  cD ,(d0?> eD Dfo
T2 ——tz2y | — F+— |tz | —+—+ )
s s s s s 52

D
= xf3 +ya'al + yy' (b0 + c6%) + y2' (de +e6? + f)
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Df 62 ¢

hence a3 € I if and only if the elements af), b +c6?, df+eh>+ a;, b? +¢D/s

s
62 0
and d— +eD/s + D f— belong to I.
s s
But we have

02
af € I <= af = 2"a+y"(b+ ch) + 2" (d+ ed + fs) with 2,9y, 2" € Z

ax” +by" +dz" =0 ax” +by" =0 cx” =-b |
cla
=y’ +ex' =a =y’ =a =gy =a = {
2'f=0 2" =0 2" =0 lb:

It is easy to verify in the same way that we also have the following equivalences:

) cf |be —de
a;e[@ cf |ea
fla

acf |bces — b2 f — c2ds
b+ ch? € I <= S cf |bf — ces
fles
2 D acf | 2 frs + b%e — bed
b?—&—;EI(:) cf|eb
f1b
acf | cf?rs — be?s + bdf — cdes

D
d9+e€2+?fel<:> cf | df —e*s
fles
and
02 D 0 acf | cefrs — bf?r + bde — cd?
d;+%+Df;eI<:> cf | f2r — de

fld.
O

Theorem 2.6. Let K be a pure cubic field of the second kind. Then, a sub-Z-
module I of Ok with HNF basis [a,b+ cf,d + ef + f0] is an ideal of O if and
only if the following conditions are satisfied.

(1) ¢ divides a and b.

(2) f divides a, 3¢, 3e, b+ cr, and d + er.

1 — 2 2 _ .2
(3) cf divides ea, be—cd, eb+cer, f? ! +df —3e?—2efr, and fzrs !
3de — 3er —ef — 2efr?.

3
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1 21
Tbeft g+ (e

2 _
(4) acf divides befr + 3bce — c* f — b2 f — 3dc?, czfrs 3

2 _ 2 _
cd)(b+cr),cf2rs 3 1+bf2T 3 1—|—(be—cd)(Se—l—fr)—f—befr—bdf—cef, and

21 2r2 +1 242 2rD —r? —1
(be—cd)(d+er)+cefr8 3 +bef ! 3+ —cdfr ;_ +cf2%+
, 12— s
b
Frr—y
Proof. The proof is similar to that of the first kind with
5o LTro+ 6>
-—
except here we must also show that
r2—1 s2—-1 2r241 r24+2 7252 2rD —r? -1
) ) ) 9 ) a'nd
3 3 3 3 9 9

are integers. Indeed, we have D = rs? = +1 (mod 9), which is equivalent to say
that 72 = s? (mod 9), and this means that r®> = +1 (mod 9). Therefore r = +1
(mod 3), and it follows that > = 1 (mod 3) (which also means that 2r2 +1 =0
(mod 3) and 72 + 2 = 0 (mod 3)); we get also s = 1 (mod 3). Finally, we have
(r£1)2 =0 (mod 9), and it follows that 72 +1 = £2r (mod 9). Since 2rD = +2r
(mod 9), we get 2rD —r? —1 =0 (mod 9). O

Corollary 2.7. The number of ideals of Ok with a given length is finite.

Proof. Let I = [a,b+ cf,d+ ef + fd] be an ideal of Ok. Given that £(I) = a, we
will only have a finite number of integers b, ¢, d, e, and f according to the conditions
of Theorems and O

Proposition 2.8. Let I be an ideal of Ok with HNF basis [a,b+ c0,d + ef + f§].
Then, I is primitive if and only if ged(c, e, f) = 1.

Proof. Let t = ged(e,e, f). If K is of the first kind, then by Theorem [2.5((1)
t divides the integers a, b and d. If K is of the second kind, then by Theorem [2.6|(1)
t|aand t|band by Theorem[2.6)(2) ¢ | d. In both cases we have t | ged(a, b, ¢, d, e, f)
and I C tOk, hence, if t > 1, then [ is not primitive.

