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SPECIAL AFFINE CONNECTIONS ON SYMMETRIC SPACES

OTHMANE DANI AND ABDELHAK ABOUQATEB

ABSTRACT. Let (G, H,o) be a symmetric pair and g = m @ b the canonical
decomposition of the Lie algebra g of G. We denote by V the canonical
affine connection on the symmetric space G/H. A torsion-free G-invariant
affine connection on G/ H is called special if it has the same curvature as V°.
A special product on m is a commutative, associative, and Ad(H)-invariant
product. We show that there is a one-to-one correspondence between the set
of special affine connections on G/H and the set of special products on m. We
introduce a subclass of symmetric pairs, called strongly semi-simple, for which
we prove that the canonical affine connection on G/H is the only special affine
connection, and we give many examples. We study a subclass of commutative,
associative algebra which allows us to give examples of symmetric spaces with
special affine connections. Finally, we compute the holonomy Lie algebra of
special affine connections.

1. INTRODUCTION AND MAIN RESULTS

In the literature, symmetric spaces are described in a variety of ways. An affine
symmetric space in differential geometry is a connected smooth manifold M en-
dowed with an affine connection V such that for each point p € M there is an affine
transformation s, € Aff(M, V) which fixes p and reverses every geodesic through p.
On the other hand, in Lie theoretically terms, a symmetric pair is a triple (G, H, o)
with G is a connected Lie group, H a closed subgroup of G and o an involutive
automorphism of G such that G2 C H C G,,, where G, is the fixed-point subgroup
of o and GY its identity compenent. The homogeneous G-space G/H is called the
corresponding symmetric space. Symmetric spaces play important roles for var-
ious branches of mathematics, namely Riemannian geometry, Lie groups theory,
harmonic analysis and so on (see, for instance, [2] 3], 6] [7, [10]). It is worth noting
that for any connected Lie group G, we can associate the natural symmetric pair
(GxG@G,G,0), where o(a,b) = (b,a), and in this case, the corresponding symmetric
space G x G/G is identified with the G x G-homogeneous space M := G (where
the transitive action of G x G on G is given by (a,b) - x := azb™! for a,b,x € G).

2020 Mathematics Subject Classification. Primary 53C35; Secondary 17B05, 17B60, 17B63,
53C07.

Key words and phrases. Lie algebras, symmetric spaces, Poisson algebras, Jordan algebras,
special connections.

327


https://doi.org/10.33044/revuma.4035

328 OTHMANE DANI AND ABDELHAK ABOUQATEB

This is why our objective in this article is to describe algebraically a class of in-
variant affine connections on symmetric spaces which have been explored in [I] in
the particular case of Lie groups. Therefore, our current work could be seen as a
natural sequel to the work present in [I], where it is proved that if g is a semi-simple
Lie algebra, then there is no non-trivial Poisson structure on g (this means that
there is no non-trivial commutative, associative, and ad(g)-invariant product on g).
Our idea in this framework is to provide correspondences between some algebraic
structures and other geometric ones, which could be very useful for geometric or
other algebraic questions.

Let (G, H, o) be a symmetric pair, the tangent map of o at the identity element
(also denoted by o) induces a splitting g = m @ b of the Lie algebra g of G with
h := ker(o — Idg) and m := ker(c + Idy). Further, one can easily check that b is
the Lie algebra of H and the following inclusions hold:

Ad(H)(m) Cm, and [m,m]CH. (1.1)

The splitting g = m@® b we just defined above is called the canonical decomposition
of g (with respect to o). Moreover, since G/H is a reductive homogeneous G-
space, we denote by VO its canonical affine connection, i.e., the unique torsion-
free G-invariant affine connection for which the geodesics are determined by the
exponential map of G (cf. [0, Theorem 10.1]). A special affine connection on G/H
is a torsion-free G-invariant affine connection which has the same curvature as the
canonical one. As a direct consequence of Nomizu’s theorem on invariant affine
connections, we will later see the following result.

Theorem 1.1. Let (G, H, o) be a symmetric pair, M the corresponding symmetric
space and g = m @ b the canonical decomposition of the Lie algebra g of G. There
exists a one-to-one correspondence between the set of special affine connections on
M and the set of special products on m, i.e., commutative, associative, and Ad(H)-
invariant products on m.

Our next result provides conditions on the symmetric pair (G, H, ) under which
the canonical affine connection is the only special affine connection on G/H. To
be precise, we introduce the following definition.

