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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND
APPLICATIONS TO LOCAL SINGULAR INTEGRALS

FEDERICO CAMPOS, OSCAR SALINAS, AND BEATRIZ VIVIANI

Dedicated to the memory of our dear colleague and friend, Eleonor Harboure.
She will always be in our hearts.

Abstract. In a general geometric setting, we prove different characterizations
of a local version of Muckenhoupt A∞ weights. As an application, we ob-
tain conclusions about the relationship between this class and the one-weight
boundedness of local singular integrals from L∞ to BMO.

1. Introduction

As it is well known, a non negative and locally integrable function ω belongs to
the Ap class of Muckenhoupt ([10]) if and only if

sup
B

(
1
|B|

∫
B

ω

)(
1
|B|

∫
B

ω−
1
p−1

)p−1
<∞, in the case 1 < p <∞,

sup
B

(
1
|B|

∫
B

ω

)
1

infB(ω) <∞, for p = 1,

and
ω ∈ A∞ =

⋃
1≤r<∞

Ar for p =∞.

Seeing the myriad of articles and books that have been published during the
past 30 or 40 years and whose subject is the study of properties or applications
of these weights, it is absolutely unnecessary to talk about how important these
classes are in the fields of Partial Differential Equations and Harmonic Analysis.
The present work is related to some of those articles. The first of them is [4], due to
N. Fujii. There, the author introduces some characterizations of A∞ and uses them
to identify a necessary and sufficient condition for a weight ω such that Calderón–
Zygmund integrals Tf , with f

ω ∈ L
∞, are of ω-weighted bounded mean oscillation.

It is important to remark that the characterizations proved in this article were
used by Hytönen, Pérez and Rela ([8]) as a basis for obtaining precise estimations
of the constants related to the Reverse Hölder inequality and the boundedness
of the Hardy–Littlewood maximal function. Another paper this work is related
to is [7], due to E. Harboure and the last two authors, where “local” versions of
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Muckenhoupt weights in a general geometric setting were introduced (even though
it should be mentioned that a one dimensional case in R was considered before by
Nowak and Stempak in [11]) and studied in connection with the boundedness of a
local maximal operator. In addition, the latter result was applied to get interior
Sobolev type estimates for solutions of differential equations associated to the m-
Laplacian.

The aim of this work is to obtain a version of the Fujii’s results for the local-A∞
weights and the geometric setting considered in [7]. In order to accurately state
our results, we begin with a precise description of the geometric framework.

Let X be a metric space satisfying the weak homogeneity property, that is, each
ball B(x, r) cannot contain more than a fix number N of points whose distance
from each other is greater than r

2 . Also, let Ω be an open proper and non empty
subset of X such that all the balls included in Ω are connected sets.

In this context, given 0 < β < 1, we consider the following family of balls
Fβ = {B = B(xB , rB) : rB ≤ βd(xB ,Ωc)} ,

where xB and rB are, respectively, the center and the radius of B, and d(xB ,Ωc)
is the distance from xB to the complementary set of Ω. Sometimes, we will refer
to the balls in Fβ as β-local balls.

In addition, let µ be a Borel measure defined on Ω such that 0 < µ(B) <∞ and
µ(B) ≤ Cβµ( 1

2B) for each B ∈ Fβ and every β ∈ (0, 1), where θB denotes the ball
with the same center and radius θ-times that of B.

Let us note that µ(B) is finite for all B ∈
⋃

0<β<1
Fβ but this fact is not necessarily

true for every ball contained in Ω.
Our first result is about the boundedness of β-local singular integrals from a

weighted L∞ space to a β-local BMO. Here, the term “β-local” makes reference to
a close relation with the families Fβ , as we will see in the definitions and notation
below.

Given 0 < β < 1, we will say that T is a β-local singular integral operator if it
satisfies

(1.a) T is bounded on L2(Ω, dµ).
(1.b) There is a kernel K : Ω × Ω → R such that for any f ∈ L∞(Ω, dµ)
with compact support

Tf(x) =
∫

Ω
K(x, y)f(y) dµ(y) a.e.x 6∈ supp(f),

and Tf(x) = 0 for x such that supp(f) ∩B(x, βd(x,Ωc)) = ∅.
(1.c) The kernel satisfies

a) |K(x, y)| ≤ C
µ(B(x,d(x,y))) ,

b) |K(x, y)−K(x′, y)|+|K(y, x)−K(y, x′)| ≤ C
µ(B(x,d(x,y)))

(
d(x,x′)
d(x,y)

)ξ0
for some ξ0 > 0 and whenever 2d(x, x′) ≤ d(x, y).
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Remark 1.1. The second assertion in (1.b), which is the meaning of β-locality,
can also be written by asking supp(K) ⊂ {(x, y) : d(x, y) < βd(x,Ωc)}.