Conversely, suppose that ged(c,e, f) = 1. Let m € N be such that I € mOg.
We have d + ef + f6 € mOg. Therefore, m| f and m|e, and we have b+ cf €
mOgk. Then m| ¢, and it follows that m is a common divisor of ¢, e, and f, hence
m=1. O

An important case is when we consider the special order O = Z [6] = [1, 0, 02]
of K, which coincides with the ring of integers O in the case where K is of the
first kind with s = 1.

Corollary 2.9. Let O = Z[0] and let I be a sub-Z-module of O with HNF basis
[a, b4 cl,d+ el + f92] . Then I is a primitive ideal of O if and only if the following
conditions are satisfied.

(1) f=1.
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(2) a=b=d—e?*=D —de=0 (mod c).
(3) bee—b*>—c*d = >D+b*e—bed = cD—bd+be*—cde = ceD—bD+bde—cd? =
0 (mod ac).

Proof. We get these conditions by Theorem with s =1 and » = D. O

3. REDUCED IDEALS

Let L be an algebraic number field of degree n, and Op its ring of integers and
0i, 1 <1 < n, the real and complex Q-isomorphisms of K into C. We say that an
ideal I of O is reduced if I is primitive and if there is no element w # 0 in I such
that |oy(w)| < €(I) Vi € {1,2,...,n} (see [5]). In the case of pure cubic number
fields we have |w'| = |w”|, hence we can write:

Definition 3.1. We say that an ideal I of Ok is reduced if it is primitive and if
there is no element w # 0 in I such that |w| < ¢(I) and |w'| < ¢(1).

Lemma 3.2. Let K of the first kind and let w = x + yb + 26 € Ok (x,y,z € Z).
If |w| < A1 and |w'| < A2 (A1, A\ € RT), then
A1+ 29 A1+ 209 S()\l + 2)\2)
x| < 3 ly| < TR and |z| < 35
02 / 92 2 "
Proof. We have w = x + yf + z—, therefore w’ = = + y0( + z—(* and W" =
s S

92
7+ y0¢% + 2—(. Hence w+w’ +w” = 3z, which means that |3z| = |w+w' +w"| <
s
A1+ 2
%. For y, we have w+w'¢2+w"¢ =
A1+ 2
3y0, therefore |3yf| < |w| + |w'¢?| + |w'¢| < A1 + 2)2, hence |y| < %
2

0
we use the fact that w + w/¢ + w"¢% = 32—. O
s

|w] + |w'|+|w'| < A1 +2A2, hence |z| <

For z

This lemma shows that the number of elements w € Ok such that |w| < A1 and
|w'] < Ag is finite.

Theorem 3.3. Let K be of the first kind and let I be a primitive ideal of Ok given
92
in terms of the HNF basis {a, b+ ch,d+ ef + fs} . Then I is reduced if and only

if the only triple (x,y, z) of integers that satisfies the conditions

flz,
Cf|fy_ ze,
acf|cfx —bfy + (be — cd)z,

92
a:—&-y@—i—zs‘ < (1),

2 2
Y 262 3 0 9
_dp_z7 hd _ 2 T
.(x 2(9 23) 4(9 Y= <17,
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Proof. For any a € K, let o/ and o denote the conjugates of «; we have 6’ = (6
and 0" = (20, where ¢ = e?™/3 is a primitive cube root of unity and therefore
|| = |o].
92
Let I = {a,b+c€,d+e€+fs] be a primitive ideal of Og. If a € I, then
2

a=Xa+Y(b+cd)+Z (d—i— et + fi) with X,Y, Z € Z and we can easily verify
that

Y +eZ Z602\?> 3 0\>
|a/|2:(aX+bY+dZ_c—;e _fQS> +192 (CY+€Z_fZ$)

The ideal I is reduced if and only if, for all a € I, we have that |a| < ¢(I) and
|a/| < £(I) implies that & = 0. Now we have

ael
o] < (1)
|| < ().
if and only if
XY, ZeZ

2
X £ Y +dZ+ (Y +e2)0+ F2| < u(n)
S

Y +eZ Z62\°
|o/|2=(aX+bY+dZ—c‘2L€ —*Z)
S

3, 0\? )
+10 Y +eZ—fZ-) <L)
s

We shall use the substitution x = aX +0Y +dZ, y =cY +eZ, z = fZ, having the
inverse
cfxfbfy+(befcd)z’ v = fyfez, and 7= %

acf cf f
Therefore, we see that the ideal I is reduced if and only if (0,0,0) is the only
solution of

