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LORENTZ C;2>-MANIFOLDS

ADEL DELLOUM AND GHERICI BELDJILALI

ABSTRACT. The object of the present paper is to study Ci2-structures on a
manifold with Lorentzian metric. We focus here on Lorentzian Cp2-structures,
emphasizing their relationship and analogies with respect to the Riemannian
case. Several interesting results are obtained. Next, we study Ricci solitons
in Lorentzian C12-manifolds.

1. INTRODUCTION

Recently, C'12-manifolds have become a well-known and intensively studied sub-
ject of research in differential geometry. The recent works [11 2, [3, 4}, 5] provide a
detailed overview of the results obtained in this framework.

What distinguishes a C'jo-manifold from other almost contact metric structures
is that it is neither contact nor normal. It has important characteristics similar to
well-known manifolds such as the Sasaki, Kenmotsu, and cosymplectic manifolds.
That is why we find it important to study on it the various concepts that were
studied on other previously mentioned manifolds, and compare the results obtained.

Although Lorentz manifolds are the main topic in physics, there may be some
obstructions to the existence of a Lorentz metric on a manifold. A condition under
which it is possible to construct a Lorentz metric from a Riemannian one is the
existence of a globally-defined nowhere-vanishing vector field. Such a condition is
clearly satisfied by a Cia-manifold; hence using O’Neill’s construction we realize a
Lorentz metric on a Chs-manifold and we study its properties.

Therefore, it is a very natural and interesting idea to define both a C'j2-manifold
structure and a Lorentzian metric on an odd-dimensional manifold.

First of all, we will start by introducing the basic concepts that we need in this
research.

2. PRELIMINARIES

The notion of Ricci soliton was introduced by Hamilton in 1982 [8]. A Ricci
soliton is a natural generalization of an Einstein metric. A pseudo-Riemann man-
ifold (M, g) is called a Ricci soliton if it admits a smooth vector field V' (potential
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vector field) on M such that

(Lyvg)(X,Y)+25(X,Y) —2)\g(X,Y) =0, (2.1)
where Ly g is the Lie derivative of g along V' given by

(Lvg)(X,Y) =g(VxV,Y) +g(VvY, X),

S is the Ricci tensor, A is a constant and X, Y are arbitrary vector fields on M.
A Ricci soliton is said to be shrinking, steady or expanding according to A being
negative, zero or positive, respectively. It is obvious that a trivial Ricci soliton is
an Einstein manifold with V' zero or Killing.
The generalized Ricci soliton equation in a Riemann manifold (M, g) is defined
by (see [9])
Lyg= -2V’ @V’ + 255 + 2)g, (2.2)
where V?(X) = ¢(V, XY) and ¢, ¢, A € R.
A further generalization of the Ricci soliton equation in the Riemann manifold
(M, g), is given by the following equation (see [6]):
Lyv,g=—2c1Vy @ V2 4 2¢2S + 2)g, (2.3)

where Vi, V5 are two vector fields on M.
Recently, in [3], the authors introduced the generalized n-Ricci soliton equation

in a Riemann manifold (M, g) given by
Lyvg=—2cV" @V’ +2¢55 + 2\g + 2un @1, (2.4)

where ¢y, c2, A\, € R and 7 is a 1-form on M.
Inspired by equations (2.3)) and (2.4]), we can guess the existence of a general-
ization that includes all previous cases, which we define by the following equation:
Ly, g= —2(:1V2b ® V; + 225 + 2Ag + 2un @ 0. (2.5)

We refer to this generalization as “generalized n-Ricci bi-soliton” and the confir-
mation of the existence of this generalization will be in the last two theorems.
An odd-dimensional Riemann manifold (M?"*1 g) is said to be an almost contact
manifold if there exist on M a (1,1)-tensor field ¢, a vector field £ (called the
structure vector field) and a 1-form 7 such that

n() =1,
{@2)( = —X +n(X)¢ (26)

for any vector fields X, Y on M.
In particular, in an almost contact metric manifold we also have

=0 and nop=0.