Definition 1.2. Given 0 < β < 1 and a non negative function ω in L1
loc(Ω, dµ),

we will say that a function f belongs to BMOβω if the following two conditions are
satisfied

(1.2.a) There exists C > 0 such that
1

ω(B)

∫
B

|f −mBf | dµ ≤ C

for every B ∈ F β
6

, where mBf = 1
µ(B)

∫
B
f dµ.

(1.2.b) There exists C > 0 such that
1

ω(B)

∫
B

|f | dµ ≤ C

for every B ∈ Fβ −F β
6

.

If f ∈ BMOβω we will use [f ]BMOβω
to denote the norm given by infimum of the

constants satisfying (1.2.a) and (1.2.b).

Definition 1.3. Given 0 < β < 1 and 1 < p < ∞, we will say that a locally
integrable and non negative a.e. function ω belongs to the β-local Muckenhoupt
class Aβp if

sup
B∈Fβ

(
1

µ(B)

∫
B

ω dµ

)(
1

µ(B)

∫
B

ω−
1
p−1 dµ

)p−1
<∞.

The case p =∞ is defined as Aβ∞ =
⋃

1<p<∞
Aβp .

Remark 1.4. It can be easily proved that ω ∈ Aβp if and only if ω ∈ Aαp for every
α, β ∈ (0, 1).

We will consider a new class of weights

Definition 1.5. Let 0 < β < 1 and p > 0. We say that a weight ω belongs to the
class Bβp if it satisfies

sup
B(x,r)∈Fβ

µ(B(x, r))rp

ω(B(x, r))

∫
Sβ(B(x,r))−B(x,r)

ω(y)
µ(B(x, d(x, y)))d(x, y)p dµ(y) <∞,

where Sβ(B) =
⋃
x∈B

B(x, βd(x,Ωc)).

Now, we are in position to state our first result.

Theorem 1.6. Let 0 < β < 1 and T be a β-local singular integral. If ω ∈ Aβ∞∩B
β
ξ0

,
where ξ0 is the exponent appearing in (1.c) associated with T , there exists C > 0
such that [Tf ]BMOβω

≤ C‖f/ω||∞ for every f .
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Our following result is a characterization of the class Aβ∞(Ω) that involves the
maximal operator associated with each family Fβ defined as

Mβf(x) = sup
x∈B∈Fβ

1
µ(B)

∫
B

|f(x)| dµ

for f ∈ L1
loc(Ω) and x ∈ Ω.

Theorem 1.7. Given 0 < β < 1, the following conditions are equivalent
(1.8.a) ω ∈ Aβ∞
(1.8.b) There exists C > 0 such that∫

B̃

Mβ(ωXB) dµ ≤ C
∫

1
2B

ω dµ

for every B ∈ Fβ, where B̃ = 5B if 5B ∈ Fβ and B̃ = Nβ(B) :=
⋃

V ∈Fβ
V ∩B 6=∅

V

if 5B 6∈ Fβ.
(1.8.c) There exists C > 0 such that∫

B

ω log+ ω

mBω
dµ ≤ C

∫
1
2B

ω dµ

for every B ∈ Fβ.
(1.8.d) The weight ω is doubling on Fβ and, for each ε ∈ (0, 1), there exists
θ ∈ (0, 1) such that if B ∈ Fβ and E ⊂ B satisfy µ(E) ≤ θµ(B), then
ω(E) ≤ εω(B).

In the particular case X = Rn with the usual euclidean metric and the Lebesgue
measure, Theorem 1.6 has, in a certain sense, a converse. In order to enunciate
it we need the Riesz transforms and same local versions. We recall that the j-th
Riesz transform, j = 1, . . . , n, of a locally integrable function f is given by

Rjf(x) = p.v.
∫
Rn

xj − yj
|x− y|n+1 f(y) dy.

On the other hand, given 0 < β < 1 and a smooth radial cut function η defined
on R such that 0 ≤ η ≤ 1, η(t) = 1, if |t| ≤ 1

2 and η(t) = 0 when |t| ≥ 1, we will
say that the operator

Rβ,ηj f(x) = p.v.
∫

Ω

xj − yj
|x− y|n+1 η

(
|x− y|
βd(x,Ωc)

)
f(y) dy

is a β-local j-th Riesz type transform.

