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POSITIVITIES IN HALL–LITTLEWOOD EXPANSIONS
AND RELATED PLETHYSTIC OPERATORS

MARINO ROMERO

Abstract. The Hall–Littlewood polynomials Hλ = Q′λ[X; q] are an impor-
tant symmetric function basis that appears in many contexts. In this work, we
give an accessible combinatorial formula for expanding the related symmetric
functions Hα for any composition α, in terms of the complete homogeneous
basis. We do this by analyzing Jing’s operators, which extend to give nice
expansions for the related symmetric functions Cα and Bα which appear in
the formulation of the Compositional Shuffle Theorem. We end with some
consequences related to eigenoperators of the modified Macdonald basis.

1. Introduction

After Macdonald introduced his Macdonald polynomials and his positivity con-
jectures [37], Garsia and Haiman introduced their modified version {H̃µ[X; q, t]}µ,
giving Macdonald polynomials a representation theoretical setting by stating that
H̃µ is the Frobenius characteristic of the bigraded Sn-module now referred to as
the Garsia–Haiman module, Mµ [17, 15]. These modules are defined by starting
with an alternant

∆µ = det ‖xsiyri ‖ (r,s)∈µ
i=1,...,n

and setting Mµ = {P (∂)∆µ : P ∈ C[x1, . . . , xn, y1, . . . , yn]} to be the linear span
of derivatives of ∆µ, with Sn acting diagonally on both sets of variables. The
Frobenius characteristic sends an irreducible representation of Sn indexed by a
partition λ ` n to the Schur function sλ, and the grading given by the variables
x1, . . . , xn and y1, . . . , yn is recorded by the powers of t and q respectively. This
would give

FMµ =
∑
λ`n

K̃λ,µ(q, t)sλ,

with K̃λ ∈ N[q, t], since the coefficients of q and t give multiplicities of irreducible
representations. The assertion that FMµ = H̃µ, then proved by Haiman [28], would
show that the modified Macdonald polynomials have a positive expansion in terms
of the Schur basis, proving the positivity element of Macdonald’s conjectures.
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Haiman’s proof of this conjecture was done by geometrical means, finding a
connection between Macdonald polynomials and the Hilbert scheme of points on
the plane C2. Haiman also proves more through this association [29]: Let Rn denote
the quotient of C[x1, . . . , xn, y1, . . . , yn] by the ideal generated by the Sn invariants
with zero constant term. Since the invariants are generated by the polarized power
sum polynomials

n∑
i=1

xri y
s
i with r + s > 0,

one can equivalently study the space of diagonal harmonics

DHn =
{
P ∈ C[x1, . . . , xn, y1, . . . , yn] :

∑
i

∂rxi∂
s
yiP = 0 for r + s > 0

}
.

Haiman proves that
FRn = FDHn = ∇en,

where ∇ is the eigenoperator of the modified Macdonald basis defined in [4], given
by ∇ H̃µ = Tµ H̃µ with Tµ = tn(µ)qn(µ′).

It is important to note that ever since Haiman’s proof, a growing number of
results and conjectures have given Macdonald polynomials and their eigenoperators
a presence in several areas of study. For one, it was shown by Hogancamp [31] that
∇men produces the triply graded knot invariant for the (n, nm + 1) torus knot.
There is also the work of Mellit [40, 38], which gives the invariant for the (m,n)
torus knot in terms of the related operators Qm,n on symmetric functions. Gorsky,
Neguţ, and Rasmussen have conjectured an association between a certain derived
category of equivariant sheaves over the flag Hilbert scheme and complexes of
Soergel bimodules [20]. The applications and presence of Macdonald polynomials
are far-reaching. However, in this work, we will mainly be concerned with operators
which appear in the statement of the Compositional Shuffle Theorem.

The Shuffle Theorem, conjectured in [23], gives a combinatorial expansion for
∇en in terms of labeled Dyck paths or parking functions. This will be elaborated
in Section 7. Haglund, Morse, and Zabrocki [24] later found a compositional re-
finement of this conjecture by introducing a family of operators {Ca}a∈Z, which
we introduce in Section 3. They show that

∑
α|=n Cα = en, and they conjecture

that ∇Cα can be expressed as a sum over labeled Dyck paths which return to the
diagonal according to the composition α. Carlsson and Mellit proved this compo-
sitional refinement, and thus the Shuffle Theorem, by introducing a new family of
operators called the Dyck path algebra [8].

This story describes three aspects which often appear in this area of study. On
the one hand, there is a symmetric function, often associated to plethystic opera-
tors or eigenoperators of the modified Macdonald basis. There is then the question
of giving a combinatorial expansion of this symmetric function in terms of a classi-
cal basis. The last aspect is to show that the symmetric function is the Frobenius
characteristic of some natural Sn-module. Section 7 will describe how this story is
mirrored for delta eigenoperators in the context of the Delta Theorem, conjectured
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in [25]. The compositional refinement of the Delta Theorem, conjectured in [10],
was recently proved by D’Adderio and Mellit [11]. There is also the proof of the
Extended Delta Theorem in [6]. Section 6 will also describe an analogous story for
Hall–Littlewood polynomials, which will be the main focus of our work.

Bergeron noted that many of the symmetric functions which appear in the theory
of modified Macdonald polynomials, its related eigenoperators, and those related
to triply graded knot invariants have a remarkable positivity property. Namely,
that they become positive in terms of the elementary or homogeneous symmetric
function bases by simply substituting q to be 1 + u [3]. More precisely, we will say
that a symmetric function F [X; q, t] exhibits the e-positivity phenomenon if when
expanded in terms of the elementary basis, we have

F [X; 1 + u, t] =
∑
λ

cλ(u, t)eλ

with cλ(u, t) ∈ N[u, t]. Similarly, we may also say that a symmetric function ex-
hibits the h-positivity phenomenon if the same holds true when expanded in terms
of the homogeneous basis. For instance, ∇en|q→1+u is e-positive by the positivity
of Column (or Vertical Strip) LLT polynomials proved by D’Adderio [9], together
with the proof of the Shuffle Theorem by Carlsson and Mellit. For an explicit
combinatorial expansion, one may use the combinatorial formula for Column LLT
polynomials proved by Alexandersson and Sulzgruber [2]. This connection to LLT
polynomials will be further explained in Section 7.

