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REMARKS ON A BOUNDARY VALUE PROBLEM FOR A
MATRIX VALUED 0 EQUATION

CARLOS E. KENIG

Dedicado a la memoria de Pola Harboure

ABSTRACT. In this short note, we discuss a boundary value problem for a
matrix valued 9 equation.

The problem we will discuss arose in [3], in the author’s joint work with E. B.
Davey and J.-N. Wang, on the Landis conjecture [6]. This conjecture states that if
u is a real, bounded solution in RY of Au = Vu, where V is real, |Vl < 1, and
|u(z)| < Ccexp(—|xz[1T¢), € > 0 as ¥ — oo, then v = 0. In [5], the author, in joint
work with L. Silvestre and J.-N. Wang observed that in the case when N = 2, and
V > 0, one can use complex analysis to establish the conjecture (in quantitative
form). In [3], with Davey and Wang, we showed the same result under a suitable
(strong) decay assumption on V_, the negative part of V. It was here that we were
led to the matrix valued 0 equation that we discuss in this note. Afterwards, E. B.
Davey, in [], established the Landis conjecture under less strong decay on V_, and
finally, in [8], A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov proved
the full Landis conjecture when N = 2, also using complex methods. Let A be a
2 x 2 matrix with complex entries in R?, with ||All.c < M. Given H a bounded
matrix on 0D, where D = {z € C : |z| < 1}, assume that ||H||o < N, and that
the matrix HH* is strictly positive definite, with ||(HH*)™!||.c < Na. Consider
the problem

OP = AP in D 1

PP*=HH* in dD, a.e. (non-tangentially) e
where P is a 2 X 2 complex matrix in D, and the boundary values are taken in the
sense of non-tangential convergence.

Theorem 1. There exists a solution P to , so that P and P~' are bounded in
D. Moreover, if Py, Py are two solutions, then P, = PoU, where U is a constant
unitary matriz.

Remark 2. Consider the scalar case of Theorem [I} namely when A and P are

scalars. Let a(z) = 1 €|<2 ’3(55) d¢ = Tp,(A)(z), where Tp, denotes the Cauchy—

Pompeiu operator on the disc Dy = {|¢| < 2}. Then, da = A in Dy and
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la(z)| £ M in D. Let q(z) = e"“P, where P is as in (I). Then, ¢ = 0 in D,
|q|*> = e72Re|P|2 = ¢=2Rea| 1|2 on 9D. The existence and uniqueness of ¢ then
follows from a classical theorem of Szegd [12], which in turn gives the existence
and uniqueness of P (modulo unimodular constants for the uniqueness). Note that
commutativity of the product is crucial for this argument.

Remark 3. Consider next the 2 x 2 matrix valued case, when A = 0. Thus,
P is a holomorphic matrix. Theorem [I] is then a consequence of the Wiener—
Masani theorem [I3, Theorem 7.13]. Note that the uniqueness assertion is not
made in [I3], but it is made and proved in [I4]. More recent proofs of the Wiener—
Masani theorem, under higher regularity assumptions and conclusions are given,
for instance, in the works of Berndtsson—Rosay [I] and Lempert [7].

We now turn to the proof of Theorem [I] For the proof of the existence part of
Theorem |1}, we will combine the next Proposition 4] due to Davey—Kenig—Wang [3]
Proposition 2] with the Wiener-Masani theorem.

Proposition 4. Let A be a 2 x 2 matriz defined on R = [-2,2] x [-2,2], with
M = ||Allso- There exists an invertible solution to 0Py, = APy in R, with the
property that

1Plle + 1P o

~

< exp [C’MQ (log Mﬂ .

Note that 0P, = APy, P! = P;'A, and since the right-hand sides are
bounded on R, P; and P are in C%(D) 0 < B < 1, with C? norm bounded
by exp[CM?(log M)?].

