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COMBINATORIAL FORMULAS FOR DETERMINANT,
PERMANENT, AND INVERSE OF SOME CIRCULANT

MATRICES WITH THREE PARAMETERS

CRISTIAN PANELO, ANDRÉS M. ENCINAS, AND DENIS E. VIDELA

Abstract. We give closed formulas for determinant, permanent, and inverse
of circulant matrices with three non-zero coefficients. The techniques that we
use are related to digraphs associated with these matrices.

1. Introduction

Circulant matrices appear in many applications, for example, to approximate
finite difference of elliptic equations with periodic boundary conditions, or to ap-
proximate periodic functions with splines. They play an important role in coding
theory and in statistics — the standard reference is [6].

Among the main problems about circulant matrices are determining invertibility
conditions and computing their inverse. These problems have been widely treated
in the literature by using the primitive n-th root of unity and some polynomial
associated with the circulant matrices, see [4, 6, 13]. There exist some classical
and well-known results that enable us to solve almost everything we could raise
about the inverse of circulant matrices. Nevertheless, when we deal with specific
families of circulant matrices, these classical results give us unmanageable formulas.
Therefore, it is interesting to find alternative descriptions and in fact, there exist
many papers devoted to this question. The direct computation for the inverse of
some circulant matrices has been proposed in many works, see [5, 4, 9, 10, 12, 13,
15].

In this work, we delve into the combinatorial structure of circulant matrices with
only three non-zero generators, by considering the digraphs associated with this
kind of matrices. Therefore, we extend the previous work of some of the authors,
see [7, 8], where only an specific class of these matrices was considered.

2020 Mathematics Subject Classification. Primary 05C38; Secondary 15A09.
Key words and phrases. circulant matrices, determinant, permanent, inverse, directed

weighted cycles.
This work was partially supported by Universidad Nacional de San Luis, Argentina, grant

PROICO 03-0918; MATH AmSud, grant 21-MATH-05; and Agencia Nacional de Promoción de
la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina, grant PICT 2020-Serie
A-00549.

231

https://doi.org/10.33044/revuma.3886
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In the present work, we use digraphs. For all of graph-theoretic notions not
explicitly defined here, the reader is referred to [1]. As is natural for circulant
matrices, our matrix indices and permutations start at zero and so permutations
in this work are bijections over {0, . . . , n − 1}, and if

A =
[
1 2
3 4

]
,

then the set of indices of A is {0, 1}; in this case we have that A0 0 = 1 and A1 0 = 3.
With [n] we denote the set {0, . . . , n − 1} instead of {1, . . . , n}.

Given a permutation α of [n], we denote by Pα the n × n matrix defined by
(Pα)α(j) j = 1 and 0 otherwise. The matrix Pα is known as the permutation matrix
associated with α. It is well known that P −1

α = P T
α and Pαρ = PαPρ. We use the

matrix associated with the permutation

τn = (n − 1 n − 2 · · · 2 1 0)

many times along this work, so instead of Pτn
we just write Pn. Notice that, for

k ∈ Z, we have that P 0
n = In, P k

n = P
(k) mod n
n = Pτk

n
, det(Pn) = (−1)n−1, and(

P k
n

)−1 = P n−k
n . Moreover, τk

n(i) = (i − k) mod n.
A matrix C = (ci j) is called circulant with parameters c0, c1, . . . , cn−1 if

C =


c0 c1 · · · cn−1

cn−1 c0 · · · cn−2
...

...
. . .

...
c1 c2 · · · c0

 ;

in this case we denote C by Circ(c0, . . . , cn−1). We have that

Circ(c0, . . . , cn−1) = c0In + · · · + cn−1P n−1
n .