Here, we will be concerned with looking at plethystic operators on symmetric
functions that generate important families of symmetric functions. The main op-
erators we will study are Jing’s operators {Hk}k, which generate Hall–Littlewood
polynomials [33]. Haglund, Morse, and Zabrocki introduced modified versions, the
B and C operators [24], which play a vital role in the statement and proof of the
compositional Shuffle Theorem. Similar positivities and expansions can also be
proved for these operators. In Theorem 5.2, we will give a combinatorial expansion
of Hall–Littlewood related symmetric functions Hα indexed by a composition α in
terms of the homogeneous basis. This is done by analyzing Jing’s operators which
generate Hα. In particular, we will see that Hα exhibits the h-positivity phenome-
non, and its homogeneous expansion can be given directly by a new combinatorial
formula.

Hall–Littlewood symmetric functions are important in their own right, for which
we include more details in Section 6. They can be produced by taking the Frobenius
characteristic of the cohomology ring of the Springer fibers, as is seen in the work
of Hotta and Springer [32]. Lascoux and Schützenberger gave a combinatorial
formula for the Schur expansion in terms of the charge statistic [36], with a complete
proof given in the work of Butler [7]. And more recently, Mellit proved an explicit
formula involving Macdonald polynomials for the Poincaré polynomials of parabolic
character varieties of Riemann surfaces with semisimple local monodromies [39].
Here, Mellit shows that one can get the modified Macdonald polynomial from
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the Hall–Littlewood polynomials. We will see that there are some remarkable
underlying properties and questions that warrant further study.

2. Symmetric functions and plethystic substitution

As a reference for symmetric functions, we have [37]. For plethystic substitution
and some of the operators defined here, it may be useful to cite [18] and [5].

We start by recalling the usual classical bases of symmetric functions: the power
sum {pλ}λ, (complete) homogeneous {hλ}λ, elementary {eλ}λ, monomial {mλ}λ
and Schur basis {sλ}λ. The power, homogeneous and elementary bases are multi-
plicative in the sense that, for any partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`(λ)),

pλ = pλ1 · · · pλ`(λ) , hλ = hλ1 · · ·hλ`(λ) , and eλ = eλ1 · · · eλ`(λ) .

The Hall scalar product is given by setting

〈pλ, pµ〉 = zµχ(λ = µ),

where χ(A) is the indicator function giving 1 if A is true and 0 otherwise; and
zµ = 1m1m1!2m2m2! · · · when the multiplicity of i in µ is given by mi. The Hall
scalar product gives

〈sλ, sµ〉 = 〈hλ,mµ〉 = χ(λ = µ).
The adjoint F⊥ of a symmetric function F is defined as the operator which gives

〈F⊥G,H〉 = 〈G,FH〉

for all symmetric functions G and H.
For any expression E(t1, t2, . . . ) in the variables t1, t2, . . . , define

pk [E(t1, t2, . . . )] = E(tk1 , tk2 , . . . ) and pλ[E] =
`(λ)∏
i=1

pλi [E].

Any symmetric function F can be expanded in terms of the power basis to give

F =
∑
λ

cλpλ

for some scalar coefficients cλ. The plethystic substitution of F at E can then be
defined by setting

F [E] =
∑
λ

cλpλ[E].

For X = x1 + x2 + · · · , we have that

pk[X] = xk1 + xk2 + · · · = pk

is the usual power sum symmetric function of degree k. We also have that

pk[−X] = −(xk1 + xk2 + · · · ) = −pk,

meaning that substituting negative variables within the plethystic bracket is not
the same as the usual variable substitution. A useful device is the introduction of
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the variable ε which behaves as a variable within the plethystic bracket and is then
evaluated to −1 outside the bracket. With this convention, we have

pk[εX] = (−1)kpk[X] and pk[−εX] = (−1)k−1pk[X].

It follows that the classical involution ω, which sends pk to (−1)k−1pk, ek to hk,
and sλ to sλ′ (where λ′ is the conjugate partition of λ), is given by

ωF [X] = F [−εX].

We also have, for instance, that hk[−X] = hk[−εεX] = ek[εX] = (−1)kek[X].
We now introduce the fundamental translation and multiplication operators,

defined for any expression Y , by setting

T Y F [X] = F [X + Y ] and PY F [X] = Exp[XY ]F [X],

where

Exp[X] = exp

∑
k≥1

pk
k

 =
∑
n≥0

hn

is the usual generating series of homogeneous symmetric functions. The importance
of these operators is given by the following proposition.

Proposition 2.1 ([18, Theorem 1.1]). For any expression Y , we have the following
equalities of operators:

T Y =
∑
λ

sλ[Y ]s⊥λ and PY F [X] =
∑
λ

sλ[Y ]sλ[X].

Here, s⊥λ is the adjoint of the multiplication operator sλ[X] under the Hall scalar
product.

This proposition can be proved by simply looking at the case when Y = y1 +
y2 + · · · and applying T Y and PY to a Schur function sµ[X]. In the first case we
have

T Y sµ[X] = sµ[X + Y ].
We now fill the shape µ by y1, y2, . . . , x1, x2, . . . in a semistandard fashion. This
means that the variables y1, y2, . . . have to fill some subshape of µ, say λ, and the
remaining portion of µ with λ removed, denoted µ/λ, must be filled by xi’s. We
get

sµ[X + Y ] =
∑
λ⊆µ

sλ[Y ]sµ/λ[X] =
∑
λ⊆µ

sλ[Y ]
(
s⊥λ sµ

)
[X]

=

∑
λ⊆µ

sλ[Y ]s⊥λ

 sµ[X].