Moreover, a Riemannian metric is said to be compatible with the almost contact
structure (¢, &, n) if

(X, pY) = g(X,Y) = n(X)n(Y),

and we refer to an almost contact metric structure as (p,&,7, g).
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The fundamental 2-form ¢ is defined by
P(X,Y) = g(X,¢Y).
It is known that the almost contact structure (¢, &, n) is said to be normal if and
only if
NW(X,Y) = No(X,Y) + 2dn(X,Y)é = 0

for any X, Y on M, where N, denotes the Nijenhuis torsion of ¢, given by

Let now g denote a Lorentz metric on M; g is said to be compatible with the
almost contact structure (p,&,n) if

gleX,0Y) = g(X,Y) + n(X)n(Y). (2.7)

A smooth manifold M, equipped with an almost contact structure (¢,&,7n) and a
compatible Lorentz metric g, will be called an almost contact Lorentz manifold.

Note that, by (2:6) and ([£7), n(X) = —§(¢, X). In particular, §(£,€) = —1,
and so the characteristic vector field £ is timelike with respect to the metric g.

Moreover, (2.7)) implies that §(¢X,Y) = —g(X, Y).
In the classification of Chinea and Gonzalez [7] of almost contact metric mani-
folds there is a class called C3-manifolds which can be integrable but never normal.

Definition 2.1 ([4]). Let (M?"*1 ¢ & 1, g) be an almost contact manifold. M is
called an almost C12-manifold if there exists a closed 1-form w on M that satisfies
dn=wAmn, d¢ = 0.

In addition, if N, = 0, we say that M is a Cia-manifold and is denoted by

(M2n+179»57'¢)777»%9)a Where w = _(vfg)b = —VEU and w is the vector ﬁEId
given by

w(X) = g(X,¥) = —g(X, V)
for all vector fields X on M.

In a Cyz-manifold, the following conditions are equivalent (see [2} [, [5] [7]):
(Vx o) (Y, Z) = n(X)n(Z2)(Ven)eY —n(X)n(Y)(Ven)pZ,

(Vx@)Y =n(X)(w(@Y)s +n(Y)ep), (2.8)
(Vexp)Y =0.
Putting Y = ¢ in 7 one easily obtains
Vx§=—n(X)v. (2.9)
Proposition 2.2 ([4, 2]). For any Ci2-manifold, we have
R(X,Y)¢ = —2dn(X, Y)Y —n(Y)Vxt) + n(X)Vy, (2.10)

R(X, )Y = w(X)(w(Y)E —=n(Y)9) + 9(Vx, Y)E = n(Y)Vx),
S(X,€) = —n(X) divy,

where R and S denote the Riemann curvature and the Ricci curvature temsors,
respectively.
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Example 2.3. We denote the Cartesian coordinates in a 3-dimensional Euclidean
space R? by (21,22, 23) and define a metric tensor g by

p2—|—72 0 -7

g=e* 0o p 0 |,
—T 0 1
where f = f(y), 7 = 7(x) and p = p(x,y) are functions on R® with f' = g—i.
Further, we define an almost contact structure (¢, &, 1) on R3 by
0 -1 0 0
Y= 1 0 0 ’ 6267f 0 ) nZBf(_TaOal)'
0 —7 0 1

Thus
dn = flef (de Ady +dy A dz) and d¢ = 0.

By direct computation, the non-zero components of N 151)1' j are
1 3 _ 1)3
) f ’ N2(3) = f’~
On the other hand,
(Ny)i; =0 foralli,j ke {1,2,3}

implies that the structure (p,&,7,g) is integrable. To ensure that the defined
structure is not normal, it suffices to take f’ # 0. Also, taking w = f’dy, we can
see that

dn=wAn, w() =0, and dw=0.
We denote by v the g-dual of w,
f’ o2 9
dy’
Thus, (M, ¢,&,9¥,n,w, g) is a C’lg—structure on R3.

1/;_

A Cho-manifold M of dimension 2n+ 1 with a Cya-structure (p, &, 1, g) is said to
be n-Einstein if the Ricci curvature tensor S of the metric g satisfies the equation
S = pg + vy ® n for some constants p,v € R. In [I0], Okumura assumed that
both p and v are functions, and then proved, similarly to the case of Einstein
metrics, that they must be constant when n > 1. Obviously, v = 0 reduces to
the more familiar C1o-Einstein condition. In general, u + v = —div, and every
C12-n-Einstein manifold is necessarily of constant scalar curvature r = 2nu — div .

