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ON THE PYTHAGORAS NUMBER FOR POLYNOMIALS
OF DEGREE 4 IN 5 VARIABLES

SANTIAGO LAPLAGNE

Abstract. We give an example of a polynomial of degree 4 in 5 variables that
is the sum of squares of 8 polynomials and cannot be decomposed as the sum
of 7 squares. This improves the current existing lower bound of 7 polynomials
for the Pythagoras number p(5, 4).

1. Introduction

The decomposition of a real multivariate polynomial as a sum of squares of real
polynomials is a central problem in real algebraic geometry, with many theoretical
and practical applications. An interesting and difficult problem is to determine the
minimum number p(n, 2d) such that any polynomial of degree 2d in n variables
that is a sum of squares can be decomposed as a sum of p(n, 2d) squares. This
number is called the Pythagoras number of n-ary forms of degree 2d.

In [9], C. Scheiderer obtained lower bounds for p(n, 2d) for all n ≥ 3 and d ≥ 2,
assuming a conjecture by Iarrobino and Kanev that can be verified computationally
for small values of n and d. The lower bounds obtained in that paper are close
to the known upper bounds for the Pythagoras number. A natural question is
whether these lower bounds are sharp. For the case of polynomials of degree 4 in
5 variables, the lower bound given in [9] is 7. That is, there exists a polynomial
that is the sum of 7 squares and cannot be decomposed as the sum of 6 squares. In
this paper, we give an explicit example that improves this bound. Our polynomial
is a sum of 8 squares and cannot be decomposed as the sum of 7 squares. As far as
we know, this is the first example that improves the lower bounds given in [9] for
any n and d, showing that the examples constructed there are not always optimal.

1.1. Preliminaries. We set some notations and recall basic results that will be
used in our construction. We refer the readers to [2, 8] and [4] for details and
proofs.

1.1.1. Sums of squares. Let Hn,d be the space of homogeneous polynomials of de-
gree d in n variables, and let Σn,2d ⊂ Hn,2d be the set of polynomials that can be
decomposed as sums of squares of polynomials, which we refer to briefly as SOS
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polynomials. The set Σn,2d is a full dimensional cone in Hn,2d, included in Pn,2d,
the cone of non-negative polynomials in Hn,2d. If f ∈ Σn,2d, f = p2

1 + · · ·+p2
s, then

pi ∈ Hn,d for all 1 ≤ i ≤ s (that is, all the polynomials in the SOS decomposition of
a homogeneous polynomial of degree 2d are homogeneous polynomials of degree d).

1.1.2. The Gram spectrahedron. Let m be the vector of monomials of degree d in
n variables under some monomial ordering and let N be the length of this vector
(N = dim Hn,d). A homogeneous polynomial f ∈ R[x1, . . . , xn] of degree 2d is a
sum of squares if and only if there exists a positive semidefinite matrix A ∈ RN×N

such that
f = mT Am.

The space of all such matrices is called the Gram spectrahedron of f . It is a
compact convex set in the space of matrices.

1.1.3. The dual cone and bilinear forms. The dual cone K∗ of a convex cone K in
a real vector space V is the set of all linear functionals in the dual space V ∗ that
are nonnegative on K: K∗ = {ℓ ∈ V ∗ | ℓ(x) ≥ 0 for all x ∈ K}. Given a form
ℓ ∈ H∗

n,2d, we can define a bilinear form Qℓ : Hn,d × Hn,d → R, Qℓ(p, q) = ℓ(pq).
For computations, it is convenient to fix a monomial base M of Hn,d and represent
Qℓ in the coordinates of M as a matrix Q ∈ RN×N , where N = dim Hn,d. If
ℓ ∈ Σ∗

n,2d, then Qℓ(p, p) ≥ 0 for all p ∈ Hn,d. That is, the form Qℓ is positive
semi-definite and so is the matrix Q. The converse is also true: if ℓ ∈ H∗

n,2d and
Qℓ is positive semidefinite, then ℓ ∈ Σ∗

n,2d.
If f is in the boundary of Σn,2d, there exists a non-zero ℓ ∈ Σ∗

n,2d such that
ℓ(f) = 0. If f = p2

1 + · · · + p2
s then ℓ(p2

i ) = 0 for all 1 ≤ i ≤ s. Therefore,
Qℓ(pi, pi) = 0 and (pi)M is in the kernel of the matrix Q for all 1 ≤ i ≤ s (since Q
is positive semidefinite).