Definition 1.2. The symmetric pair (G, H, o) is called

(1) simple if the isotropy representation ad™ : h — End(m) is irreducible;

(2) semi-simple if the isotropy representation ad™ : h — End(m) is completely
reducible;

(3) strongly semi-simple if there exists a family (m;)¥_; of simple h-submodules
of m such that

m=m; @ ---dmy and [m;,m]# {0} forallie{l,... k}. (1.2)
Such a family is called a strong decomposition of m.

Clearly, simple or strongly semi-simple symmetric pairs are semi-simple; more-
over, when the isotropy representation is faithful, then according to [9) p. 56] a
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simple symmetric pair is strongly semi-simple if and only if g is a semi-simple Lie
algebra.
Our main result is the following.

Theorem 1.3. Let (G,H,o) be a symmelric pair and g = m @ b the canonical
decomposition of the Lie algebra g of G. If (G, H, o) is simple (with dimm > 1) or
strongly semi-simple, then the trivial product is the only special product on m.

Note that this result is not valid for semi-simple symmetric pairs as shown by
Example

The paper is organized as follows. In Section [2] we prove Theorem and
we show that special affine connections are semi-symmetric (see Proposition [2.2)).
Section [3] is devoted to proving Theorem [I.3] and providing some examples. In
Section [d] we give other examples of strongly semi-simple symmetric pairs. In Sec-
tion 5] we introduce a particular subclass of commutative, associative algebra, what
we called commutative, 0-associative algebra, which allows us to give examples of
symmetric spaces with special affine connections (see Proposition . Finally, in
Section [6] we compute the holonomy Lie algebra of a special affine connection.

Uuntil the end of this paper, (G, H, o) will be a symmetric pair, M := G/H the
corresponding symmetric space, g = m @ b the canonical decomposition of the Lie
algebra g of G, and ad™ : h — End(m) the isotropy representation of h in m.

All vector spaces, algebras, etc. in this paper are finite dimensional and over the
field of real numbers R.

2. SPECIAL AFFINE CONNECTIONS ON SYMMETRIC SPACES

Before going further into the proof of Theorem let us start with some facts
that should be known. First of all, since M is a reductive homogeneous G-space,
according to Nomizu’s Theorem [0, Theorem 8.1] there is a one-to-one correspon-
dence between the set of G-invariant affine connections on M and the set of bilinear
maps a : m X m — m which are invariant by Ad(H), i.e.,

Ady, a(u,v) = a (Adp u, Ady v) (2.1)
for u,v € m and h € H. If V is a G-invariant affine connection on M, then it
is obvious that the torsion 7V and the curvature RV tensor fields of V are also
G-invariant. Thus, they are completely determined by their value at the origin
0 € M. Hence, under the identification of T, M with m, using the second inclusion

of (L.1)) in [9, formulas (9.1) and (9.6)], the torsion TV and the curvature RV of V
can be expressed as follows:

7% (u,v) = a¥ (u,v) — ¥ (v, u); (2.2)
V( V( V( V(uaw)) - [[u,v],w], (23)
for u,v,w € m, where a¥ : m x m — m is the bilinear map associated to V. In

particular, for the canonical affine connection V?, its associated product on m is
the trivial product a® = 0. Hence it is torsion-free and its curvature is given by

RY (u,v)w = aY (u, o (v,w)) — aV (v,

v

R (u, v)w = —[[u,v], w] YVu,v,w € m.
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We can now give the following proof.

Proof of Theorem [L.I] Let V be a special affine connection on M. We define a
product x : m X m — m on m by
uxv:=a (u,v)

for u,v € m, where oV : m x m — m is the bilinear map associated to V. Clearly,

the product x is Ad(H)-invariant and since V is torsion-free it is commutative by
(2.2). Furthermore, using and the commutativity of x we obtain that x is
associative.

Conversely, given a commutative, associative and Ad(H )-invariant product *
on m, we define a bilinear map « : m X m — m by

a(u,v) == u*v.