X =

z,y,2 €L
flz
cf [ fy — ze
acf |efe —bfy + (be — cd)z
92
z+yb+z—| < ()
2 2

Yy 2PN 3 (0 2

(:U 29 25> +40 Y=z < (I)°.
The theorem is proved. O

We have a similar result for a pure cubic field of the second kind.
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Theorem 3.4. Let K be of the second kind, and let I be a primitive ideal of Ok
given in terms of the HNF basis [a,b+ cf,d + ef + fd]. Then, I is reduced if and
only if the only triple of integers (x,y, z) which satisfies the conditions

° flz,
3cf| fy — Be+ fr)z,
3acf |efx — bfy + (3be + dfr — 3ed — cf )z,
|z +y6 + 202| < 34(I),

Yo %02\’ L 302y — L0)2 >
(a: 20 29)+49 (y — 20)% < 9¢(I)2,

is (0,0,0).
Proof. Let I be a primitive ideal of Ok with HNF basis
1+ 76 + 62
[a,b—l—c&,d—l—e@—i—f—’—rg—’_}

Let o« € I. Then

2
aXa+Y(b+c€))+Z<d+e€+fWM>

3

for some X,Y, Z € Z, otherwise written,
1
a=3 (3(aX +0Y +dZ) + fZ + (3(cY +eZ) + frZ)0 + f26%).

After calculating o we get
by 1 6 6%\ >
[t =3 3(aX+bY+dZ)+fZ—(3(cY+eZ)+frZ)§—fZ?

+ 292(3(& +eZ)+ frZ — fZ0)2.

By Definition the ideal I is reduced if and only if

ael

laf <(I) = a=0

|| < £(I)
considering the following substitution: « = 3(aX +0Y +dZ) + fZ, y = 3(cY +
eZ)+ frZ, z = fZ, then 3acfX = cfx — bfy+ (3be + bfr — 3ed — cf)z, 3cfY =
fy—(Be+rf)zand fZ = z. Hence the ideal I is reduced if and only if (0,0, 0) is
the unique solution of the following system:

z,y,2 € Z,

flz,

3cf| fy — (Be+ fr)z,

Bacf |cfx —bfy+ (3be + bfr — 3ed — cf )z,
|z + 0 + 20%| < 36(1),

Y9 202\ 4 362 — 1002 )
(x 2o 29) + 0%y — 20)* < 9D O
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Theorem 3.5. Let K be of the first kind, and let I be a primitive ideal of Ok . If
0(I) < 2, then I is reduced.

92
Proof. Let {mb—i— cf,d+ef + f—| be the HNF basis of I. Let (z,y,2) € Z3 be
s

such that f|z, cf | fy — ze, acf |cfx — bfy + (be — cd)z, and
92
x+y9+z;

2 2
LYy 2N B, 0 2
(:v 20 25> —|—49 (y n < (I)°.

62
If we put w = z+yf+2z—, we have |w| < ¢(I) and |w’| < £(I), hence by Lemma
s

we have

< (1)

|z < £(I)
(1)
ly| < B
st(I)
|z] < 0z
0 (1 0 1
If K(I)éj 3 tllrlen |z| < 59(2) < 0%; =3 < 1, hence z = 0. For y, we have
ly| < % <3 < 1, hence y = 0. For z, we have acf |cfx — bfy + (be — cd)z,
therefore ¢(I) |z, and |x| < ¢(I), hence = 0. Finally, we have z =y = z = 0,
hence by Definition [31] I is reduced. O
0
Remark 3.6. We have — = ¢ f. Hence, the previous theorem is especially
s s

important when r > s, as it allows us to obtain more reduced ideals with less
effort.

We have a similar result for K of the second kind.

Theorem 3.7. Let K be of the second kind, and let I be a primitive ideal of Ok .
If €(I) < &, then I is reduced.