Proof of the existence part of Theorem[1, Let H= Pl_lH, where P; is as in Propo-
sition Clearly, the invertibility of P, Yin R shows that, since HH* is strictly
positive and invertible on 8D, so is HH*. By the Wiener-Masani theorem (the
case A = 0 of Theorem , there exists @ invertible and bounded in D, with
Q! bounded, Q,Q~! holomorphic in D, and QQ* = HH* on dD. Let now
P = P,Q. Since Q is holomorphic 9P = AP in D. On 0D, PP* = P,QQ*P; =
Py(P7YH)(PPH)* Py = HH*, concluding the proof of existence.

For the proof of uniqueness, assume that P, P are two solutions, as in Theo-
rem Let Q = P~'P. Then 0Q = 9(P~')P + P~'9P = —P~'9PP~'P +
P1AP = —P 'APP 'P + P~'AP = 0. Also, on D, QQ* = P~'PP*(P~1)*
= P'HH*(P~')*. But PP* = HH*, so that P = HH*(P*)~!, and P! =
P*(HH*)~!, hence P"'HH*(P~')* = P*(HH*)""HH*(P~')* = I. Thus, QQ* =
I on 0D, and, Q = 0 in D. By the uniqueness in the Wiener-Masani theorem,
Q = U, U a constant unitary matrix, and so P = PU as claimed. (|

We next turn to a proof of the uniqueness in the Wiener—-Masani theorem via
the “multiplicative integral”. The multiplicative integral is a multiplicative analog
of the classical Riemann—Stieltjes integrals. It first arose in the work of V. Volterra
(1887) on the study of systems of ordinary differential equations. See [2], [11], [9]
for discussions of the topic. Here we follow the exposition in the Master’s Thesis
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of Joris Roos (2014), which is unpublished, but can be found in [I0]. The defi-
nition of the multiplicative integral that is given in [I0] is a multiplicative analog
of the Stieltjes one. We consider the space M, or m X m matrices A, endowed
with the matrix norm [|A|| = sup|,_; [Az|, where |z| = (357, x?)l/Q. We con-
sider t € [a,b], and use the standard notion of a Hermitian matrix being positive,
strictly positive, etc. We consider a partition 7 = {¢;}, of the interval [a, b],
Air =t —tioq, i = 1,...,n, y(7) = max; A;7. For a matrix valued function
E: [a,b] = My, we define varf, ,, = >0, [|A; B, where A;E = ATE = E(t;) —
E(ti—1), and call E of bounded variation if var(, ) E = sup, ., varj, , < oo,
72 = {all partitions of [a,b]}. We denote by BV([a,b], M,,) the space of func-
tions of bounded variation. We call |E|(t) = var[, 4 F. Given a partion 7, choose
intermediate points § = (&)i=1,..n, & € [ti—1,ti]. For f on [a,b], with values
in C, or in M,,, we define P(f,E,7,&) = P(,€&) = [[.2] exp(f(&)AE). Here,
H:le A; = AjAy -+ A, denotes multiplication of the matrices (4;); from left to
right. Let T? be the set of tagged partitions (7,¢), such that 7 is a subdivision of
[a, b] and & is a choice of corresponding intermediate points. We say that P € M,, is
the (right) multiplicative Stieltjes integral corresponding to f: [a,b] — M,, (or C),
E: [a,b] = M,,, if Ye > 0, there exists a (70,&) € TP such that |P(7,£) — P|| < ¢
for every (7,€) < (70,&0), i.e. for all 7 C 79. One can show that if f: [a,b] — C is
continuous and E': [a,b] — M,, is of bounded variation, then famb exp(fdE), which
is, by definition, the right multiplicative integral just defined, exists.
An important result (see [10, Proposition 2.7]) is

~b b
det/ exp (f(t)dE(t)) = exp (/ f@)dtr E(t)) , (2)

where tr A is the trace of the matrix A. Note that, in particular, multiplicative
integrals always yield invertible matrices.