Since « is Ad(H)-invariant, it defines a G-invariant affine connection V* on M.
Moreover, since x is commutative, we obtain by that V¢ is torsion-free. Fur-
thermore, using the fact that x is commutative, associative and we get that
VvV has the same curvature as V°. O

It is clear that any connected Lie group G can be considered as a symmetric
space, where the symmetric pair is Gy := G X G, Hy := AGy, o¢ : Gog — Go,
(a,b) — (b,a), and the canonical decomposition of the Lie algebra gy of Gy is
go = mo @ ho, where

ho={(u,u) |ucg} and mg={(u,—u)|ue g}

Moreover, the isotropy representation of Hy in mg is equivalent to the adjoint
representation of G in g, and the canonical connection V° on G is the torsion-free
bi-invariant affine connection given by

Vot = %[u*‘,v"’],
where u*,v" denote the left invariant vector fields on G associated respectively
to the vectors u,v € g. So, a special affine connection on G is a torsion-free
bi-invariant affine connection on G which has the same curvature as V°. On the
other hand, a special product on my is equivalent to a Poisson structure on g, i.e., a
commutative, associative, and ad(g)-invariant product on g. Thus by Theorem [L.1
we get the following result obtained in [Il, Theorem 2.1].

Corollary 2.1. Let G be a connected Lie group and g its Lie algebra. There is a
one-to-one correspondence between the set of special affine connections on G and
the set of Poisson structures on g.

In differential geometry there is a notion of semi-symmetric spaces which is a di-
rect generalization of locally symmetric spaces, namely, smooth manifolds endowed
with a torsion-free affine connection V for which the curvature tensor RV satisfies

VxVyRY = VyVxRY —Vxy|RY =0
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for any vector fields X,Y. It is known that the above equation is equivalent (see
[10, Chapter 4, formula (26)]) to the following one:

[RY(X,Y),RY(Z,W)] =RY (RV(X,Y)Z,W) + RV (Z, RV (X,Y)W)

for any vector fields X, Y, Z, W. Hence, since the curvature tensor R° of the canon-
ical affine connection VO satisfies this condition, we easily obtain the following
proposition.

Proposition 2.2. The smooth manifold M endowed with a special affine connec-
tion is semi-symmetric.

3. SIMPLE AND STRONGLY SEMI-SIMPLE SYMMETRIC PAIRS

In this section we will give a proof for Theorem We begin by the case for
which (G, H,0) is a simple symmetric pair (with dimm > 1), then we pass to the
strongly semi-simple case. First notice that, if ad™ : h — End(m) is not trivial
(which is the case if (G, H,0) is simple with dimm > 1 or strongly semi-simple),
then i := kerad™ is an ideal of g which is strictly contained in §. Thus we get a
faithful representation ad' : h — End(m) of the Lie algebra b := h/i. Further,
a product on m is ad(h)-invariant if and only if it is ad" ()-invariant. Hence,
throughout this section we may assume without loss of generality that the isotropy
representation of b in m is faithful, i.e., ad™ : h — End(m) is injective.

Proof of Theorem in the case where (G, H, o) is simple. We start with the fol-
lowing remark: since m is a simple h-module and [h,m] C m is an h-submodule
of m, it will be either {0} or m. But since ad™ is faithful it follows that m = [h, m].
Now let o : m X m — m be a special product on m. Define

Z:={uem|a, =0}
For a € h and u € Z, using (2.1) we have
Ag,u] = [ada,ozu] = 0.

Thus Z is an h-submodule of m and therefore either Z = {0} or Z = m. Suppose
by contradiction that Z = {0}. The product on m given by u * v := a(u,v) for
u, v € m is a special product and hence it is commutative and associative. So, for
any u,v € mand n > 1,

A (V) = @y 0y 0+ 0ty (V)
=UKRkUK- KUKV (3.1)
= qun (V).
On the other hand, for a € h and v € m, we have
tr (o)) = tr ([ads, a]) = 0.

Since each element of m is a linear combination of elements of [h, m], by (3.1) we
get
tr(ag) =0 Vuem, n>1.

u
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Hence «, is a nilpotent endomorphism of m. Let m be the vector space

m:= {a, € End(m) | u € m}.
Clearly, m is a Lie subalgebra of End(m) because [, ap] = 0 for u,v € m. More-
over, each element of m is a nilpotent endomorphism of m. Thus by Engel’s Theo-
rem there exists a nonzero element ug € m such that

Qo (1) = iy (up) =0 Yu €m.

So oy, = 0, which implies that ug € Z. But this constitutes a contradiction and
therefore proves the claim. O

Corollary 3.1. If (G, H, o) is simple (with dim M > 1), then the canonical affine
connection V is the only special affine connection on M.

Example 3.2. If g is a simple Lie algebra and H is compact, then the symmetric
pair (G, H, o) is simple (cf. [6, Chapter 11, Proposition 7.4]). Moreover, since g is
simple we have that dimm > 1 (see [9, p. 56]), and therefore the canonical affine
connection VY is the only special affine connection on M.