The numbers c0, . . . , cn−1 are called the parameters of C. Let a, b, c be non-zero
complex numbers. We begin this work by studying the following kind of circulant
matrices:

Circ (a, b, c, 0, . . . , 0) = aIn + bPn + cP 2
n ,

which we just call circulant matrices with three parameters.
This paper is organized as follows. In Section 2, we find explicit formulas for

the determinant and the permanent of circulant matrices with three parameters.
In Section 3, we give an explicit formula for the inverse of non-singular circulant
matrices with three parameters. In both sections, we extend the results to a more
general case where the parameters are in other positions.
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2. Determinant and permanent of the matrices Circ(a, b, c, 0, . . . , 0)

In order to obtain an explicit formula for the determinant of circulant matrices
of the form aIn + bPn + cP 2

n , we have the following definitions.
Definition 2.1 ([3]). Let A = [ai j ] be a matrix of order n. We associate with A a
digraph D(A) with n vertices. The vertices of D(A) are denoted by 0, 1, 2, . . . , n−1.
If ai j ̸= 0, there is an arc from vertex i to vertex j of weight ai j for each i, j ∈ [n];
we denote this arc by ai j-arc.
Definition 2.2 ([3]). Let D be a digraph. A linear subdigraph of D is a spanning
subdigraph of D in which each vertex has indegree 1 and outdegree 1, i.e. exactly
one arc into each vertex and exactly one (possibly the same) out of each vertex.

The following theorem gives the determinant and permanent of a given matrix
in terms of its associated digraph.
Theorem 2.3 ([3]). Let A = [ai j ] be a square matrix of order n. Then

det(A) =
∑

L ∈ L(D(A))

(−1)n−c(L)w(L)

and
perm(A) =

∑
L ∈ L(D(A))

w(L),

where L (D (A)) is the set of all linear subdigraphs of D(A), c (L) is the number of
cycles contained in L (included loops), and w (L) is the product of the weights of
the arcs of L.

Now we study the structure of the digraph D
(
aIn + bPn + cP 2

n

)
. Since this

digraph appears many times in our work, we just write Dn(a, b, c) instead of
D
(
aIn + bPn + cP 2

n

)
.
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Figure 1. D7(a, b, c) and D8(a, b, c)

Notice that the digraph Dn(a, b, c) has a directed cycle C, with V (C) = {v0, v1,
. . . , vn−1} such that, for 0 ≤ i ≤ n−1, vi = i and C has a b-arc from vi to vi+1 (with
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(a) Subdigraph of Dn(a, b, c)
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(d) Linear subdigraph with a loop
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Figure 2. Subgraphs of Dn(a, b, c)

vn = v0). From [11], we have that the number of ways to choose k non-adjacent
vertices of C, with k ∈ [n], is

n

n − k

(
n − k

k

)
. (2.1)

Theorem 2.4. Let n ∈ Z such that n > 2 and let a, b, c ∈ C − {0}. Then
det
(
aIn + bPn + cP 2

n

)
equals

an − (−b)n + cn +
⌊ n

2 ⌋∑
j=1

(−1)n−j−1 n

n − j

(
n − j

j

)
ajbn−2jcj .

Proof. Notice that in the digraph Dn(a, b, c) we have the following linear subdi-
graphs:

(1) A linear subdigraph L1 such that L1 has all the loops (a-arcs). Note that
(−1)n−c(L1)w(L1) = (−1)0an, see Figure 2b.

(2) A linear subdigraph L2 such that L2 is a cycle with b-arcs. Note that
(−1)n−c(L2)w(L2) = (−1)n−1bn, see Figure 2c.

(3) If n is even, then we have a linear subdigraph L3 such that L3 has two cycles
of c-arcs. Note that (−1)n−c(L3)w(L3) = (−1)n−2cn. If n is odd, then the
linear subdigraph L3 has one cycle of c-arcs. Note that (−1)n−c(L3)w(L3) =
(−1)n−1cn, see Figure 1.

The other linear subdigraphs have k loops, with 0 < k < n. Notice that there does
not exist a linear subdigraph L with two loops at successive vertices, since if L has
loops at j and j+1, then L has no arcs from vertex j−1. Thus, if we choose the loop
at vertex j, then we cannot choose the loops at vertices j − 1 and j + 1. By (2.1),
we have n

n−k

(
n−k

k

)
choices to take k loops; each of these options gives us a linear
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subdigraph Lk with k loops such that (−1)n−c(Lk)w(Lk) = (−1)n−k−1akbn−2kck,
since for each loop at a vertex j chosen, we lose two b-arcs and we have a c-arc from
j − 1 to j + 1, see Figure 2d. Moreover, if we choose k loops, then 1 ≤ k ≤ ⌊ n

2 ⌋,
since if we take k > ⌊ n

2 ⌋ loops, then the linear subdigraphs is repeated. □

The following corollary follows from Theorems 2.3 and 2.4.