2. Sum of 8 polynomials

We give an example of a polynomial of degree 4 in 5 variables that is the sum
of 8 squares and cannot be decomposed as the sum of 7 squares.

Our starting point is a strictly positive polynomial of degree 4 in 4 variables in
the boundary of Σ4,4. In [1], G. Blekherman provides formulas for constructing
such polynomials. We use the example given in [6, Example 5.9] following those
formulas.
Example 2.1. Let p1, p2, p3, p4 ∈ R[x1, x2, x3, x4],

p1 = x2
1 − x2

4,

p2 = x2
2 − x2

4,

p3 = x2
3 − x2

4,

p4 = −x2
1 − x1x2 − x1x3 + x1x4 − x2x3 + x2x4 + x3x4,

and set g = p2
1 + p2

2 + p2
3 + p2

4. Then g is a strictly positive polynomial in the
boundary of Σ4,4. The decomposition of g as a sum of squares is unique up to
orthogonal transformations (see [3, Section 3.13]).
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We add to this example four new polynomials in a ring with one more variable.

Example 2.2. In R[x1, . . . , x5], let p1, p2, p3, p4 be as in Example 2.1, and set

p5 = x1x5, p6 = x2x5, p7 = x3x5, p8 = x4x5.

Let g = p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6 + p2
7 + p2

8. Then g ∈ Σ5,4 is the sum of 8 squares
and cannot be decomposed as the sum of 7 squares.

Remark 2.3. The intuitive idea behind this example is that since the monomial
x4

5 is not in g, the monomials x2
i x2

5, 1 ≤ i ≤ 4, in g can only be obtained from a
product (xix5)2, hence x1x5, . . . , x4x5 can be thought as new variables.

We will prove the claim in the example by brute force, that is, we will suppose
that there is a decomposition of g as a sum of 7 squares and prove that the resulting
equations on the coefficients have no real solution. To reduce the redundancy and
simplify the computations, we show first that the polynomials in the decomposition
can be assumed to be in triangular shape.

Lemma 2.4. Let {p1, . . . , ps} ⊂ k[x1, . . . , xn] be a set of s linearly independent
homogeneous polynomials of the same degree d and let g be a sum of squares, g =∑t

i=1 q2
i , where qi ∈ ⟨p1, . . . , ps⟩R, 1 ≤ i ≤ t (each qi is a real linear combination

of p1, . . . , ps). Then for some t′ ≤ min(t, s) there exists a decomposition of g as a
sum of t′ squares g =

∑t′

i=1 q̃2
i where the polynomials q̃i ∈ Hn,d are in triangular

shape with respect to p1, . . . , ps. That is, for any 1 ≤ i ≤ t′, q̃i ∈ ⟨pi, . . . , ps⟩R.

Proof. Let g = q2
1 + · · · + q2

t , with qi =
∑s

j=1 aijpj , aij ∈ R, 1 ≤ i ≤ t, 1 ≤ j ≤ s.
Taking v =

(
p1 p2 . . . ps

)T , we get

g = vT AT Av,

where A ∈ Rt×s is the matrix with entries aij .
The matrix M = AT A ∈ Rs×s is a positive semidefinite matrix of rank at

most min(t, s). Let t′ be the rank of M . Any such matrix can be decomposed as
M = BT B, where B ∈ Rt′×s. Now let B = QR be a QR decomposition of B, with
Q ∈ Rt′×t′ orthogonal and R ∈ Rt′×s upper triangular. Then BT B = RT R and
the formula g = vT RT Rv gives the decomposition of g in triangular shape, taking
q̃i as the ith element of Rv. □

Proposition 2.5. The polynomial g in Example 2.2 is a sum of 8 squares and
cannot be decomposed as the sum of 7 squares.
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Proof. See [5] for the computations in Maple [7]. We first prove that any polynomial
in a SOS decomposition of g is a linear combination of {p1, . . . , p8}. We look for
non-zero linear forms ℓ ∈ Σ∗

5,4 that vanish in g. By [1, Lemma 2.6] (see also [6,
Proposition 5.4]), ℓ must satisfy ℓ(piq) = 0 for all pi, 1 ≤ i ≤ 8, and all q ∈ H5,2.
We associate to each linear form ℓ the bilinear form Qℓ(p, q) = ℓ(pq) and consider
the set of bilinear forms

{Qℓ : H5,2×H5,2 → R | ℓ ∈ H∗
5,4, ℓ(piq) = 0 for all pi, 1 ≤ i ≤ 8, and all q ∈ H5,2}.