Example 3.3. It is clear that the symmetric pair (SO(n+1),S0(n), 0, ) is simple
(n > 1), where 0, (A) == J,AJ,, with J, :== (% ° ). Thus, the canonical affine
connection VY is the only special affine connection on the unit n-sphere S”.

To demonstrate Theorem in the case where (G, H, o) is strongly semi-simple
we need the following lemma.

Lemma 3.4. If (G, H, o) is strongly semi-simple and (m;)*_, a strong decomposi-
tion of m, then for each i,j,1 € {1,...,k} such that i # j and i # 1, we have
(1) [mi, [mj, my]] = {0}
(2) [mia [m’ia ml]] =m;.
Proof. First we have, by the Jacobi identity,
[mi, [my, my]] © [[mi, my], my] + [my, [mi, my]].
Thus
[mi, [mj, my]] € m; N (my & my) = {0}
For the second statement, using again the Jacobi identity we get
(B, fmi, [mg, my]]] € [[b, mi], [mg, ma]] + [my, [b, [mg, my]]]
C [my, [mg, my]] + [my, [[h, m;], my]] + [my, [my, [h, m;]]]
g [mia [mzvmz]]
So [m;, [m;, m;]] is an h-submodule of m;, and therefore either [m;, [m;, m;]] = {0} or
[m;, [m;, m;]] = m;. Suppose by contradiction that [m;, [m;, m;]] = {0}. Then by the
first assertion we obtain that [[m;, m;], m] = {0}, and it follows that [m;, m;] = {0}.

But this contradicts (1.2) and hence [m;, [m;, m;]] = m;. For the last statement,
a similar argument shows that Z;[m;, m;] is an h-submodule of m; and therefore
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Zi[m;,m;] = {0}, because otherwise we would have [m;,[m;, m;]] = {0}, which
contradicts the second assertion. O

Proof of Theorem [L3] in the strongly semi-simple case. The proof is very similar
to the proof of the case where (G, H, o) is simple. Let (m;)*_, be a strong decom-
position of m and « : m x m — m a special product on m. Define

Z:={uem|a, =0}
Clearly, Z is an h-submodule of m, and so our task is proving that Z = m. Before
doing this, we will show that the product « respects the strong decomposition of m,
ie., fori,j € {1,...,k} such that i # j we have
a(mi,mi) Q m; and a(mi,mj) = {0}
For u;,v; € m;, a(u;,v;) can be written uniquely in the form
a(ug,v;) = a(u;,v)1 + - -+ alug, v;)k.
So, for each j # i and w; € [m;, m;] C b, using the Ad(H )-invariance of o and the
first assertion in the previous lemma, we get
[eu(wi, vi)j, wj] = [a(ui, vi), wj]
= a([us, w, vi) + alui, [vi, w;])
=0.
Thus o(u;,v;); € Zj[m;, m;] = {0} and therefore a(m;, m;) C m;. A similar argu-
ment shows that a(u;,u;) € m; @ m; for u; € m; and u; € m;. Moreover, if we
write u; = [vg, wy] for v; € my,w; € [my, wy] and [ = 4, j, we obtain
(g, uj) = [a(vi, uz), wi] — a(vi, [ug, wi)
= [a(vs, uy), wi]
= [a(vi, ug)i, wi] € my,
and similarly
(g, ug) = [o(ui, v;), wi] — o([ug, wyl, v5)
= [ov(ui, v5), wy]
= [a(us, v5);,w5] € my.
Hence o(u;, u;) € myNm; = {0}, which implies that a(m;, m;) = {0}. Now suppose
by contradiction that Z # m. Since Z is an h-submodule of m, by changing the
indexation of the sequence (m;)¥_; we can assume that there exists 1 < r < k such
that for i € {1,...,r — 1} and j € {r,...,k} we have
INnm;=m; and ZnNm; = {0}.
Thus m =7 + J with J :=m, @ --- ® my. Indeed this is a direct sum, to see it
let w € ZNJ, then write u = u, + -+ + uy for u; € m; and j € {r,..., k}. For
wj € [m;, m;] we have
[uj, wi] = [u, w;] € ZNm;.
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Hence u; = 0 and it follows that v = 0. This implies in turn that m = 7 @ J.
On the other hand, we denote by « the restriction of o to J, then the product
on J given by uxv := a(u,v) for u,v € J is a special product and hence it is
commutative and associative. So, for any u,v € J and n > 1,

n
u

A (V) = @y © Qg 0+ 0 Oy (V)

SUKXUK kUKD

= aun (U).
Furthermore, every element v of m can be expressed as a linear combination of
elements of the form [v;, w;] for v; € m;, w; € [m;, m;] andé € {1,...,k}. Then using
this and the Ad(H)-invariance of a we can easily deduce that tr(a,,) = 0. Thus for
w € J,n > 1 one has tr(a]) = 0, and therefore &, is a nilpotent endomorphism

of J. Let J be the vector space
J :={a, €End(J)|ue J}.