With these operators we can add a couple of statements to Theorem1.7.

Theorem 1.8. Given 0 < β < 1, when X is the usual euclidean space Rn equipped
with the Lebesgue measure all the statements in Theorem 1.7 remain equivalent
and, in addition, equivalent to each of the following conditions:
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(1.11.a) There exists C > 0 such that∫
B̃

|Rj(ωXB)| dx ≤ C
∫
B

ω dx

for j = 1, . . . , n and every B ∈ Fβ.
(1.11.b) Given η as before, there exists C > 0 such that∫

B̃

|Rβ,ηj (ωXB)| dx ≤ C
∫
B

ω dx

for j = 1, . . . , n and every B ∈ Fβ. In both statements B̃ is defined as in
(1.8.b).

The latter Theorem allows us to get, as we said before, a certain kind of converse
of Theorem 1.6

Theorem 1.9. Let 0 < β < 1 and let Rβ,ηj , j = 1, . . . , n a β-local Riesz type
transforms. If there exists C > 0 such that

[
Rβ,ηj f

]
BMOβω

≤ C‖ fω‖∞ for every f

satisfying f
ω ∈ L

∞(Ω) and every j, j = 1, . . . , n, then ω belongs to Aβ∞(Ω) ∩Bβ1 .

The structure of the paper is as follows: Section 2 is devoted to the proof of
Theorem 1.6. Section 3 contains the proof of Theorem 1.8 and a local version of
the Calderón–Zygmund decomposition interesting by itself. Section 4 focuses on
the proof of Theorem 1.11. Finally, Section 5 contains the proofs of Theorem 1.12
and some properties of the classes Bβp .

2. Proof of Theorem 1.6

The first step in proving Theorem 1.6 is to ensure that a β-local singular integral
T is well defined on functions f such that f

ω ∈ L
∞(Ω, dµ) for a weight ω in Aβ∞.

Towards this aim, we start recalling that, given a ∈ (0, β80 ), Ω can be covered
by countable family of balls {B(xi, ri)}i having finite overlapping and such that
a
2d(xi,Ωc) ≤ ri ≤ ad(xi,Ωc) (see Lemma 2.3 and Remark 2.4 in [7]). Now let f
such that f

ω ∈ L
∞(Ω, dµ). For x ∈ Bi = B(xi, ri), from Remark 1.1, we can write

Tf(x) = T (fXSβ(Bi))(x), (2.1)

where Sβ(Bi) is as in definition(1.5). Notice that T is bounded from Lp(Ω, dµ)
to Lp(Ω, dµ) for 1 < p < ∞ (Theorem 4.1 in [7]). Then, all we have to do in
order to prove that Tf is finite a.e. on Bi and, hence on Ω, is to prove that
fXSβ(Bi) ∈ Lp(Ω, dµ) for some p > 1. This, in turn will follow from the fact
that |f | ≤ || fω ||∞ω once we prove ω has better integrability than L1

loc(Ω, dµ).
In order to prove it, we need to look at the theory of Muckenhoupt weights in
spaces of homogeneous type. With this in mind, we start recalling that a space of
homogeneous type is a non empty set Y equipped with a quasi distance τ and a
doubling Borel measure υ. By a quasi distance we mean a function τ : Y ×Y → R+

0
satisfying the following properties:
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(2.a) τ(x, y) = 0⇔ x = y.
(2.b) τ(x, y) = τ(y, x) for every x, y ∈ Y .
(2.c) τ(x, y) ≤ K (τ(x, z) + τ(z, y)) for every x, y, z ∈ Y and a certain con-

stant K.
In addition, we say that a measure υ is doubling if υ(2B) ≤ Cυ(B) for every

ball B in Y . In the usual euclidean space Rn with the Lebesgue measure it is

immediate to see that each ball B is, in turn, a space of homogeneous type in
itself. This is not necessarily true in any space of homogeneous type. However,
Maćıas and Segovia, in [9], proved that, for any space (Y, τ, υ) as before, there exists
a metric δ satisfying δ ≤ τ ≤ 3δ such that every δ-ball is a space of homogeneous
type with the measure υ. This remarkable achievement allowed them to prove that
a well-known result due to Coifman and Fefferman ([3]) is still valid for Ap weights
in spaces of homogeneous type (i.e., weights satisfying inequality in Definition (1.3)
but for every ball in the space). Their extension can be stated as follows.