Corollary 2.5. Let n be a positive integer such that n > 2 and let a, b, c be non-zero
complex numbers. Then,

perm
(
aIn + bPn + cP 2

n

)
= an + bn + cn +

⌊ n
2 ⌋∑

j=1

n

n − j

(
n − j

j

)
ajbn−2jcj .

Example 2.6. Let us consider A = aI7 + bP7 + cP 2
7 and B = aI8 + bP8 + cP 2

8 .
Then

det(A) = a7 + b7 + c7 − 7ab5c + 14a2b3c2 − 7a3bc3,

perm(A) = a7 + b7 + c7 + 7ab5c + 14a2b3c2 + 7a3bc3,

and

det(B) = a8 − b8 + c8 + 8ab6c − 20a2b4c2 + 16a3b2c3 − 2a4c4,

perm(B) = a8 + b8 + c8 + 8ab6c + 20a2b4c2 + 16a3b2c3 + 2a4c4.

With ⊗ we denote the usual Kronecker product between matrices, see [14].
Following the notation in [8], given n and s two non-zero integers we have the
number n\s := n

gcd(n,s) .

Theorem 2.7 ([8]). Let n, s ∈ Z such that 0 < s < n and let ak ∈ C − {0} for
k ∈ [n\s]. Then, there exists a permutation σn,s of [n] such that

P T
σn,s

( (n\s)−1∑
k=0

akP sk
n

)
Pσn,s

= Igcd(n,s) ⊗

( (n\s)−1∑
k=0

akP k
n\s

)
.

By Theorem 2.7 we have the following corollary.

Corollary 2.8. Let n, s1, s2, s3 ∈ Z such that 0 ≤ s1 < s2 < s3 ≤ n, and let
a, b, c ∈ C − {0}. If s3 − s1 = 2 (s2 − s1), then

aP s1
n + bP s2

n + cP s3
n = P s1

n Pσn,s

(
Igcd(n,s) ⊗

(
aIn\s + bPn\s + cP 2

n\s

))
P T

σn,s
,

where s = s2 − s1.

By Corollary 2.8 we have the following corollary.
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Corollary 2.9. Let n, s1, s2, s3 ∈ Z such that 0 ≤ s1 < s2 < s3 ≤ n, and let
a, b, c ∈ C − {0}. If s3 − s1 = 2 (s2 − s1), then det (aP s1

n + bP s2
n + cP s3

n ) equals

(−1)s1 (n−1)
(

det
(

aIn\(s2−s1)+bPn\(s2−s1)+cP 2
n\(s2−s1)

))gcd(n,s2−s1)
.

Proof. Let s = s2 − s1 and A = aP s1
n + bP s2

n + cP s3
n . By Corollary 2.8,

det(A) = det
(

P s1
n Pσn,s

(
Igcd(n,s) ⊗

(
aIn\s + bPn\s + cP 2

n\s

))
P T

σn,s

)
= det (P s1

n ) det
(

Igcd(n,s) ⊗
(

aIn\s + bPn\s + cP 2
n\s

))
.

Let C and D be matrices of order n and m respectively; then det (C ⊗ D) =
(det(C))m(det(D))n, see [14]. On the other hand, det (P s1

n ) = (−1)s1(n−1), see [8].
Therefore,

det(A) = (−1)s1(n−1)
(

det
(

aIn\s + bPn\s + cP 2
n\s

))gcd(n,s)
. □

Given a square matrix A of order n. We have that perm (PA) = perm(A), where
P is a permutation matrix or order n, and perm (Im ⊗ A) = (perm(A))m, see [2].
Thus, we have the following corollary.