It is obvious that j is a Lie subalgebra of End(J). Furthermore, each element

of J is a nilpotent endomorphism of J. Thus by Engel’s Theorem there exists
uo € J\{0} such that

Oy (u) = iy (up) =0 Yu € J.

Hence a,,, = 0. But since the restriction of «a,, to Z vanishes, we deduce that
ou,, = 0and then up € Z. This constitutes a contradiction and proves the claim. O

Corollary 3.5. If (G, H, o) is strongly semi-simple, then the canonical affine con-
nection VV is the only special affine connection on M.

Example 3.6. Let G be a connected semi-simple Lie group, g its Lie algebra
and (Go, Ho, 0¢) its associated symmetric pair. Since the isotropy representation
of hp = g in my = g is equivalent to the adjoint representation of g and g is
semi-simple, there exists a family (g;)%_, of simple ideals of g such that

0=01D---®gr and [g;,9:] =g:Vie{l,... .k}
Hence the symmetric pair (G, Ho, 09) is strongly semi-simple.
Consequently, we obtain the following corollary.

Corollary 3.7. On a semi-simple connected Lie group G, the canonical affine
connection V is the only special affine connection.

However, the conclusion of this corollary fails if we replace semi-simplicity by
reductivity, as the next proposition shows.

Proposition 3.8. FEvery reductive non semi-simple connected Lie group G admits
a special affine connection which is different from the canonical one.

Proof. Let eg be a nonzero element in the center of the Lie algebra g of G. Define
a product x: g X g — g on g as follows:

uxv = Kg(u,v)eg,
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where kg : g x g — R is the Killing form of g. A straightforward computation
shows that x is a non-trivial Poisson product on g. Hence the result follows by

using Corollary O

Example 3.9. Let (G;, H;,0;), i = 1,2, be two simple symmetric pairs, and let
g; = m; @ bh; be their corresponding canonical decompositions. We assume that
ad™ : h; — End(m,) are faithful and g;, go are semi-simple Lie algebras. It is clear
that (G* := Gy x Go, H* := Hy X Hy, 0* := 01 X 03) is a symmetric pair and the
corresponding canonical decomposition is g* = m* @ h*, where

m*=m; @my and b* =bh; B hs.

Since the adjoint representation of h; in m; is irreducible, we get that m; is a simple
h*-submodule of m*. In addition, using the fact that g; is semi-simple we obtain
(see [9, p. 56]) that [m;, m;] = h;. Hence, it follows that (G*, H*,o*) is strongly
semi-simple.

Now, the question naturally arises whether an analogous statement for semi-

simple symmetric pairs remains true. The answer to this question is no, in general,
as the next example shows.

Example 3.10. Let H be the Lie group given by

H::{(g ?) |AeSO(3)}.

Consider the Lie group G := R* x H and define an involutive automorphism o of G
by:

0:G—=G, (z,A)— (—=x,A4)
for z € R* and A := (49) € H. It is easy to check that (G, H, o) is a symmetric
pair. Moreover, the canonical decomposition of the Lie algebra g of G is g = m@ b,
where

m = {(u,0) €g|ueck}
and
h— {(o,)?) cg|X = ("0{ 8>,X€50(3)}.
On the other hand, since the Lie bracket of g is given by
[(uai)v(va?)] = ()?”U*?u, [AXv/?]) V(U,)/(:),(U,?) €9,

under the identification of m with R* we obtain that the isotropy representation of

hin m is
ad™ : h — gl(4,R)

0,X) — X.
Let (e;)1<i<4 be the canonical basis of R*. Then we can easily check that mg :=
span{es} and m; := span{e;, e, es} are simple h-submodules of m such that

m = mg @ my. Thus the isotropy representation of h in m is completely reducible
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and therefore (G, H, o) is semi-simple. But (G, H, o) is not strongly semi-simple,
because [m, m] = {0}.