Theorem 2.2. ([9]) Let (Y, τ, υ) be a space of homogeneous type. If ω satisfies
condition Ap, then there exists ε > 0 and C > 0 such that

1
υ(B)

∫
B

ω1+ε dυ ≤ C
(

1
υ(B)

∫
B

ω dυ

)1+ε

holds for every ball B.

On the other hand, in [6], Harboure, Viviani and the second author proved that
in our present geometrical setting the construction devised by Maćıas and Segovia
can still be carried out to get a metric δ equivalent to the d given. Moreover, they
proved that each δ-ball Q such that 4Q ⊂ Ω is a space of homogeneous type with δ
and the restriction to Q of the measure µ. It was also proved in [7] that a weight ω
in Aβp (Ω) for β ∈ (0, 1) given, is a weight in the class Ap defined on the space Q for
every δ-balls Q with 4Q ⊂ Ω. Then, Theorem 2.2 allows us to get inequality 2.2
with B = Q and υ = µ for every δ-balls Q as before.

A careful monitoring of the constants involved shows that they only depend
on β. It is an easy consequence of the relation between δ and d that the same
result holds for every d-ball B ∈ Fβ whenever β < 1

3 .

In this way, for β < 1
3 , we see that weights in Aβ∞(Ω) possesses a better integra-

bility on balls belonging to Fβ . At this point we have two problems: the restriction
on β and the fact that the set in (2.1) is not a ball. The latter can be overcome
applying the following lemma.

Lemma 2.3. Let ε0 ∈ (0, 1 ]. Then, given λ ∈ (0, ε0) we have λ + ε2 ∈ (0, ε0)
and Sλ(B) ⊂ B(x0, (λ + ε2)d(x0,Ωc)) for every ball B = B(x0, r) ∈ Fε1λ, with
0 < ε1 <

1
2 min

(
1, ε0−λλ2+λ

)
and ε2 = ε1(λ2 + λ).

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS 159

Proof. Let B = B(x0, r) ∈ Fε1λ, with ε1 to be chosen later. Then, for x ∈ B and
z ∈ B(x, λd(x,Ωc)) we have

d(x0, z) ≤ d(x0, x) + d(x, z)
< ε1λd(x0,Ωc) + λd(x,Ωc)
< ε1λd(x0,Ωc) + λ(1 + ε1λ)d(x0,Ωc)
= (λ+ ε1λ+ ε1λ

2)d(x0,Ωc).

Now, choosing ε2 = ε1(λ + λ2) with 0 < ε1 <
1
2 min

(
1, ε0−λλ2+λ

)
, from the last

inequality we easily obtain Sλ(B) ⊂ B(x0(λ + ε2)d(x0,Ωc)). Furthermore, it is
clear that 0 < λ+ ε2 < ε0. �

So, taking ε0 = 1
3 and λ = β in the lemma above and applying it for each Sβ(Bi)

in (2.1), we get that there exists p > 1 such that fXSβ(Bi) ∈ Lp(Ω, dµ) for every i.
Consequently, Tf is finite a.e. in Ω, as soon as T is a β-local singular integral with
β < 1

3 . This latter restriction can be avoided by using a technique applied in [5].
If T is a β-local operator with 1 > β ≥ 1

3 , we take a smooth radial cut function as
in (1.10) and define

T0f(x) =
∫

Ω
K(x, y)

(
1− η

(
d(x, y)
αd(x,Ωc)

))
f(y) dµ(y),

with 0 < 2α < 1
3 and K the kernel associated with T . It is very easy to see that

T0f(x) is finite for every x ∈ Ω and every f such f
ω ∈ L

∞(Ω, dµ). Additionally, it
can be proved, as in [7], that T − T0 is a 2α-local singular integral. Then, as we
saw earlier, it is well defined as well, and so it is T .

Now, we can proceed with the rest of the proof.

Proof of Theorem 1.6 Let ω ∈ Aβ∞ ∩B
β
ξ0

. Then, we know that ω belongs to Aβp
for some p > 1. Given f such that f

ω ∈ L
∞(Ω, dµ) and B0 = B(x0, r) ∈ F β

6
, we

split f as g + h, where g = fX2B0 . Now we can write

1
ω(B0)

∫
B0

|Tf −mB0Tf | dµ ≤
1

ω(B0)

∫
B0

|Tg −mB0Tg| dµ (2.4)

+ 1
ω(B0)

∫
B0

|Th−mB0Th| dµ

= I + II.