Corollary 2.10. Let n, s1, s2, s3 ∈ Z such that 0 ≤ s1 < s2 < s3 ≤ n − 1, and let
a, b, c ∈ C − {0}. If s3 − s1 = 2 (s2 − s1), then perm (aP s1

n + bP s2
n + cP s3

n ) equals(
perm

(
aIn\(s2−s1) + bPn\(s2−s1) + cP 2

n\(s2−s1)

))gcd(n,s2−s1)
.

3. Inverse of the matrices Circ(a, b, c, 0, . . . , 0)

For the rest of the work we use the following convention: let j, k, t ∈ Z, and
let xj ∈ C − {0}. We set

∑k
j=t xj = 0 and

(
k
t

)
= 0 when k < t. Also, we set

yℓ = zℓ = 0 when ℓ < 0, for y, z ∈ C and ℓ ∈ R.

Definition 3.1. Let i, n ∈ Z such that n > 0, and let a, b, c ∈ C − {0}. We define

Ln(i) = (−1)tan−1−tbt + (−1)n−2−tbn−2−tct+1

+
⌊ n−2−t

2 ⌋∑
j=1

(−1)n−t−j
(

n−2−t−j
j

)
ajbn−2−t−2jct+j+1

+
⌊ t

2 ⌋∑
j=1

(−1)t−j
(

t−j
j

)
an−1−t+jbt−2jcj ,

where t = (i) mod n.
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Example 3.2. The table shows the values of Ln(i) for n = 7 and n = 8.

i L7(i) i L8(i)

0 a6 − b5c + 4ab3c2 − 3a2bc3 0 a7 + b6c − 5ab4c2 + 6a2b2c3 − a3c4

1 −a5b + b4c2 − 3ab2c3 + a2c4 1 −a6b − b5c2 + 4ab3c3 − 3a2bc4

2 a4b2 − b3c3 + 2abc4 − a5c 2 a5b2 + b4c3 − 3ab2c4 + a2c5 − a6c

3 −a3b3 + b2c4 − ac5 + 2a4bc 3 −a4b3 − b3c4 + 2abc5 + 2a5bc

4 a2b4 − bc5 − 3a3b2c + a4c2 4 a3b4 + b2c5 − ac6 − 3a4b2c + a5c2

5 −ab5 + c6 + 4a2b3c − 3a3bc2 5 −a2b5 − bc6 + 4a3b3c − 3a4bc2

6 b6 − 5ab4c + 6a2b2c2 − a3c3 6 ab6 + c7 − 5a2b4c + 3a3b2c2 − a4c3

7 −b7 + 6ab5c − 10a2b3c2 + 4a3bc3

Notice that when i, n, t ∈ Z are such that n > 2, 1 ≤ i ≤ n−1 and 1 ≤ t ≤
⌊

n−i
2
⌋
,

we have the following useful properties that can be proved by simple calculations:(
n − 1 − i − t

t − 1

)
+
(

n − 1 − i − t

t

)
=
(

n − i − t

t

)
(

i − 1 − t

t − 1

)
+
(

i − 1 − t

t

)
=
(

i − t

t

)
,

 (3.1)

2
(

n − 1 − t

t − 1

)
+
(

n − 1 − t

t

)
= n

n − t

(
n − t

t

)
, (3.2)⌊

n − i

2

⌋
=
⌊

n − 2 − i

2

⌋
+ 1,

and

⌊
n − i

2

⌋
=


⌊

n − 1 − i

2

⌋
if n ̸= (i) mod 2,⌊

n − 1 − i

2

⌋
+ 1 if n = (i) mod 2.

(3.3)

In order to obtain an explicit formula for the inverse of a non-singular matrix of
the form aIn + bPn + cP 2

n , we define

ρn(a, b, c, i) := a Ln(i) + b Ln(i − 1) + c Ln(i − 2).