The important fact here, which we will use later in this paper, is that s⊥λ sµ = sµ/λ.
Since {sµ}µ is a basis for symmetric functions, we get an equality of operators.
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The second identity of the proposition follows from the Cauchy identity, which
states that, for any two homogeneous bases {uλ}λ and {vλ}λ which are dual under
the Hall scalar product, we have

Exp[XY ] =
∑
λ

uλ[X]vλ[Y ].

Taking uλ = vλ = sλ we obtain the second equality of operators.

If Y = z is a single variable, then we have

sλ[z] =
{

0 if `(λ) > 1, and
z|λ| otherwise.

This gives the following specializations of the translation and multiplication oper-
ators:

T z =
∑
n≥0

znh⊥n and Pz =
∑
n≥0

znhn[X].

Similarly, we have

T −z =
∑
n≥0

(−z)ne⊥n and P−z =
∑
n≥0

(−z)nen[X].

3. Plethystic operators

Of importance to us are certain plethystic operators that play a role in gener-
ating important families of symmetric functions. We start with Jing’s operators
which generate the Hall–Littlewood symmetric functions [33]. They can be defined
plethystically, as was done by Garsia and Procesi in [19], by setting

H(z) =
∑
k

zkHk = Pz T q−1
z
.

Using the proposition from the previous section, we can rewrite this operator.
First note by the definition of the translation operators that we can write T Y+Z =
T Y T Z . Then

Pz T q−1
z

= Pz T q
z
T −1

z
=
∑
n≥0

znhn
∑
a≥0

(q
z

)a
h⊥a
∑
b≥0

(
−1
z

)b
e⊥b .

It follows that
Hk =

∑
a,b≥0

ha+b+kq
a(−1)bh⊥a e⊥b ,

where, again, for any symmetric function F , we use the notation F to mean
the operation of multiplication by F . For any sequence of positive integers α =
(α1, . . . , α`), let Hα = Hα1 · · ·Hα`(1). Jing proves the following proposition.

Proposition 3.1 ([33]). For any partition λ, Hλ is the Hall–Littlewood symmetric
function, often denoted by Q′λ[X; q], defined by the relations

〈Q′λ[X(1− q)], Q′µ[X]〉 = 0 for λ 6= µ and 〈Q′λ[X], hn〉 = qn(λ).
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Another important symmetric function operator is attained by setting Bk =
ωHkω

−1. To see how ω commutes with translation or multiplication operators, we
start by noting that

ω T Y ωsµ = ω T Y sµ[−εX] = ωsµ[−ε(X + Y )] = sµ[X − εY ] = T −εY sµ[X].

Similarly, we also have

ωPY ωsµ[X] = ωExp[XY ]sµ[−εX] = Exp[−εXY ]sµ[X] = P−εY sµ[X].

Therefore, if we set B(z) = ωH(z)ω, then we have

B(z) = ωPz ωω T q−1
z
ω = P−εz T −ε q−1

z
.

We can then write

Bk = P−εz T ε 1−q
z

∣∣∣
zk

= P−εz T ε
z
T −εq

z

∣∣∣
zk

=
∑

a−b−c=k
ea[X](−1)bh⊥b qce⊥c .

Lastly, there are the C operators, which can be defined by setting

C(z) = −qPε zq T ε 1−q
z
.

The C and B operators play an important role in the Compositional Shuffle
Theorem, conjectured in [24] and proved by Carlsson and Mellit in [8]. In particular,
some elements of the Dyck path algebra of Carlsson and Mellit can be interpreted
using the B operators.

For α = (α1, . . . , α`), let Cα = Cα1 · · ·Cα`(1) and Bα = Bα1 · · ·Bα`(1). Usually,
Bα is defined by writing the operators in the opposite order [24], but in order to
simplify our notation, we use this convention. We will show how to directly give
combinatorial formulas for these symmetric functions in terms of homogeneous or
elementary symmetric functions. Since the computations are similar, we will only
give a full analysis of Hα = ωBα. We will begin by analyzing the operator Hk as
described in [13]; we will follow by giving a combinatorial formula for Hα in terms
of homogeneous symmetric functions.

4. The Hall–Littlewood operators

We will start by proving the following theorem seen in [13], [9] and [1]. Our
proof follows [13], but since it is vital for our final combinatorial expansion, we
include the proof for completeness. This combinatorial proof will lead us to the
combinatorial expansion of Hall–Littlewood polynomials indexed by compositions,
and it gives a general method for giving positivities involving the H, B, and C
operators.

Theorem 4.1 ([13, 1]). The family of symmetric functions {Hα}α|=n exhibits the
h-positivity phenomenon.

To show that Hα exhibits the h-positivity phenomenon, we first prove the fol-
lowing lemma. From here on, we will set u = q − 1.
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Lemma 4.2. For any partition µ and integer a,

Hahµ =
∑

ν`|µ|+a

hνbµ,ν(u)

for some bµ,ν(u) ∈ N[u].

With this given, we can prove the theorem by induction: The base case Ha(1) =
ha is easily verified. Given that for a composition p we have

Hp =
∑
µ`|p|

hµcp,µ(u),

we can use the lemma to write

HaHp =
∑
µ`|p|

Hahµcp,µ(u)

=
∑
µ`|p|

∑
ν`|µ|+a

hνbµ,ν(u)cp,µ(u).

This means that if Hp is h-positive in terms of u, then so is HaHp. We now prove
the lemma.