From the reasoning done at the beginning of this section we know that g belongs
to Lq(Ω, dµ) for q = 1 + ε where ε is the exponent given by Theorem 2.2 applied
in our context. Then, since T is bounded from Lq(Ω, dµ) to Lq(Ω, dµ) (see [5]),
Hölder’s inequality allows us to get
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I ≤ 2
ω(B0)

∫
B0

|Tg| dµ (2.5)

≤ 2µ(B0)1− 1
q

ω(B0)

(∫
B0

|Tg|q dµ
) 1
q

≤ C 2µ(B0)1− 1
q

ω(B0)

(∫
2B0

|f |q dµ
) 1
q

≤ C
∥∥∥∥ fω
∥∥∥∥
∞

2µ(B0)
ω(B0)

(
1

µ(B0)

∫
2B0

ωq dµ

) 1
q

≤ C
∥∥∥∥ fω
∥∥∥∥
∞
,

where the last inequality follows from Theorem 2.2, which, as it is clear from the
discussion above this proof, holds for 2B0, ω and µ.

In regard to II, applying (1.c), we can estimate it in the following way:

II ≤ 1
ω(B0)µ(B0)

∫
B0

∫
B0

|Th(x)− Th(y)| dµ(x)dµ(y) (2.6)

≤ 1
ω(B0)µ(B0)

∫
B0

∫
B0

∫
Sβ(2B0)−2B0

|K(x, z)−K(y, z)||f(z)| dµ(z)dµ(x)dµ(y)

≤ C

ω(B0)µ(B0)

∫
B0

∫
B0

∫
Sβ(2B0)−2B0

d(x, x0)ξ0 + d(y, x0)ξ0
µ(B(x0, d(x0, z)))d(x0, z)ξ0

× |f(z)| dµ(z)dµ(x)dµ(y)

≤ Cµ(B0)rξ0
ω(B0)

∫
Sβ(2B0)−2B0

|f(z)|
µ(B(x0, d(x0, z)))d(x0, z)ξ0

dµ(z)

≤
∥∥∥∥ fω
∥∥∥∥
∞
C
µ(B0)rξ0
ω(B0)

∫
Sβ(2B0)−2B0

ω(z)
µ(B(x0, d(x0, z)))d(x0, z)ξ0

dµ(z)

≤ C
∥∥∥∥ fω
∥∥∥∥
∞
,

where the last inequality follows from the hypothesis on ω.
So, altogether (2.4), (2.5) and (2.6) give us all the information we need about

the behaviour of the oscillations of Tf on the balls in F β
6
.

Now, let us take care of the averages on balls belonging to Fβ − F β
6
. Let

B0 = B(x0, r) be one of them. Then, reasoning as before, we obtain

1
ω(B0)

∫
B0

|Tf | dµ = 1
ω(B0)

∫
B0

|T (fXSβ(B0))| dµ

≤ µ(B0)
ω(B0)

(
1

µ(B0)

∫
B0

|T (fXSβ(B0))|q dµ
) 1
q

,
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where, once again, q = 1 + ε with ε given by Theorem 2.2. Theorem 41 in [7] lead
us to

1
ω(B0)

∫
B0

|Tf | dµ ≤ C µ(B0)
ω(B0)

(
1

µ(B0)

∫
Sβ(B0)

|f |q dµ

) 1
q

≤ C
∥∥∥∥ fω
∥∥∥∥
∞

µ(B0)
ω(B0)

(
1

µ(B0)

∫
Sβ(B0)

ωq dµ

) 1
q

.

It is obvious that Sβ(B0) ⊂
⋃

B∈Fβ′
B∩B0 6=∅

B, for any β′ ∈ (β, 1).

Denoting the latter set by Nβ′(B0), as in [7], Lemmas 2.3 and 3.1 there allow us
to get a finite number M of balls Bi = B(xi, ri) such that Nβ′(B0) ⊂

⋃
i

Bi, µ(Bi) '

µ(B0), ω(Bi) ' ω(B0), a2d(xi,Ωc) ≤ ri ≤ ad(xi,Ωc) for some fixed a < β′

80 , i =
1, . . . ,M , with M only depending on β and β′. Consequently, if we chose β′ close
enough to β, Theorem 2.2 can be applied for each Bi to get

1
ω(B0)

∫
B0

|Tf | dµ ≤ C
∥∥∥∥ fω
∥∥∥∥
∞

µ(B0)
ω(B0)

1
µ(B0)

∫
B0

ω dµ

= C

∥∥∥∥ fω
∥∥∥∥
∞
,

which completes the proof of our Theorem.