Now, we will show that there exists a non-trivial special product on m = R*.
First we identify R* with R3 xR and we denote by (-, -) the Euclidean inner product
on R3. Define the product

*x:R*x R 5 RY, given by  (x1,t1) % (22, t2) == (0, (x1, x2)) .

It is obvious that * is a non-trivial commutative, associative product on R*. More-
over, for z := (x1,t1), y := (z2,t2) € R* and A € H, we have

Az x Ay = (Axq1,t1) * (Aza, ta)
= (0, (Azq, Axq))
= (0, (21, 22))
= g(m*y).

Thus the product x is Ad(H)-invariant and hence it is a non-trivial special product
on m.

4. EXAMPLES OF STRONGLY SEMI-SIMPLE SYMMETRIC PAIRS

This section is devoted to giving some examples of strongly semi-simple symmet-
ric pairs, namely, Cartan’s symmetric pairs and semi-simple Riemannian symmetric
pairs. Before going further, we recall some definitions and properties that will be
needed later. In what follows, (g,[,]) will be a real Lie algebra and kg : g x g — R
its Killing form.

Definition 4.1. A Cartan involution of g is an involutive automorphism 7 of g such
that the symmetric bilinear form (-,-) : g x g — R defined by (u,v) := —r4(u, 7(v))
is positive definite.

Note that if 7 is a Cartan involution of g, then g splits as a direct sum of
h7 :=ker(r —Idy) and m” := ker(7 +1dy). Moreover, since (-, -) is positive definite
we get that the Killing form x4 of g is negative definite on h™ and positive definite
on m”. Further, (-,-) is ad(h7)-invariant and the following inclusions hold:

b,h7]ChH™, [H",m"]Cm”™, and [m",m"]CpH".
The decomposition g = m” @7 is called the Cartan decomposition with respect to 7,
and the inclusion [h7, m”] C m” gives rise to a representation ad™ 1 hT — End(m™)
which also called the isotropy representation of h7 in m”. Note that the fact that
(-, ) is positive definite implies that g is a semi-simple Lie algebra and it is compact
if and only if 7 = Id,.

Proposition 4.2. Let 7 be a Cartan involution of g and g = m”™ & h7 the corre-
sponding Cartan decomposition. Then

(1) If (g:)F_, is a family of simple ideals of g such that g = @le gi, then for
i # 7, 8; and g; are mutually orthogonal with respect to Kg.
(2) b7 and m™ are mutually orthogonal with respect to kK.
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(3) If p is a nonzero hT-submodule of m™, then [m7,p] = [p,p]. In particular,
[p,p] # {0} and p & [p, p] is an ideal of g.

Proof. The first and the second statement are clear. For the last one, let p be a
nonzero h™-submodule of m” and denote by pt C m” its orthogonal complement
with respect to (-,-), i.e., m"™ = p @ p*. Take u € p and v € p*, then we have

<[U,U]7 [U7U]> = ﬁg([vvu]ﬂ [u, ’U])
= Kg (v, [u, [u,v]])

= <[[uv U],u],’l}>
=0.

Thus [p,pt] = {0} and therefore [m™,p] = [p,p]. If [p,p] = {0}, then p will be a
nonzero abelian ideal of g, which is impossible because g is semi-simple. Finally,
using the Jacobi identity we can easily check that p @ [p, p] is an ideal of g. U

Definition 4.3. The symmetric pair (G, H, o) is called a Cartan symmetric pair
if the tangent map of o at the identity element (also denoted by o) is a Cartan
involution of the Lie algebra g of G.

Example 4.4. The example type is (SL(n,R),SO(n),c*), where o* is given by
o*(A) := (Afl)T. Geometrically, the symmetric space associated to this symmet-
ric pair is the set of all real symmetric positive definite n-matrices with determi-
nant 1.

The following proposition shows that all Cartan’s symmetric pairs are strongly
semi-simple.

Proposition 4.5. If (G, H,o) is a Cartan symmetric pair, then it is strongly
semi-simple.

Proof. First, let us show that the isotropy representation of h in m is completely
reducible. To do this, it suffices to prove that each h-submodule of m possesses
an h-submodule complement. Let p C m be an h-submodule of m and denote by
pt C m its orthogonal complement with respect to (-,-). Clearly, m = p @ p*, and
for u € pt,v € p,a € h we have

([a,u],v) = —(u, [a,v]) = 0.