Proof. In order to understand the operator Ha, we start by writing

Ha =
∑
r,s

(−1)s(1 + u)rha+r+sh
⊥
r e
⊥
s ,

where again, hk is the operator of multiplication by hk. To find Hahµ, we treat
hµ as a skew Schur function. Let µ× be the shape one gets by placing rows of size
µ1, . . . , µ` corner to corner to give a skew diagram with no two cells in the same
column. For instance, the shape (3, 2, 1)× is given by the diagram

(3, 2, 1)× =

The Pieri rules are then given by removing cells from the rows: For any partition
µ of length `, we have

h⊥k hµ =
∑

ε1+···+ε`=k
εi≥0

∏̀
i=1

hµi−εi and e⊥k hµ =
∑

ε1+···+ε`=k
εi∈{0,1}

∏̀
i=1

hµi−εi .

Given r and s, we now construct a set T r,sµ of labeled tableaux of shape µ×.
Each element T ∈ T r,sµ will have a weight wt(S) giving

Hahµ =
∑

r+s≤|µ|

ha+r+s
∑

S∈T r,sµ

wt(S).
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To construct T r,sµ , first select s rows in µ× and inscribe the rightmost cells with a
“−1”. For instance, if s = 2, we have the following three choices for filling (3, 2, 1)×:

−1
−1

−1

−1
−1
−1

This describes the effect of applying (−1)se⊥s to hµ, giving (−1)2e⊥2 h3,2,1 = h2,1,1 +
h2,2 + h3,1 in this case. Next choose r cells so that they form a horizontal strip in
the remaining shape and choose for each cell whether to inscribe it with a “1” or
“u”. By horizontal strip, we mean that each selected cell has no unselected cell on
its right. One example with s = 2 and r = 3 is given by

T =

−1

−1

1u

u ∈ T 3,2
(3,2,1)

This describes the effect of applying (1 + u)rh⊥r to e⊥s hµ. For i ∈ {1, . . . , `(µ)}, let
ci be the number of empty cells in row i of T , and let λ(T ) be the partition whose
parts are given by c1, . . . , c`(µ) in nondecreasing order. The above example would
then produce the partition (1) since there is one empty cell in row 2. Let ρ(T ) be
the product of the entries in the cells of T . The weight of this object is defined by
the product

wt(S) = ρ(T ) · hλ(S).

The example above would give wt(S) = (−1) · u · 1 · u · (−1) · h1 = u2h1.

We now show, by using a sign-reversing involution, that∑
r+s=k

∑
T∈T r,sµ

wt(S)

is a positive polynomial in u. Given T , scan from left to right for the first cell
which is rightmost in its row and is inscribed with either a 1 or a −1. Switch the
1 into a −1 in the first case, and switch the −1 to a 1 in the second case. If no
such entry exists, leave the tableau fixed. This is clearly an involution, and it is
sign-reversing since we are negating the value of ρ(S) and preserving the number
of u’s. The above example would be paired with

1

−1

1u

u ∈ T 4,1
(3,2,1).
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Let Ur,sµ be the subset of T r,sµ with the condition that if the rightmost cell of a row
is labeled, then it contains a u. We have

Hahµ =
∑

r+s≤|µ|

ha+r+s
∑

T∈Ur,sµ

wt(T ),

which is a positive polynomial in u, completing our proof of the lemma. �

We can get an actual formula for the application of Ha on a homogeneous
element hµ. Note that the set Ur,sµ is generated by selecting a certain number ri
of labeled cells in the ith row of µ×, filling the first cell with a u, and filling the
remaining cells with either a 1 or a u. Therefore, each cell that is not first in its
row individually contributes a factor of 1 + u = q. We can write this as follows:

Hahµ =
∑

r=(r1,...,r`(µ))
0≤ri≤µi

ha+|r|

`(µ)∏
i=1

hµi−ri
(
uqri−1)χ(ri>0)

.

Corollary 4.3. The compositional Hall–Littlewood polynomials {Hα}α exhibit the
h-positivity phenomenon.

Corollary 4.4. The family {Bα}α ranging over compositions α exhibits the e-
positivity phenomenon.

Lastly, we note that

CaF [X] =
(
−1
q

)a−1
F

[
X − 1− 1/q

z

]∑
k

zkhk
∣∣
za

= (−q)a−1ωBa
∣∣
q→1/qωF [X].

This means that
Cα

∣∣
q→1/q = (−q)|α|−`(α)Hα.

We therefore get the following corollary.

Corollary 4.5. The family
{

(−q)|α|−`(α)Cα|q→1/q
}
α

exhibits the h-positivity phe-
nomenon.

5. The expansion of Hα

We will now give a combinatorial expansion for Hα = ωBα in terms of the
homogeneous basis. Given a composition α = (α1, . . . , α`) |= n, let

α̃ = (n, n− α1, n− α1 − α2, . . . , n− α1 − · · · − α`−1),

and let
α̂ = (n− α1, n− α1 − α2, . . . , n− α1 − · · · − α`−1),
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which is contained in α̃. For instance, we have displayed here ˜(2, 3, 2, 1) (which
includes the shaded region) and ̂(2, 3, 2, 1) (the region with labels):

1

234

5678910

In order to interpret Hα combinatorially, we will first begin by considering
Hα`−1hα`(µ) . Using Equation 4, choose some 0 ≤ r ≤ α`. Remove r cells from
α` and add these cells to hα`−1. If r > 0, the weight associated to such a choice is
uqr−1.

We will denote this in pictures by drawing the partition ˜(α`−1, α`), placing
“stones” in ˜(α`−1, α`)/α̂, and placing r consecutive stones in ̂(α`−1, α`) starting
from the right. The first stone placed in ̂(α`−1, α`) (from the right) will be given
weight u, and the following r − 1 stones will be given weight q. These r stones
come from the stone directly north, and so we instead label the stones above with
u or q.

For instance, to interpret H1h3, we can choose r = 2 to get uqh3h1, described
by the following picture:

c u

Note that we placed the labels u and c to depict the stones in the first row which
have weights u and q respectively. We use the symbol c to specify that the placed
stone is not the first stone placed in its row. We will then say that the stone is
“connected” to the stone on its right.