3. LORENTZ C'2-MANIFOLDS

Contrary to the Riemann case, any smooth manifold cannot admit a Lorentz
structure. In fact, this is possible if and only if there exists a global vector field
(never vanishing) ([I1], p. 149]). Additionally, the following well-known result shows
how to obtain such a metric.
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Proposition 3.1. Let (M, g) be a Riemann manifold, V a unit global vector field
and V° its dual 1-form. Then § = g — 2V° @ V? is a Lorentz metric on M. Fur-
thermore, V' becomes timelike so the resulting Lorentz manifold is time orientable.

Definition 3.2. Let (M, ,£,n,g) be a Lorentz almost contact manifold. M is
said to be a Lorentz almost contact Co-manifold if

dn=wAmn, d¢ = 0.
If, in addition, N, = 0, then (M, p, &, 7, g) is called a Lorentz Ci2-manifold.
Now, we consider a Cjp-manifold (M?2"*1 € n,g) and we obtain a Lorentz
metric putting
g=g—2n®n. (3.1)
Proposition 3.3. The manifold (M*"*1 ¢, &, n,§) is a Lorentz C1o-manifold.
Proof. Since (¢,€,n) is an almost contact structure, it is easy to see that £ is
timelike with respect to the metric g. We check the compatibility of g with the
structure; for any vector fields X and Y on M, we have
90X, 9Y) = g(pX,pY)
=9(X,Y) = n(X)n(Y)
= 9(X,Y) +n(X)n(Y).

Moreover, we have

(X,Y) = 3(X, ¢Y)
=¢(X,Y)
for any vector fields X and Y on M. So we obtain d¢ = d¢ = 0.

Finally, the integrability condition (i.e., N, = 0) holds since it does not depend
on the metric. Then, we obtain a Lorentz Cf3-manifold on M. O

From now on, such a Lorentz Cj2-manifold is said to be the associated Lorentz
(C'12-manifold.
Let (M?"F1 . &, n, ) be a Lorentz Cjo-manifold; considering the transformation
g=g+2n®mn,

one obtains that (M?2"*1 o, &,1,5) turns out to be a Cjo-manifold.
To compare the Levi-Civita connections V and V with respect to the Riemann-
ian metric g and the Lorentz one g, we prove the following proposition.

Proposition 3.4. Let (M?"*1 p, &1, g) be a Cia-manifold and consider the asso-
ciated Lorentz Cra-manifold (M*" Y p,&,n,§). Then, the Levi-Civita connections
V and V are related by

VxY = VxV +n(X)n(Y ). (3.2)
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Proof. By Koszul’s formula, for V we have

25(VxY,Z) = Xg(Y, Z2) +Y§(Z,X) — Z§(X,Y)
+g(Za [Xv Y]) +§(Yv [Zv XD - g(Xa [Z7 YDv

and, applying the definition of g, the above formula becomes

— dn(X, Z)n(Y) = dn(Y, Z)n(X).

With the help of (2.9 and , one can get

and since
w(Z) =g, 2)
=g, 2),
we have
VxY = VxY +n(X)n(Y)y. O

As a consequence of the relation between the Levi-Civita connections, we have
the following theorem.

Theorem 3.5. An almost contact Lorentzian manifold (M*"*1 0, & n,§) is a
Lorentz Cho-manifold if and only if

(Vxe)Y = n(X)w(pY)e.
Proof. Using , we have
(Vx@)Y = VxpY — oVxY
= (Vx@)Y = n(X)n(Y )ed;
from , we get our formula. O

We now investigate some curvature properties of a Lorentz Cjo-manifold.

Proposition 3.6. Let (M?" ! ¢ £,n,9) be a Cia-manifold and consider the as-
sociated Lorentz Cyo-manifold (M?" 1 o €,m,3). Then, the curvature tensor R
(resp., the Ricci curvature S) and the curvature tensor R (resp., the Ricci curva-
ture S) are related by

R(X,Y)Z =R(X,Y)Z —n(Z)R(X,Y)¢, (3.3)
S(X,Y) = S(X,Y) + (2dive — [ )n(X)n(Y)
T w(X)w(Y) +9(Vx,Y)
for all X, Y and Z vector fields on M.
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Proof. Equation (3.3]) follows from the formulas (3.2)) and
R(X,Y)Z =VxVyZ - VyVxZ -V xyZ,

with the help of (2.10). A standard orthonormalization process shows that if
{e;}1<i<on+t1 is a local orthonormal basis with respect to g, then it is a local
pseudo-orthonormal basis with respect to §. Using the formula

2n+1
SXY) =Y §(R(X,e5)e;, ),
i=1
by a simple computation using (3.3)), (3.1) and (2.2)), one can get the second relation.