1+ 760+ 62
Proof. Let |a,b+ cO,d + ef + f% be the HNF basis of I. Let (z,y, z) €

73 satisfy

flz

3ef| fy— (Be+ fr)z

3acf |cfr —bfy+ (3be + bfr — 3cd — cf)z
|z 4 y6 + 26%| < 3¢(T)

Y9 202\ 4 362 — 1002 )
(m 20 29>+49(y 20)% < 9U(I)2.

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



318 JAMAL BENAMARA AND MOHAMMED TALBI

If we put w = x + yf + 262, then we have |w| < 3¢(I) and || < 3¢(I), and by
Lemma (with s = 1) we have

lyl < ——

2| <

Now, if £(I) < g, then
|z| < 3¢(I)
lyl <1
|z] < 1.

Therefore, z = 0 and y = 0. For z, by hypothesis we have 3acf | cfx —bfy+ (3be+
bfr — 3cd — cf)z, therefore 3¢(I) |z and |z| < 3¢(I). Hence, x = 0, and finally we

have z =y = z = 0, so by Theorem I is reduced. O
6v3D
Theorem 3.8. Let I be an ideal of Ok . If I is reduced, then £(I) < V3 .
m

Proof. Let I be an ideal of O with HNF basis [¢(I),a, 8], where « = b+ cf
and 8 = d + ef + f6. By Definition there is no element w € I, w # 0,
that satisfies |w| < £(I) and |w'| < ¢(I), and by [9, Theorem 5.3, p. 32], we have

(1) < 2 IARIN().

e K of the first kind implies that ¢(I)3 <

@N(I), therefore
T

(I)?*

< M%Dﬁ. (3.1)

s

If we put g = ged(f,s), then f = gf’ and s = gs¢' with ged(f’,s’) = 1. By
Theorem [2.5](1), we have f |cs and f |es. Therefore, gf’|cgs’ and gf’ |egs’, which
implies that f’|cs’ and f’|es’, hence f’|c and f’|e, and since I is primitive, by
Propositionwe get f/ =1, thus f = g and f|s. We have also ¢|a = ¢(I), then
we get

% <a (3.2)
From (3.1) and (3.2) we obtain the result.
2v3
e K of the second kind implies that £(1)3 < ﬂN(I), thus
™
6v3D cf
0I)? < —— . 3.3
(e < 222 (33)
Reasoning as for the first kind, we get f|3s, and therefore
cf
— <a. 3.4
35 “ (34)
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The result is obtained by (3.3)) and (3.4]). O

Remark 3.9. We know that every ideal class contains a reduced ideal [2]. On the
other hand, by the last theorem and Corollary the number of reduced ideals
of Ok is finite (noted tx ), hence we have

hK <rtg.
4. PRINCIPALITY

In this section, we develop the notion of a minimum of an ideal, which will help
us study principality in the field under consideration.

Definition 4.1. Let I be a fractional ideal of Ok . We say that a non-zero element
@ € I is a minimum of I if I does not contain any non-zero element « satisfying
la] < |ul and o] < ||

Corollary 4.2. Let I be a primitive ideal of Ok. Then, I is reduced if and only
if ¢(I) is a minimum of I.

If I is an ideal of Ok, then any element in I of a minimal non-zero absolute
norm is a minimum of I. In particular, any unit € of K is a minimum of O.

If v is a minimum of I, then it is easy to show that au is a minimum of al
Va € K*. In particular, pe is a minimum of I for any € € Uy, hence the set of
minimums of an ideal I is infinite; we denote it by M.

Now, we consider the following equivalence relation in M;. For u,v € My,

W~ v < p=ve for some unity ¢.

We denote by CI(M) the set of all equivalence classes of M. The class of u € M
is denoted by [u], and we have the following result.

Theorem 4.3. If I is an ideal of Ok, then Cl(M7y) is finite. We denote by ny its
cardinal.