We iterate this process using Equation 4, where at each step, we use the stones to
determine the new homogeneous symmetric function which is formed. This process
is described by the set of stone placements Pα, which is defined by the following
given rules:

A placement of stones in α̂ is a subset of the cells of α̂. Given a placement, and
a stone in cell b, we will let N(b), E(b), S(b) be the first stone north, east, or south
of b, respectively. (Some of these may not exist for a given stone.)

Let Pα be the set of stone placements in α̃ that satisfy the following conditions:
(1) Every cell of α̃/α̂ has a stone.
(2) Let b and E(b) = d be two cells in the same row of α̃ with a stone. Then

S(b) (if it exists) is in a weakly lower row than S(d). If S(d) is in the same
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row as S(b), then we will say that b is connected. Otherwise, we will say
that b is unconnected. (So b is unconnected if E(b) doesn’t exist, as well.)

(3) If a cell b contains a stone and there is no stone placed below (so that S(b)
doesn’t exist), then we will say that b is a terminal cell.

An unconnected stone will get a weight of u and a connected stone will get a
weight of q. Diagrammatically, unconnected and connected moves, respectively,
can be identified as follows:

b′

b d

d′ and

b′

b d

d′

where there are no stones lying along the drawn lines. Here we have attempted to
place stones. However, the stone marked with a red cross depicts an illegal stone
placement.

×

b d

b′
d′

The placement is illegal because the stone above, labeled b, has a stone directly on
its right, labeled d. Yet no stone is placed below d and in a row weakly above b′.
The placement of b′ can only happen if there is a stone on d′, which is not done.
Therefore, the placement is illegal.

Here is perhaps a more interesting example. We have labeled the stones with a
u if they correspond to unconnected moves and with a c if they are connected. We
will also use a t to label the terminal cells.

u c u

u u

c u

u

t t

u c

t t t t

t t t

c

t
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For a placement P with ai terminal cells in row i, we let λ(P ) be the partition
formed by rearranging a1, . . . , a`(α) in weakly increasing order. Let con(P ) be the
number of connected stones in P and unc(P ) the number of unconnected stones
in P . Then, as a consequence of Equation 4, we have the following proposition.

Proposition 5.1.
Hα =

∑
P∈Pα

qcon(P )uunc(P )hλ(P ).

For instance, our above example would give us this term in the summation:

u7q4h6,4.

Let us work through a small example. We will compute H2,2,1 by drawing all
placements:

To simplify the images, we omitted the stones placed in the shaded region. This
gives, respectively,

h2,2,1 uh3,2 uh3,2

uh3,1,1 u2h4,1 u2h3,2

uqh4,1 u2qh4,1 u2qh5

u2q2h5

Therefore

H2,2,1 = h2,2,1 + (u+ u+ u2)h3,2 + uh3,1,1 + (u2 + uq + u2q)h4,1 + (u2q + u2q2)h5.

Substituting u = q − 1 and changing bases we get

H2,2,1 = q4s5 + (q3 + q2)s4,1 + (q2 + q)s3,2 + qs3,1,1 + s2,2,1.
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Theorem 5.2. For every composition α |= n and subset S ⊆ α̂, there is a partition
λ(S) ` n depending on α that gives

Hα

∣∣
q→1+u =

∑
S⊆α̂

u|S|hλ(S).

Proof. We will start by substituting q to be 1 + u in our formula for Hα. Define
the set of labeled placements LPα by the following process: Choose a placement
P ∈ Pα. We now label P to form P̂ ∈ LPα by labeling each unconnected stone
with a u; and, for each connected stone, we choose whether to label it with a 1 or
a u.

If the resulting labeled placement is P̂ , we set u(P̂ ) to be the number of u’s in
P̂ , and set λ(P̂ ) = λ(P ). Then

Hα

∣∣
q→1+u =

∑
P̂∈LPα

uu(P̂ )h
λ(P̂ ).

We will now give a bijection

φ : P(α̂)→ LPα

between subsets of α̂ and labeled placements. Let S ⊆ α̂. To construct φ(S) = P ,
we start with drawing α̃ and placing a stone in each cell of α̃/α̂.

Now start scanning the cells of row `(α)− 1 from left to right. This is the first
row of α̂ from the top. Find the first cell in S, if it exists, and place a stone. Now
every cell to its right must also have a stone, which we place. For each two adjacent
stones we place, say b′ and d′, there are two adjacent stones in the row above, say
b and d. If d′ is an element of S, then we mark b with a u. Otherwise, we mark b
with a 1. If b has no stone to its right, then we label b with a u since the stone is
unconnected. We now move to the next row below.

Suppose we are now scanning the ith row from the top, corresponding to row
`(α)− i of the partition α̂. Again, for a given cell b, let N(b), E(b), S(b) be the first
stone north, east, or south of b, respectively. Let b′ be the first cell in S, from the
left. Then place a stone here. Now if SEN(b′) = d′ exists and is in a row higher
than b′, then we are done for now and we label b = N(b′) with a u. Otherwise, we
place a stone in the cell d′ which is in the same row as b′ and the same column as
E(b). If d′ is in S then we label b with a u, otherwise, we label b with a 1. Now
repeat this process with d′ instead of b′ and look at SEN(d′).

Once this process ends, we may have some more elements of S in this row with
no stone. Repeat the process: find the first element b′ of S with no stone and place
a stone. Look at SEN(b′), and so on.