O

4. RiccI SOLITONS IN LORENTZ C{2-MANIFOLDS

In [3], there are nice results on Ricci solitons on 3-dimensional Cy2-manifolds; we
confirm here that the results are valid for any odd dimension. In this section, we
study the behavior of Ricci solitons and generalized Ricci solitons in the associated
Lorentz Cjs-manifold. We will start by introducing the basic concepts that we
need in this section.

Let (M?"*1 p,€,1n,9) be a Cp-manifold and (M?"+1 p, €, n,§) its associated
Lorentz C72-manifold.

Proposition 4.1. Let (M?"1 p, &, n, g) be a Cia-manifold and consider the asso-
ciated Lorentz Cyo-manifold (M2 0, & n,§) admitting a (g,&,\) Ricci soliton.
The following holds:

e (M,g) is Einstein.

o The scalar curvature is given by 7 = (2n + 1) div 1.

Proof. Since (g,&, A\) is a Ricci soliton, we have
Leg(X,Y)+25(X,Y) —203(X,Y) = 0.
From , we have
Vx&=Vx&+n(X)p,
and in view of , we get Vx& = 0. Then, Leg(X,Y) =0. Knowing that

2n+1 ~
T = Z S(ei,ei)
1

we obtain the desired result. O

For our first motivation, we consider the case where the potential field V is
pointwise colinear with the vector field &, i.e., V = f&, where f is a function on M.
We compute

(ﬁfgg)(X, Y) = g(@X(]‘fLY) +§(@Y(f£)7X)

(4.1)
==X(f/InY) =Y (f)n(X).
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Replacing , and in , we obtain
(Lreg)(X,Y) + 25(X,Y) —20§(X,Y) = Lypg(X,Y) +2w(X)w(Y)+25(X,Y)
—20g(X,Y) = X (f)n(Y) =Y (f)n(X)
+2(2) + 2divey — [¢]*)n(X)n(Y).
(g, f€, \) is a Ricci soliton if and only if
Lypg(X,Y) = 2w(X)w(¥) -25(X,Y) +2)g(X,Y)
+X(nY) +Y (Fn(X) - 223 +2dive — [¥*)n(X)n(Y).
By setting Y =€ in , we obtain
X(f) = (2x +2dive — £(f))n(X). (4.3)
Again replacing X by & in , we get
E(f) = A+ dive.
Substituting this in , we have
X(f) = (A+dive)n(X), (4.4)

(4.2)

which implies
df = (A + divd))n.
Substituting in , we obtain
Lypg(X)Y) = 2w(X)w(Y)—-25(X,Y) +2)\g(X,Y)
=2(A+divey — [)n(X)n(Y).
Thus, we state the following:

Theorem 4.2. Let (M*"* ¢, &, n,9) be a Cia-manifold and consider the associ-
ated Lorentz Cia-manifold (M2 0, €,n,3). If (g, f€, \) is a Ricci soliton then g
satisfies the generalized n-Ricci soliton equation (2.4) with V =1, ¢1 =1, ca = —1,
where 1 = —2(A +divey — [¢]?) € R and df = (A +dive)n.

In addition, if X = |[1|?> —dive € R, then g satisfies the generalized Ricci soliton
equation (2.2) with V =1, c; = 1, co = —1, where df = [|*n.

Conversely, suppose that g satisfies the generalized n-Ricci soliton equation (2.4
with V = 4, that is,

Lypg=—2c10Qw~+ 2c2S +2\g + un @ n, (4.5)

where ¢y, co, A\, € R.