Hence p= is an h-submodule of m. If (m;)%_, is a family of simple h-submodules of m

such that m = @le m;, then using the last assersion in Proposition we deduce
that [m;, m;] # {0} for all i € {1,...,k}. Thus (m;)%_, is a strong decomposition
of m. O

Now, recall that, if g is a simple Lie algebra and H is compact, then (G, H, o)
is a simple symmetric pair with dimm > 1. It follows that the canonical affine
connection is the only special affine connection on M. The following proposition
shows that the last conclusion remains true if we replace the simplicity of g by the
semi-simplicity.
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Proposition 4.6. If g is a semi-simple Lie algebra and H is compact, then the
symmetric pair (G, H, o) is strongly semi-simple.

Proof. Since H is compact, let {-,-) be an Ad(H)-invariant inner product on g,
and define a linear endomorphism ¢ : m — m by

kg(u,v) = ((u),v) Yu,v €m.

A direct computation using the fact that (-,-) and k4 are both Ad(H)-invariant,
symmetric bilinear forms, one can easily check that ¢ is symmetric with respect
to (-,-) and commutes with all ad, for v € h. Thus, there is a direct sum de-
composition m = @;_, p; such that ¢y, = t;Idy, with ¢, € R* and t; # t; for
i # j. Moreover, (p;)i_, are h-submodules of m which are mutually orthogonal
with respect to (-,-). Hence there exists a direct sum decomposition m = Eszl m;
such that each m; is a simple h-submodule of m which is contained in some p; and
(m;)¥_, are mutually orthogonal with respect to (-, -). Furthermore, if u; € m; and
u; € my, then
rog (i, s, [ui, u]) = Kg(ug, [[ui, us], wi))

=ty <uj7 [[U“ uj]a ul]>

=0.
Since ad, : g — g is skew-symmetric with respect to (-,-) for v € b and g is
semi-simple, one can easily check that x4 is negative definite on h and therefore

[m;, m;] = {0}. Thus [m;,m;] # {0} for all ¢ € {1,...,k}, which proves that
(G, H, o) is strongly semi-simple. O

5. EXAMPLES OF SYMMETRIC SPACES WITH SPECIAL AFFINE CONNECTIONS

This section is devoted to giving examples of symmetric spaces on which there
is a special affine connection which is different from the canonical one. We start
by recalling some basic facts on how one can get a symmetric space from a Jordan
algebra.

Definition 5.1. A Jordan algebra is a commutative algebra (A,.) in which the
identity
z.(2%y) = 2. (z.y)
holds.
Example 5.2. The trivial example is a commutative, associative algebra.

It is well known (see for example [4]) that to each Jordan algebra (A,.) we
can associate (Tits—Kantor-Koecher construction) a Zs-grading of a Lie algebra
g = bhA o mA as follows: we define

g‘: = A, g(‘? := span { Lo, [Ly, L] J2,y,2 € A} C End(A),

and
g :=span{L,[L,,L] /z € A} C Hom(S*A,A),
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where L(z,y) = Ly y := 2.y, and [L,, L] (y, 2) := [La, Ly] (2)—Lg 4 (2) for z,y, z € A.
Then we set
o* =gt og? oo,
and we get that g is a short Z-grading of a Lie algebra with the following Lie
bracket:
o [z,y] =[A,B]:=0for z,y € g” and A, B € g4;
e [F,z]:=F(z) for z € gA and F € g;
o [F.B](z,y) := F(B(z,y)) - B(F(x),y) = B(z, F(y)) forz,y € g%, F € g
and B € g‘lA;
e [B,z|(y) := B(z,y) for z € g* and B € g*.
Hence, if we set h* := g and m#® := g# & g?, we deduce that g* = h* @ m?
is a Zo-grading of a Lie algebra, i.e.,
(%021 b, b mAl Cm® and  [m®, mA] C bt
In summary, any Jordan algebra (A, .) gives rise to a Zs-grading of a Lie algebra
g% = bA @ mA, and therefore (see [2 Theorem 1.1.3]) to a simply connected
symmetric space MA.

Now, we introduce a particular subclass of associative algebras, which will be
used to construct our examples.

Definition 5.3. An associative algebra (A,.) is called 0-associative if
z.y.z2 =0 Vz,y,z € A.

Example 5.4. Let (V,+) be an n-dimensional vector space, and (e;)1<i<pn any
basis of it. For i1,i5 € {1,...,n} fixed such that i; # is, the product given by

€, -6, =€, and e.e; =0
for {i,7} # {i1,41} is (commutative) O-associative.