The inverse of φ can also be described. Let P ∈ LPα. Start with S being the
stone placement in the α̂ portion of P . For any two cells b′ and E(b′) = d′ that
also have b = N(b′) in the same row as d = N(d′) (in other words, b is connected
to d), we remove d′ from S if b has a stone labeled with a 1.
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Here is an example:

u u u

u u

1 u

u

t t

u 1

t t t t

t t t

1

t

We have drawn an arrow to show which labels decide which stones become elements
of S or not. Note that the arrows begin from the cells which were originally labeled
with a c to denote that they represent connected stones. If the initial stone is now
labeled by 1, then we remove the stone that is at the end of the arrow. If the initial
stone is labeled by a u, then we we keep the stone at the end of the arrow. Here
we get the following set S:

Note that every u which appears as a label has a corresponding element in S. We
then have |S| = u(P ), and we set λ(S) = λ(φ(S)). This particular subset S from
our example would give the term

u8h6,4.

This completes the proof. �

6. Some representation theoretical aspects

One of the ways h-positivity arises naturally is by looking at transitive modules
of the symmetric group whose stabilizer is a Young subgroup

Sµ = Sµ1 × Sµ2 × · · · × Sµ`(µ) .

Young observed [45] that if M is transitive, meaning M = Snv is the orbit of a
single element v ∈M , and if the stabilizer of v is isomorphic to Sµ for some µ ` n,
then

M ' IndSnSµ 1
is the induced trivial representation from Sµ to Sn, and

FM = hµ.
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To see an example, let v = (v1, . . . , vn) ∈ Cn be a vector such that ai appears
µi times and a1, . . . , a`(µ) are all distinct. We will say that v is of type µ. The
action of σ permutes the entries of the vectors. Since v is stabilized by a subgroup
isomorphic to Sµ, we have that

F Snv = hµ.

Such a module has a single trivial representation, given by the sum of the elements
in the orbit of v. This can be seen from the symmetric function side, by noting
that, for any µ, one has

〈hµ, sn〉 = 1.

The representation theoretical setting of Hall–Littlewood polynomials can be
found through the work of Steinberg [43], Hotta and Springer [32], Kraft [34], and
De Concini and Procesi [12]. These proofs rely on algebraic geometry. De Concini
and Procesi give an elementary setting in which to describe the cohomology ring of
the variety of flags fixed by a unipotent matrix. This work was further described by
Tanisaki [44] in terms of the Tanisaki generators. They can be defined as follows.

For a subset S ⊆ {x1, . . . , xn}, let ek(S) be the kth elementary symmetric func-
tion in the elements of S. Set dk(µ) = µ′1 + · · · + µ′k, where, again, µ′ is the
conjugate partition of µ. Then the Tanisaki ideal Iµ is generated by the following
elements:

{er(S) : k ≥ r > k − dk(µ), |S| = k, S ⊆ {x1, . . . , xn}} .

Then

qn(λ)Hλ[X; 1/q] = F C[x1, . . . , xn]
Iµ

.

Garsia and Procesi introduce a method to prove this in an accessible manner. In
particular, they show that Jing’s operators, as presented here, give the Frobenius
characteristic of these modules. The orbit harmonics associated to Hall–Littlewood
polynomials can be described as follows. Let v ∈ Cn be a vector of type λ. Let
W = Snv be the orbit of v, and let IW ⊂ C[x1, . . . , xn] be the ideal of polynomials
which vanish on W . Then

H̃λ[X; 0, q] = qn(λ)Hλ[X; 1/q] = F C[x1, . . . , xn]
gr(IW ) ,

where gr(IW ) is the ideal generated by the highest homogeneous components of ele-
ments in IW . This method was introduced as an approach for resolving Garsia and
Haiman’s conjectures regarding the positivity of modified Macdonald polynomials,
leading to a development of the theory of orbit harmonics in Garsia and Haiman’s
research monograph [16]. Through the use of orbit harmonics, one can view the
modified Macdonald basis through a similar quotient given by the vanishing ideal
of a certain orbit of points. For a better account of this story, we refer the reader
to [30].
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For general compositions α, Hα is not Schur positive when expanded as a poly-
nomial in q. For instance,

H(1,3) = q3s4 + q2s3,1 + (q − 1)s2,2.

However, under the substitution q → 1 + u, we get an h-positive expression, and
therefore a Schur positive polynomial. Given a composition α |= n, let Mα be a
module whose Frobenius characteristic, as a polynomial in u, gives

FMα = Hα

∣∣
q→1+u.

It is then interesting to ask for a natural family of modules, indexed by composi-
tions, which gives this Frobenius characteristic.

Proposition 6.1. The number of orbits in Mα is 2n(α), where

n(α) = α2 + 2α3 + 3α4 + · · ·+ (`(α)− 1)α` =
`(α)∑
i=1

(i− 1)αi

is the size of α̂. In particular, the Hilbert series of invariants is the polynomial
(1 + u)n(α).

Proof. Given that FMα = Hα

∣∣
q→1+u, we can find the number of orbits by taking

the homogeneous expansion of Hα

∣∣
q→1+u and replacing each hµ by 1. This gives

that the Hilbert series for the invariants is given by∑
S⊆α̂

u|S| = (1 + u)|α̂|. �

Note that when α is a partition λ, we have 〈Hλ, hn〉 = qn(λ), which is one of the
defining properties of Hall–Littlewood polynomials. But in fact, it holds in general
that, for any composition, one has

〈Hα, hn〉 = qn(α).

7. An expansion for the Delta Theorem when t = 0

The Delta Theorem, conjectured in [25] and proved by D’Adderio and Mellit [11],
gives a monomial expansion of the symmetric function ∆eken or ∆′eken, where,
for any symmetric function F , one defines ∆F and ∆′F as eigenoperators of the
modified Macdonald basis by setting

∆F = F [Bµ] H̃µ and ∆′F = F [Bµ − 1] H̃µ, with Bµ =
∑

(r,s)∈µ

qrts.

Delta operators were first defined in [5] in order to study the operator ∇. In
particular, one has, for µ ` n,

∆′en−1
H̃µ = ∆en H̃µ = en[Bµ] H̃µ = Tµ H̃µ = ∇ H̃µ .