Next we sketch a proof of the uniqueness in the Wiener—-Masani theorem, using
multiplicative integrals. Thus, let 9Q = 0in D, @, @ " bounded in D, QQ* = I on
0D. Note first that ||Q(2)|| < 1 for all z € D, since ||Q|| is subharmonic [10, Lemma
Ad], |Q(2)|| =1, z € dD. Then, by [10, Theorem 3.1], Potapov’s decomposi-
tion [9], Q(z) = B(z) meL exp(h,(6(t))dE(t)), where B(z) is a Blaschke-Potapov
product corresponding to the zeros of det @, 0 < L < oo, E is an increasing ma-
trix valued function such that tr E(t) = ¢, t € [0, L], 0: [0, L] — [0,27] is a right
24-el?

continuous increasing function, and h.(f) = Z=5; is the Herglotz kernel. Since
det Q(2) #0 in D, B(z) = U, U a constant unitary matrix.
Next we claim that ¢(z) = det Q(z) = €% in D. Assuming this, we have that

1= le%| =1g(0)] =|detQ(0)]

det /0 exp(ho(0(1)) AE(t))

detU/0 exp(ho(ﬂ(t))dE(t))‘ =
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L el (t)

L
exp /0 ho(0(1)) dtr E(t)| = — exp(—L).

But then, L =0, Q(z) =U.

We turn to the proof of the claim. Let ¢(z) # 0, z € D, q,q~! be holomorphic
in D, bounded in D, |q(z)] = 1, z € dD. Consider u(z) = log|q(z)|, which
is harmonic in D, bounded on D (since ¢~ ! is bounded in D). Then u(0) =
log |q(0)] = &£ O%log|q(ei‘9)|d0 = 0. Also, since u(z) = 0, z € 9D, by the
maximum principle u(z) < 0in D. But since u(0) =0, u =0, so |¢(z)| =1, z € D,

and since ¢ is holomorphic in D, ¢ is constant, and thus g(z) = e'%.

Finally, we turn to the main open question, which motivates this note. Let H
in Theorem [I] be the identity matrix, and P the corresponding solution. By the
construction of P and Proposition we know that || P||s and || P~} are bounded
by exp(CM?(log M)?), where ||All.c < M, and we assume, for convenience, that
M > 1. We would like to know:

Question 5. Are |P|x, [P~ bounded by exp(CcM*t€), for each e > 07

An affirmative answer to this question would give, following the argument in [3],
a proof of the Landis conjecture for N = 2 (which is now the theorem of Logunov—
Malinnikova—Nadirashvili-Nazarov [8]). Notice that we can reduce ourselves to the
case when tr A = 0, and hence det P = €%, so that ||P|loc = ||P™"|c. Indeed,
a simple computation yields that, if ¢ = det P, then d¢ = (tr A)g, so that, if
tr A = 0, ¢ is holomorphic, and so is ¢!, and |q(z)| = 1, z € 9D, since on 4D,
PP* = I. Thus as before, ¢(z) = €. To reduce to the tr A = 0 case, note that
if A= Ay + Ay, OP, = APy, and P, solves OP, = P, B, where B = —P; ' APy,

o tr A
then P = Plpg_1 solves 0P = AP. Let Ay = ( (2) “OA>’ Ay = A— A, so that
2

tr(A;) = 0. Also, since Ay is a scalar matrix, B = —PflAgPl = —Aj, so that
0P, = PyAy = AsP>. Since A is scalar, and for the scalar equation we have the
exponential bounds with M to the power 1 (see Remark , and P = P1P2_1, it
suffices to give the bounds for P;, which solves P, = Ay Py, with tr A; = 0. (In
the case of the Landis conjecture, the matrix in [3] has trace 0 to begin with). This
is a challenging question in its own right.

Final remark. It was with great sadness that I learned of the unexpected death of
Pola Harboure. Pola and I became good friends during the time that she spent at
Minnesota in the early 1980s and we kept in touch over the years. Her death is a
great loss for mathematics, especially in Argentina and Latin America, where she
was a pillar of the mathematical community. It is also a great loss for her family
and friends, for whom she was so important. We continue to mourn her.
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