Lemma 3.3. Let i, n ∈ Z such that n > 2, and let a, b, c ∈ C−{0}. If 1 ≤ i ≤ n−1,
then ρn(a, b, c, i) = 0.
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Proof. Let i > 0. Let us consider

xa,i = (−1)n−2−iabn−2−ici+1 +
⌊ n−2−i

2 ⌋∑
j=1

αi,j +
⌊ n−1−i

2 ⌋∑
j=1

βi,j +
⌊ n−i

2 ⌋∑
j=1

γi,j

and

xc,i = (−1)i−2an+1−ibi−2c +
⌊ i−2

2 ⌋∑
j=1

α′
i,j +

⌊ i
2 ⌋∑

j=1
β′

i,j +
⌊ i−1

2 ⌋∑
j=1

γ′
i,j ,

where
αi,j = (−1)n−i−j

(
n−2−i−j

j

)
aj+1bn−2−i−2jci+j+1,

βi,j = (−1)n+1−i−j
(

n−1−i−j
j

)
ajbn−i−2jci+j ,

γi,j = (−1)n+2−i−j
(

n−i−j
j

)
ajbn−i−2jci+j ,

and
α′

i,j = (−1)i−2−j
(

i−2−j
j

)
an+1−i+jbi−2−2jcj+1,

β′
i,j = (−1)i−j

(
i−j

j

)
an−i+jbi−2jcj ,

γ′
i,j = (−1)i−1−j

(
i−1−j

j

)
an−i+jbi−2jcj .

Claim: xa,i = xc,i = 0.
Note that if we consider xa,i as a polynomial on a, b, c, we have that xa,i only

has monomials of the form ajbn−i−2jci+j , with 1 ≤ j ≤
⌊

n−i
2
⌋
, i.e.

xa,i =

⌊
n−i

2

⌋
∑
j=1

Aj ajbn−i−2jci+j ,

where, by (3.3), we have that

A1 = (−1)n−2−iabn−2−ici+1 + βi,1 + γi,1

and, if i ̸= (n) mod 2, then for 2 ≤ j ≤
⌊

n−i
2
⌋

Aj = αi,j−1 + βi,j + γi,j ,

and if i = (n) mod 2, then

Aj =
{

αi,j−1 + βi,j + γi,j if 2 ≤ j ≤
⌊

n−i
2
⌋

− 1,

αi,j−1 + γi,j if j =
⌊

n−i
2
⌋

.

By (3.1) we have that Aj = 0 for all j. Therefore, xa,i = 0 as desired.
A similar argument shows that xc,i = 0. Therefore, xa,i = xc,i = 0, as we

claimed.
Now, notice that

a Ln(i) = (−1)ian−ibi + (−1)n−2−iabn−2−ici+1
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+
⌊ n−2−i

2 ⌋∑
j=1

(−1)n−i−j
(

n−2−i−j
j

)
aj+1bn−2−i−2jci+j+1

+
⌊ i

2 ⌋∑
j=1

(−1)i−j
(

i−j
j

)
an−i+jbi−2jcj ,

b Ln(i − 1) = (−1)i−1an−ibi + (−1)n−1−ibn−ici

+
⌊ n−1−i

2 ⌋∑
j=1

(−1)n+1−i−j
(

n−1−i−j
j

)
ajbn−i−2jci+j

+
⌊ i−1

2 ⌋∑
j=1

(−1)i−1−j
(

i−1−j
j

)
an−i+jbi−2jcj

and
c Ln(i − 2) = (−1)i−2an+1−ibi−2c + (−1)n−ibn−ici

+
⌊ n−i

2 ⌋∑
j=1

(−1)n+2−i−j
(

n−i−j
j

)
ajbn−i−2jci+j

+
⌊ i−2

2 ⌋∑
j=1

(−1)i−2−j
(

i−2−j
j

)
an+1−i+jbi−2−2jcj+1.

For 1 ≤ i ≤ n − 1, we have that
a Ln(i) + b Ln(i − 1) + c L(i − 2) = xa,i + xc,i.

Since xa,i = xc,i = 0, we obtain ρn(a, b, c, i) = 0, as asserted. □

Lemma 3.4. Let n ∈ Z such that n > 2, and let a, b, c ∈ C − {0}. Then
ρn(a, b, c, 0) = det

(
aIn + bPn + cP 2

n

)
.