We should also note that the Extended Delta Theorem was also proved in [6], and
it gives a combinatorial interpretation for ∆hl∆′eken.
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The Delta Theorem can be stated in terms of Column LLT polynomials. Named
after Lascoux, Leclerc and Thibon [35], LLT polynomials now play an important
role in the theory of Macdonald polynomials. Amongst their important properties,
they are known to be Schur positive [21]. We now introduce the LLT polynomial
corresponding to a Dyck path. Let D be a Dyck path in the n×n square, given by
a sequence of north and east unit steps which stay weakly above the main diagonal.
For instance,

gives a Dyck path in D7. For D ∈ Dn, we let a(D) = (a1(D), . . . , an(D)) be
the area sequence, where ai(D) is the number of unit lattice cells between the ith
north step of the path and the main diagonal. The above example would have area
sequence (0, 1, 2, 2, 0, 1, 0). The area of the Dyck path, area(D), is the sum of the
area numbers. A labeled Dyck path L ∈ LDn is a Dyck path whose north steps are
labeled with positive integers so that the columns of L are increasing from bottom
to top. The area of L is the area of the supporting Dyck path. If the labels of L
are given by l1, . . . , ln as we read from bottom to top, then the number of diagonal
inversions is given by

dinv(L) = |{ i < j : li < lj and ai = aj , or li > lj and ai = aj + 1}|.

Denote by xL the monomial we get from all the labels: xL = xl1 · · ·xln . The
Column LLT polynomial associated to a Dyck path D ∈ Dn is given by

LLTD =
∑

L ∈ LDn of shape D
qdinv(L)xL.

These polynomials were proved to exhibit the e-positivity phenomenon [9], and
they have a combinatorial description given by Alexandersson and Sulzgruber [2].

The final part we need in order to describe the Delta Theorem is Haglund’s
factor, which is given by

HD(z) =
∏

ai+1(D)=ai(D)+1

(
1 + z

tai(D)

)
.

The rise version of the Delta Theorem can now be stated.
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Theorem 7.1 (D’Adderio and Mellit [11]).∑
D∈LDn

tarea(D)qdinv(D)HD(z)xD =
n−1∑
k=0

zk∆′en−1−k
en

Zabrocki conjectures in [46] that this symmetric function is the Frobenius char-
acteristic of the following natural Sn-module. Let θ1, . . . , θn be a set of anti-
commuting variables that commute with x1, . . . , xn, y1, . . . , yn. Let R(1)

n be the
quotient of the polynomial ring C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn] by the ideal gen-
erated by Sn invariants with zero constant term. Then the conjecture is that

FR(1)
n =

n−1∑
k=0

zk∆′en−1−k
en,

where z gives the grading for the anti-commuting set of variables.

The t = 0 version of the Delta Theorem was proved in [14]. On the representation
theoretical side, Haglund, Rhoades and Shimozono [26] showed that

(revq ω)∆′ek−1
en

∣∣∣
t=0

= F C[x1, . . . , xn]
(xk1 , . . . , xkn, en, . . . , en−k+1)

,

where revq reverses the powers of q appearing in the expression. We should also
mention that Pawlowski and Rhoades produced a flag variety whose cohomology
ring also gives this Frobenius characteristic [41]. The following observation shows
that the Frobenius characteristic of these modules exhibits the h-positivity phe-
nomenon.

It was noted in [13] that this symmetric function has a nice expansion in terms
of B operators, namely

∆′ek−1
en

∣∣∣
t=0

=
∑
α|=n
`(α)=k

Bα.

It follows from the work here that we have the next theorem.

Theorem 7.2.

∆′ek−1
en

∣∣∣
t=0

∣∣∣
q→1+u

=
∑
α|=n
`(α)=k

Bα =
∑
α|=n
`(α)=k

∑
S⊆α̂

u|S|eλ(S).

One of the beautiful facts that follow from this result is the connection between
the sum of LLT polynomials for balanced paths and the sum of Hall–Littlewood
polynomials corresponding to compositions of n. This was first seen in [13], but is
made more explicit by our combinatorial formula for Bα. Note that from Haglund’s
factor, one has that, for any Dyck path D,

tarea(D)HD(z)
∣∣∣
zn−k

∣∣∣
t=0

= tarea(D)
∏

ai+1(D)=ai(D)+1

(
1 + z

tai(D)

) ∣∣
zn−k

∣∣
t=0 = 0
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whenever there is a north step in D that is first in its column but does not begin
on the main diagonal, or the path has more than k north segments. This means
we get a nonzero evaluation only when D is a balanced path which returns to
the diagonal k times. A balanced path is a Dyck path whose north segments all
begin on the main diagonal. The north and east steps of such a path are given
by Nα1Eα1 · · ·NαkEαk for some composition α = (α1, . . . , αk) |= n. Denote this
balanced path by BPα. For instance,

is the balanced path corresponding to the composition (3, 1, 2). Then one obtains
the following corollary.

Corollary 7.3. ∑
α|=n
`(α)=k

LLTBPα =
∑
α|=n
`(α)=k

∑
S⊆α̂

u|S|eλ(S).

The LLT polynomial of a balanced path is closely connected to Hall–Littlewood
polynomials. For this connection, we refer the reader to Haglund’s book [22], which
also contains further important results and combinatorial descriptions related to
this subject.

Relating back to delta operators, Haglund, Rhoades, and Shimozono also ob-
served the following.

Theorem 7.4 (Haglund, Rhoades, and Shimozono [27]).