Proof. Let I be an ideal of Ok. If [p] is an element of CI(Mj), then there is no
non-zero element o € I satisfying |a| < |pl, |@/| < |¢/|, and || < |@”’|. Therefore,

2
by [9, Theorem 5.3, p. 32], we have |u| || |1”| < =+/|Ak|N(I), hence |N(u)| <
T
2
—v/|Akg|N(I), and up to multiplication by units, there are only finitely many
T

2
elements in I whose absolute norm is majorized by the constant —/|Ag|N(I).
7r
Hence the result. (]
Definition 4.4. A system representative of classes of M is called a cycle of
minimums of I. We denote it by Cj.
In fact, we can choose a special system as follows.
Theorem 4.5. Let I be an ideal of Ok and let p be the smallest element of M
that is > £(I). Then, there is one and only one cycle of minimums of I in the

interval [, puegl. We call this cycle a fundamental cycle of minimums of I, and we
denote it by CF.
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Proof. Let n € My (n > 0). If n > peop, let k be the greatest positive integer for

which we still have > uef (it is clear that k > 1). Therefore, n < MESH, S0

pel << pegt,
hence
< ney k< UEQ-
Then we put v = ng, "
If n < p, let k be the least positive integer for which we have usak <

(k=1)

Therefore, n < pey , and then we have

—k —k+1
peg” <m < peg™tt

Hence,
< meg < peo

and we put v = nek. Consequently, every element n of M; is associated with a
minimum v of I belonging to [, ueo[, so, if C; = {m,...,nn} is any cycle of the

minimums of I, then Vi € {1,...,m} there is v; € [, uep[ and a unity &; such that
v; = g;n;. Therefore, the cycle we want to find is Cr = {v1,...,vm}.
Suppose that there is another cycle CY = {p1,...,pmn} of minimums of I in

(11, peol. Then p; = v;ek for some 4,j € {1,...,m} and k € Z. If p; < v;, then we
will have

w< uizs’g < v < UED.
So by uislg < v; we have k < 0, and by ,ueak < v; < peg, we have —1 < k, a

contradiction. A similar reasoning applies if p; > v;. O

Corollary 4.6. Let I be a reduced ideal of O . Then, the fundamental cycle of
the minimums of I is in [£(I),€(I)eo[. In particular, the fundamental cycle of the
minimums of Ok is in [1,e0].

The notion of minimum also allows us to determine the fundamental unit using
any reduced ideal, namely:

Corollary 4.7. Let I be a reduced ideal of Ok . If p is the smallest minimum of 1
such that p > (1), H e Ok, and N <,u> =1, then

(1) (1)
I
€0 = —=<-
(1)
Proof. If By Ok and N H ) =1, then £ =k with k € Z precisely
(1) (1) ’ ury " ’
k > 0 because £(I) < u, hence the smallest value for u is ¢(I)eg. O

The following result will help us determine the elements of an ideal I qualified
to be an element of C}".
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Theorem 4.8. Let K be a pure cubic field of the first kind and let I be a reduced
ideal of Ok. If u=x +y0 + 26 € CF such that u < \ for some A\ € RT, then

—U1) _ A +2)
3 3

jg)<y<k+ﬂq$aﬁ¢§

—UI) _ AU+ QUNE)

s 30

Proof. If p = x 4+ y0 + 26 is in CF, then ¢(I) < p < X and necessarily |u'| < £(I).

Therefore,
{E(I) <zH+yd+ 26 <A

Y9252 4 300 — 26)2 2
(z 20 26) —|—4(y9 z0)° < L(I)=,
which implies that
UI) <z+yld+20 <A,
Yy z
(I Yy Z I
D) <z 26 26<€(),

—20(1) 2¢(1)
<yh — 20 < —=.
Vi Sl R
Byandwe get
—63(1') <x<2€(1)+2.
By (4.1) and (4.3) we get
2¢(1) 2¢(1)
() — —=— <z+2y0 < A\ + —=
(1) 5 St 7
and 20(T) 20(1)
UI) — —= <o +220 <A+ —=".
() /3 <ot 3
Byandwe get
(1) (1)
(1) — == <z -y <L)+ —=
() 5 STy (1) 73
e ) )
(1) — == <x— 26 <L)+ —=.
(1) N () 73
Now by and we get
20(1) ()
) — —= —L(I)— == <3y < A+ L)+ ¢(I)V3,
(1) 7 (1) 5 < (1) +61)V3
hence
—0(I) < AM(I)M(I)\/?
V30 30

(4.4)

(4.5)
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Finally, by (4.5) and (4.7) we get

euy-——f—euy—ﬂ9«<&5<x+zu»+an¢§

V3

Consequently, we have

—u(I) A+ 4(I) + 013
NET: <z< 3 .