For the monomial base

M = {x2
1, x1x2, x1x3, x1x4, x2

2, x2x3, x2x4, x2
3, x3x4, x2

4, x1x5, x2x5, x3x5, x4x5, x2
5}

we compute the space of matrices Q corresponding to those bilinear forms. We
obtain a 2-dimensional space E = {Q(t1, t2) | t1, t2 ∈ R}, where

Q(t1, t2) =

 t1A
04×4

t2

 ∈ R15×15

with

A =



6 −1 −1 1 6 −1 1 6 1 6
−1 6 −1 1 −1 −1 1 −1 1 −1
−1 −1 6 1 −1 −1 1 −1 1 −1

1 1 1 6 1 1 −1 1 −1 1
6 −1 −1 1 6 −1 1 6 1 6

−1 −1 −1 1 −1 6 1 −1 1 −1
1 1 1 −1 1 1 6 1 −1 1
6 −1 −1 1 6 −1 1 6 1 6
1 1 1 −1 1 1 −1 1 6 1
6 −1 −1 1 6 −1 1 6 1 6


.

A linear form ℓ ∈ H∗
5,4 is in ℓ ∈ Σ∗

5,4 iff the bilinear form Qℓ is positive semidef-
inite. The matrix Q(t1, t2) is a block matrix, with a block depending on t1 and a
block depending on t2. The matrix A is positive semidefinite, so for any positive
numbers t1 and t2 the matrix Q(t1, t2) is positive semidefinite. Setting Q = Q(1, 1),
the resulting matrix has kernel of dimension 8:

W = ⟨p1, . . . , p8⟩R,

which proves our first claim, because any polynomial in a SOS decomposition of g
must be in the kernel of Q (see Section 1.1.3).

Now we assume that g can be decomposed as the sum of 7 squares, g = f2
1 +

· · · + f2
7 . By the first part and Lemma 2.4, we can assume that the polynomials in

the decomposition are in triangular shape with respect to p1, . . . , p8. That is, we
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can assume
f1 = u11p1 +u12p2 +u13p3 +u14p4 +u15p5 +u16p6 +u17p7 +u18p8,
f2 = u22p2 +u23p3 +u24p4 +u25p5 +u26p6 +u27p7 +u28p8,
f3 = u33p3 +u34p4 +u35p5 +u36p6 +u37p7 +u38p8,
f4 = u44p4 +u45p5 +u46p6 +u47p7 +u48p8,
f5 = u55p5 +u56p6 +u57p7 +u58p8,
f6 = u66p6 +u67p7 +u68p8,
f7 = u77p7 +u78p8.

The equation g = f2
1 + · · · + f2

7 defines a system of quadratic equations in
the coefficients uij . To solve this system, we compute a Groebner basis of the
ideal defined by the equations using the degree reverse lexicographical ordering.
We obtain the basis {1}, which proves that there is no solution to the system of
equations. That is, g cannot be decomposed as a sum of 7 squares. □

Remark 2.6. In the first part of the above proof we have shown that, for the
polynomial g given in Example 2.2, every representation of g as a sum of squares of
linearly independent polynomials, consists of at most 8 squares. This means that
the Gram spectrahedron of g contains points of rank at most 8. In the second part
we have shown that the Gram spectrahedron of g contains no point of rank 7. Both
results combined imply that the Gram spectrahedron consists of only one point (or
otherwise there would be points of different rank). That is, the decomposition of g
given in Example 2.2 is the unique (up to orthogonal equivalence) decomposition
of g as a sum of squares.

This can also be verified computationally adding an eighth polynomial f8 =
u88x4x5 in the above proof and computing the Groebner basis of the resulting
system of equations (see the auxiliary code [5] for this computation).

Remark 2.7. If we follow this strategy to construct examples for other values
of n, we would start with a sequence of parameters of degree 2 in n − 1 vari-
ables, hence consisting of n − 1 polynomials, and add n − 1 more polynomials
x1xn, x2xn, . . . , xn−1xn. The total number of polynomials is then 2(n − 1). If it
also holds that the resulting polynomial cannot be decomposed as a sum of less
polynomials, this bound would improve the bound given in [9] only in the case
(n, d) = (5, 4), which is the case studied in this paper, so we do not attempt to
extend our construction to larger values of n.
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