ω∆′sνen
∣∣
t=0 =

|ν|+1∑
k=`(ν)+1

Pν,k−1(q)
∑
µ`n
`(µ)=k

qn(µ)−(`(µ)
2 )
[

k

m1(µ), . . . ,mn(µ)

]
q

Hµ,

with

Pν,k−1(q) = q|ν|−(k2)
∑
|ρ|=|ν|
`(ρ)=k−1

qn(ρ)
[
k − 1
m(ρ)

]
q

Kν,ρ(q),

where Kν,ρ is the Kostka–Foulkes polynomial appearing in the expansion

Hρ =
∑
ν

Kν,ρ(q)sν .
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They also give a representation theoretical setting for these symmetric func-
tions. Since all the above expressions are polynomials in q, with positive integer
coefficients, we get the following theorem.

Theorem 7.5. The family
{

∆′sνen
∣∣
t=0

}
exhibits the e-positivity phenomenon.

As conjectured in [42], it still remains open to understand the following more
general phenomenon.

Conjecture 7.6. The family of symmetric functions {∆sλen}λ exhibits the e-
positivity phenomenon.

In this case, there are two variables, q and t, and substituting either by 1 + u
would conjecturally give an e-positive expression.

8. Final remarks

An interesting question arises from these observations. Given a graded mod-
ule M , when would we know that FM exhibits the h-positivity (or e-positivity)
phenomenon? Many of the symmetric functions we have seen appear as quotients
of polynomial rings. It is not clear why these quotients would exhibit this phe-
nomenon, and it would be worthwhile to investigate why this is the case. From
a representation theoretical point of view, the modules associated to the homoge-
neous or elementary basis are simpler to understand. From the symmetric function
side, it is easier to get a Schur expansion from homogeneous (or elementary) basis
expansions by using Kostka coefficients, which follow from the Pieri rules. The
usual expansions which appear in the literature are in terms of monomial sym-
metric functions. To go from the monomial basis to the Schur basis would involve
inverting the Kostka coefficients, which is not as simple to understand.

The positivities presented here are only a glimpse of the positivity phenomenon
which seems to exist at a larger scale, specifically when it comes to symmetric func-
tions appearing in the theory of modified Macdonald polynomials. Understanding
why these positivities hold may give better insight into analyzing these symmetric
functions, possibly leading to an understanding of their Schur basis expansions and
therefore the decomposition of their corresponding modules.
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[20] E. Gorsky, A. Neguţ, and J. Rasmussen, Flag Hilbert schemes, colored projectors and
Khovanov-Rozansky homology, Adv. Math. 378 (2021), Paper No. 107542, 115 pp.
MR 4192994.

[21] I. Grojnowski and M. Haiman, Affine Hecke algebras and positivity of LLT and Mac-
donald polynomials, Preprint, 2009. Available at https://math.berkeley.edu/∼mhaiman/ftp/
llt-positivity/new-version.pdf.

[22] J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics, University
Lecture Series, 41, American Mathematical Society, Providence, RI, 2008. MR 2371044.

[23] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula
for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232.
MR 2115257.

[24] J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch
points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844. MR 2957232.

[25] J. Haglund, J. B. Remmel, and A. T. Wilson, The delta conjecture, Trans. Amer. Math.
Soc. 370 (2018), no. 6, 4029–4057. MR 3811519.

[26] J. Haglund, B. Rhoades, and M. Shimozono, Ordered set partitions, generalized coinvariant
algebras, and the delta conjecture, Adv. Math. 329 (2018), 851–915. MR 3783430.

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)

https://mathscinet.ams.org/mathscinet-getitem?mr=1726826
https://mathscinet.ams.org/mathscinet-getitem?mr=1803316
https://mathscinet.ams.org/mathscinet-getitem?mr=4553915
https://mathscinet.ams.org/mathscinet-getitem?mr=1223236
https://mathscinet.ams.org/mathscinet-getitem?mr=3787405
https://mathscinet.ams.org/mathscinet-getitem?mr=4054520
https://mathscinet.ams.org/mathscinet-getitem?mr=4178919
https://mathscinet.ams.org/mathscinet-getitem?mr=4401822
https://mathscinet.ams.org/mathscinet-getitem?mr=0629470
https://arxiv.org/abs/1904.07912
https://mathscinet.ams.org/mathscinet-getitem?mr=3962860
https://mathscinet.ams.org/mathscinet-getitem?mr=1392509
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1214091
https://mathscinet.ams.org/mathscinet-getitem?mr=1701592
https://mathscinet.ams.org/mathscinet-getitem?mr=1168926
https://mathscinet.ams.org/mathscinet-getitem?mr=4192994
https://math.berkeley.edu/~mhaiman/ftp/llt-positivity/new-version.pdf
https://math.berkeley.edu/~mhaiman/ftp/llt-positivity/new-version.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=2371044
https://mathscinet.ams.org/mathscinet-getitem?mr=2115257
https://mathscinet.ams.org/mathscinet-getitem?mr=2957232
https://mathscinet.ams.org/mathscinet-getitem?mr=3811519
https://mathscinet.ams.org/mathscinet-getitem?mr=3783430


POSITIVITIES IN HALL–LITTLEWOOD EXPANSIONS 331

[27] J. Haglund, B. Rhoades, and M. Shimozono, Hall-Littlewood expansions of Schur delta op-
erators at t = 0, Sém. Lothar. Combin. B79c (2019), 20 pp. MR 3932967

[28] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer.
Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919.

[29] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in
the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676.

[30] M. Haiman, Combinatorics, symmetric functions, and Hilbert schemes, in Current Develop-
ments in Mathematics, 2002, 39–111, Int. Press, Somerville, MA, 2003. MR 2051783.

[31] M. Hogancamp, Khovanov-Rozansky homology and higher Catalan sequences,
arXiv:1704.01562 [math.GT], 2017.

[32] R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations
and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977),
no. 2, 113–127. MR 0486164.

[33] N. H. Jing, Vertex operators and Hall-Littlewood symmetric functions, Adv. Math. 87 (1991),
no. 2, 226–248. MR 1112626.

[34] H. Kraft, Conjugacy classes and Weyl group representations, in Young Tableaux and Schur
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