Let I be an ideal of Ox and CF = {uq, a2, ..., s} its fundamental cycle of
£(I;
minimums. By [2, Theorem 5.4], for all i € {1,...,t} the ideal I; = MI is

Hi
reduced, hence we get a set

{IL,I,...,I;}

of reduced ideals in the class of I. This set is called a cycle of reduced ideals of T
and denoted by R;.

Theorem 4.9. The following statements hold.

(1) The ring Ok is principal if and only if every reduced ideal of Ok is prin-
cipal.
(2) If I is a principal reduced ideal of Ok, then there exists p € CgK such that

(),

7
(3) If I is a principal ideal of O, then there exists n € C¥ such that I = (n).

I =

Proof. (1) Suppose that every reduced ideal of Ok is principal. Let J be an ideal
of Ok and let C¥ = {p1, pa, ..., e} be its fundamental cycle of minimums. Then

£(J;
Ji = MJ is reduced, therefore it is principal, hence J is also principal. The
i
converse is clear.

(2) I CE, = {p =1,p2,..., [tm} is the fundamental cycle of minimums of Ok,
e({i)OK, 1 <¢<m,hencel = @(’)K

i i

then the principal reduced ideals are I; =

for some 1.
(3) Let CF = {u1, 2, - ., ptm} be the fundamental cycle of I. Since I is princi-

(1)
223
I. O

I given by C¥ are principal, hence for some 4

pal, all the reduced ideals I; =
{(Ok)

1223

we have O =
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Remark 4.10. (1) Let I be an ideal of O and C¥ = {1, pia, - - ., ptm } its funda-
mental cycle of minimums. If Vi € {1,2,...,m} we have N(I) # N (p;), then I is

not principal.
(2) The ring Ok is principal if and only if there is an ideal I of Ok such that

ny =1=1g.

5. A NUMERICAL EXAMPLE
62 \3/40
Example 5.1. Let K = Q(+/20), 6 = v/20, so 6§ = 5= = v/50.
We have ten reduced ideals (tx = 10) represented Wlth their norms in the

following table:

Reduced ideal with HNF basis Norm

1-1:OK:[1M3/%,\3/%]
I, = [2, ¥/20, /50]
= [2, ¥/20, 2¥/50]
14—[33W2+W+f]
= [3,1+ V20,1 + V/50]
16_[63\ﬁ2+6/7+f] 18
[
= [
=

W © = N =

17_63\F4+2f+2f] 36
7,7/20,1 4 5+/20 + ¥/50] 49
7,7/20,4 4 3/20 + ¥/50] 49

110=[14,7\F,2+3W+2N] 196

The fundamental cycle of minimums of I; = Ok is
Cf = {1 =1, 2 =3+ V30 + V50, iy =8+ 3930 + 2950}
and we can easily verify that

7 6
IgZ 7]'1 and I6:7[1-
H2 H3

Therefore, the the cycle of principal reduced ideals is

- (2)- ()}

hence, by Remark [4.10|(2), Ok is not principal.
We can verify this in another way. Indeed, if we consider the ideal I, =

[27 \3/%; \3/%] = [279,5]’ we get;
CF = (i = 2,1 = 2+ Y20+ /50, 113 = 4+ ¥/20 + /50, ns = 8+ 3920 + 2/50}
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and we have

N(m) =8, N(n) =18, N(ns) =14, N(m)=12.
Therefore,

N(Ip) =2#N(m) Vie{l,2,3,4}

hence, by Remark (1), I is not principal.
Example 5.2. Consider now the ideal I = [6,4 + 0,2 + 6?], which is not reduced
because ¢(I) = 6 is not a minimum of I. The fundamental cycle of minimums of T
is

Cf ={v1 =44+20+0% vy, =8+30+0% v3 =440}
and we have

N(Vl) = 144, N(l/g) = 12, N(l/g) = 84.

Thus
N()=12=N{)
and since
8+ 30 + 02 -1 3 1 6
20+80+302 | =|-3 8 3 4+0
30 + 106 + 462 -3 10 4 2 + 62
with
-1 3 1
-3 8 3| =1,
-3 10 4
I is principal generated by vo = 8 + 36 + 62.
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