Using (3.4) and (3.1)), taking into account L;g9(X,Y) = 29(Vx¥,Y), (4.5) re-

duces to
S(X,Y) = -Ag(X,Y) + (ex(2dive = [v1?) =22 = £ ) n(X)n(Y)
+ (14 e2)g(Vxt,Y) + (o1 + e2)wo (X )w(Y),

i.e., g is n-Einstein if and only if

(4.6)

62:—1, C1 =1.
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So (4.6) becomes

S(X,Y) = (X, Y) + (24 +2dive = 02+ £ ) n(Xm(v),  (47)

where 2\ + 2div) — [1)]? + £ € R. Furthermore, setting X =Y = £ in (.7), we
obtain

£ = A —divy + [yl
and (4.7)) reduces to

S(X,Y) = Ag(X,Y) — (A + dive)n(X)n(Y).

On the other hand, if g satisfies the generalized Ricci soliton equation with
V =1, from with = 0 we get

S(X,Y) = Ag(X,Y) + (2A + 2dive) — [¢)n(X)n(Y), (4.8)
where 2\ + 2divy — 1|2 € R. Again, setting X =Y = ¢ in , we obtain

A=y —divy,
and reduces to
S(X,Y) = (|9 = dive)g(X, Y) + [ n(X)n(Y).

Therefore, we have the following theorem.

Theorem 4.3. Let (M*"*1 . & 1, g) be a Cra-manifold with divy € R and con-
sider the associated Lorentz Cio-manifold (M*" 1 o, &, n, ).

(1) If g satisfies the generalized n-Ricci soliton equation (2.4) with

V:wa 01:17 62:_17 %:—A_dlv¢+|¢‘27

then (M, g) is an n-FEinstein manifold. In addition, if A = —div, then
(M, g) is an Finstein manifold.
(2) If g satisfies the generalized Ricci soliton equation (2.2) with

V=1, a=1, c=-1, A=)’ —dive,
then (M, §) is an n-Einstein manifold.

For our second motivation, we consider the case where the potential field V is
orthogonal to the Reeb vector field €.

Theorem 4.4. Let (M?"*! o, & n,g) be a Cia-manifold, (M*"*1 o, &, n,§) the
associated Lorentz Cio-manifold, and V a vector field on M orthogonal to &. If
(g, V, \) is a Ricci soliton, then g satisfies the generalized n-Ricci bi-soliton equation

(2.5) with
Vi=V+y, Vo=, =1, ca=-1, and p= %
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Proof. Let V be orthogonal to &, that is, n(V') = 0. This implies
n(VxV) =g(VxV,§)
=—g(V,Vx¢)
= n(X)w(V).
So, using and (3.1)), one can get
Lyvg(X,Y)=g(VxV,Y) +§(VyV,X)
= Lvg(X,Y) = dw(V)n(X)n(Y).
Then, from , and we obtain
Lvi(X,Y)+25(X,Y) = 2)0§(X,Y) = Ly g(X,Y) +25(X,Y) — 2Ag(X,Y)
+2w(X)w(Y) +29(Vx,Y)

+2(2A + 2dive — 20w(V) — [¢]*)n(X)n(Y).
(4.10)

Suppose that Ly G(X,Y) +25(X,Y) —2X§(X,Y) = 0. Setting X =Y = £ we get
A=w(V) —div.
Knowing that L49(X,Y) =2¢(Vx1,Y), the equation becomes
Loving(X,Y) = —20(X)w(Y) = 25(X,Y) + 229(X, Y) + 2J[2n(X)n(V).
This completes the proof. O

Now, suppose that (g, V, A) is a Ricci soliton, that is, Ly g + 25 — 2Ag = 0 with
V orthogonal to £. Setting X =Y = £, we obtain

A=w(V)—dive. (4.11)
Using (E1), ), 1) and (@ETT), one can get
Lo d(X,Y) = 20(X)w(Y) — 25(X, V) + 225(X,Y) + 20 2n(X)n(Y).
Therefore, we have the following theorem.

Theorem 4.5. Let (M?" ! ¢ £,n,9) be a Cia-manifold, (M*" 1 0, & n,§) the
associated Lorentz Cio-manifold, and V a wvector field on M orthogonal to &. If
(9, V, ) is a Ricci soliton, then § satisfies the generalized n-Ricci bi-soliton equation

£3) with
Vi=V—4, Va=d¢, a=-1, =1, ad p=f
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