Example 5.5. Let (A,.) be a symmetric Leibniz algebra, i.e., an algebra (A,.)
such that for any x,y € A, we have

Ly, Ly] =Ly, and [R;,Ry]=Ry.,

where L;, R, € End(A) are defined by L,(y) := z.y and R,(y) = y.x. If we
consider the product * on A given by

TxY:=xYy+yY.T Va,y € A,

then a small computation shows that (A, *) is a (commutative) O-associative alge-
bra.

The proof of the following proposition is a matter of pure computation and is
thus omitted.

Proposition 5.6. Let (A,.) be a commutative, associative algebra. Then b is
an abelian Lie subalgebra of g®. Moreover, if (A,.) is 0-associative, then g* is a
2-step nilpotent algebra.
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Now, we can give a way of obtaining examples of symmetric spaces on which
there is a special affine connection different from the canonical one. More precisely,
we have:

Proposition 5.7. Let (A,.) be a commutative, 0-associative algebra. Then there is
a special affine connection on its associated symmetric space M which is different
from the canonical one.

Proof. According to Theorem [I.1] it suffices to define a commutative, associative,
and ad(h®)-invariant product on m®. We consider the product on m# given by

xom® xm® 5 mA (24 A)«(y+ B) =2y,

“won

where is the commutative, 0-associative product of A. One can easily check
that the product * is commutative, associative, and ad(h*)-invariant. O

6. HoLONOMY LIE ALGEBRA OF SPECIAL AFFINE CONNECTIONS

In this last section, we compute the holonomy Lie algebra of a special affine
connection. But first, let us start with some background that should be known.

Given an affine connection V on M, for any loop v at p € M the parallel
transport along v is a linear isomorphism of 7, M, and the set of such linear iso-
morphisms for all loops at p forms a group which is called the holonomy group
of V based at p and denoted by Hol, (V). The restricted holonomy group Holg(V)
is the subgroup composed of parallel transports along all contractible loops at p.
It is well known (see [5, Chapter 2, Theorem 4.2]) that Holg(V) is the identity
component of Hol,(V) and that Holg(V) is a connected Lie group. The holonomy
Lie algebra of V based at p is the Lie algebra of Holg(V). On the other hand,
consider the vector subspace bo[Z of End(T, M) which is generated by all linear
endomorphisms of the form RY (u,v), (Vy,RY)(u,v), (V,VuRY)(u,v),..., where
u,v,w, z,... are arbitrary tangent vectors at p. It was shown in [8, Lemma 4.2]
that it is a Lie subalgebra of End(T,M) and we call it the infinitesimal holonomy
Lie algebra at p. The immersed Lie subgroup of GL(7,M) generated by bo[X is the
infinitesimal holonomy group at p. The main result (see [8, Theorem 7]) is that the
restricted holonomy group is equal to the infinitesimal holonomy group at every
point.

According to our discussion above, since the curvature tensor R" of the canonical
affine connection V° is parallel (i.e., VOR? = 0), under the identification of m with
T,M the holonomy Lie algebra of V" at the origin o € M is given by

0
holy = adjmm) -

If V is an arbitrary G-invariant affine connection on M, then by [6, Chapter 10,
Theorem 4.4] and under the identification of m with T, M, the holonomy Lie algebra
of V at 0 € M is the smallest Lie subalgebra hol} of End(m) that satisfies the
following two conditions:

(1) for all u,v € m, RY (u,v) € holy;

0’

(2) for all uw € m, [ay,holy] C holy

0
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where oV : m x m — m is the bilinear map associated to V and o € End(m) is

defined by oy (v) := aV (u,v). Although the holonomy Lie algebra of a G-invariant
affine connection on M is difficult to compute explicitly, it turns out that the
holonomy Lie algebra of a special affine connection on M can be easily computed,
as the next proposition shows.

Proposition 6.1. Let V be a special affine connection on M. Then the holonomy
Lie algebra of V at the origin o € M is given by
v v
holy = adim,m] +[fm,m],m]:
where oY :m x m — m s the bilinear map associated to V.

Proof. For a special affine connection V on M, by (2.1]) and (2.3) one has

[ady,v]s ay] = aﬁu’v}’wp RY (u,v) = — adpy ), and [, aY] =0

for all u,v, w € m. Thus the Lie algebra ady m —l—av[m m],m] satisfies the conditions
and , so it contains ho[ov. On the other hand, for z,y, z,u,v € m,

v v
adjy,o] 12 = adfu] + [ad(zy), 0 ]
=RY(v,u) + [aY,RY (z,y)] € hol}.

This proves the other inclusion, and hence the claim. O
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