Proof. We have that
ρn(a, b, c, 0) = a Ln(0) + b Ln(−1) + c Ln(−2)

= a Ln(0) + b Ln(n − 1) + c Ln(n − 2)
and

Ln(0) = an−1 + (−1)n−2bn−2c

+
⌊ n−2

2 ⌋∑
j=1

(−1)n−j
(

n−2−j
j

)
ajbn−2−2jcj+1

+
0∑

j=1
(−1)−j

(−j
j

)
an−1+jb−2jcj ,
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Ln(n − 1) = (−1)n−1bn−1

+
−1∑
j=1

(−1)1−j
(−1−j

j

)
ajb−1−2jcn+j

+
⌊ n−1

2 ⌋∑
j=1

(−1)n−1−j
(

n−1−j
j

)
ajbn−1−2jcj ,

Ln(n − 2) = (−1)n−2abn−2 + cn−1

+
0∑

j=1
(−1)2−j

(−j
j

)
ajb−2jcn−1+j

+
⌊ n−2

2 ⌋∑
j=1

(−1)n−2−j
(

n−2−j
j

)
a1+jbn−2−2jcj .

Then a Ln(0) + b Ln(n − 1) + c Ln(n − 2) is equal to

an − (−b)n + cn + (−1)n−22 abn−2c +
⌊ n−2

2 ⌋∑
j=1

α0,j +
⌊ n−1

2 ⌋∑
j=1

β0,j ,

where

α0,j = (−1)n−j2
(

n−2−j
j

)
aj+1bn−2−2jcj+1, and

β0,j = (−1)n−1−j
(

n−1−j
j

)
ajbn−2jcj .

Note that if we consider ρn(a, b, c, 0) − an + (−b)n − cn as a polynomial on a, b, c
we have that it only has monomials of the form ajbn−jcj , i.e.

ρn(a, b, c, 0) − an + (−b)n − cn =
⌊ n−1

2 ⌋∑
j=1

Bj ajbn−2jcj ,

where, by (3.3), we have that

B1 = (−1)n−22 abn−2c + β0,1

and, if n is odd, then for 2 ≤ j ≤
⌊

n
2
⌋

Bj = α0,j−1 + β0,j ,

and, if n is even, then

Bj =
{

α0,j−1 + β0,j if 2 ≤ j ≤
⌊

n
2
⌋

− 1,

α0,j−1 if j =
⌊

n
2
⌋

.

By (3.2) we have that Bj = (−1)n−j−1 n
n−j

(
n−j

j

)
ajbn−2jcj for all j. Therefore,

ρn(a, b, c, 0) = det
(
aIn + bPn + cP 2

n

)
, as desired. □
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Theorem 3.5. Let n ∈ Z such that n > 2, and let a, b, c ∈ C − {0}. Then(
aIn + bPn + cP 2

n

)−1 = 1
det (aIn + bPn + cP 2

n)

n−1∑
i=0

Ln(i)P i
n.

Proof. Follows directly from Lemmas 3.3 and 3.4, since(
aIn + bPn + cP 2

n

)(n−1∑
i=0

Ln(i)
m

P i
n

)
=

n−1∑
i=0

ρn(i)
m

P i
n,

where m = det
(
aIn + bPn + cP 2

n

)
. □

Finally, by Corollary 2.8 and Theorem 3.5 we have the following theorem.

Theorem 3.6. Let n, s1, s2, s3 ∈ Z such that 0 ≤ s1 < s2 < s3 ≤ n − 1, and
let a, b, c ∈ C − {0}. If s3 − s1 = 2s, where s = s2 − s1, and the matrix aIn\s +
bPn\s + cP 2

n\s is non-singular, then aP s1
n + bP s2

n + cP s3
n is non-singular and its

inverse matrix is

Pσn,s

(
Ir ⊗

(
1

det (aIt + bPt + cP 2
t )

t−1∑
i=0

Lt(i)P i
t

))
P T

σn,s
P n−s1

n ,

where r = gcd(n, s) and t = n\s.
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andres.marcos.encinas@upc.edu

Denis E. Videla
FaMAF – CIEM (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
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