3. Proof of Theorem 1.7

The proof of Theorem 1.7 requires a local version of the Calderón–Zygmund
decomposition. Our proof of it is based on techniques developed by H. Aimar and
R. Maćıas in the setting of spaces of homogeneous type ([1], [2]).

Lemma 3.1. Let 0 < β < 1. Given B ∈ Fβ and a non negative function f ∈
L1
loc(Ω, dµ), with supp f ⊂ B, for each λ ≥ mBf there exists a sequence {Bj} of

disjoint balls in Fβ such that
(3.1.a) mB̃j

f ≤ λ < mBjf , for every j;
(3.1.b) mV f ≤ λ, for every V ∈ Fβ whose center belongs to Ω−

⋃
j

B̃j;

where B̃j is defined as in (1.8.b).

Proof. Let us assume E = {y ∈ Ω;Mβf(y) > λ} 6= ∅. If E = ∅, then (3.1.b) holds
for every V ∈ Fβ with center in Ω and the lemma follows. Clearly, if Γ = {V ∈
Fβ/mV f > λ}, we get E =

⋃
V ∈Γ

V . Now, it is immediate to see that V ∩B 6= ∅ for

every V ∈ Γ, which implies B ⊂ Nβ(V ) and V ⊂ Nβ(B). So, we have
1

µ(Nβ(V ))

∫
Nβ(V )

f dµ = 1
µ(Nβ(V ))

∫
Nβ(V )∩B

f dµ ≤ λ (3.2)
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for every V ∈ Γ. Taking V = B(x, r) ∈ Γ, we define

γx = sup{t ∈ (0, βd(x,Ωc))/mB(x,t)f > λ},

which satisfies r ≤ γx ≤ βd(x,Ωc). If r < γx, we take δ in (0, 4
5γx), and tx in

(max(r, γx − δ), γx ] such that mB(x,tx)f > λ. If 5tx ≤ βd(x,Ωc), since 5tx >
5(γx − δ) > γx, we have mB(x,5tx)f ≤ λ. Then, taking this and (3.2) into account,
we have

mB̃(x,tx)f ≤ λ < mB(x,tx)f.

On the other hand, if r = γx, we get the above inequality by choosing tx = γx.
Proceeding in this way for each x ∈ A := {y/y is center of a ball in Γ} we obviously
obtain a covering of E by the sets B̃x where Bx = B(x, tx). Note that these
balls are in Nβ(B). Then, from Lemma 2.3 in [6], it follows that their radii are
uniformly bounded. So, Lemma (1.11.a) in that paper (local Vitali) allows us to
get a numerable disjoint subfamily of {Bx}x∈A, say {Bj} such that E ⊂

⋃
j

B̃j .

This is the sequence we were looking for. �

With this lemma we are in position to prove Theorem 1.7.

Proof of Theorem 1.7. Suppose (1.8.a) holds, that is ω ∈ Aβ∞. Then, by
definition, we get ω ∈ Aβp for some p ∈ (1,∞). Let B = B(x0, r) ∈ Fβ . If
r < β

3 d(x0,Ωc), from the discussion preceding Lemma 2.3, we know ω satisfies a
reverse Hölder’s inequality on B for some exponent q > 1. In case β

3 d(x0,Ωc) ≤
r < βd(x0,Ωc), from Lemma 2.3 in [7], we can cover B with the union of a fixed
number M , not depending on B, of balls belonging to F β

3
and having finite over

lapping. Moreover, the union of such balls and B have comparable measures. It
follows that ω satisfy a reverse Hölder’s inequality on B with the same exponent q.
With this in mind, taking into account that Mβ is bounded on Lq(Ω, dµ) (Theorem
1.1 in [6]), Hölder’s inequality allows us to get∫

B̃

Mβ(ωXB) dµ ≤
(∫

Ω
Mβ(ωXB)q dµ

) 1
q

µ(B̃)1− 1
q

≤ C
(∫

B

ωq dµ

) 1
q

µ(B)1− 1
q

≤ C
∫
B

ω dµ,

which, taking into account that ω is doubling on Fβ , lead us to (1.8.b).

Now assume (1.8.b) holds. Let B ∈ Fβ . If 5B 6∈ Fβ from our hypothesis it
follows ∫

{Mβf>mBω}
Mβf dµ =

∫
Nβ(B)∩{Mβf>mBω}

Mβf dµ (3.3)

≤ C
∫

1
2B

ω dµ
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for f = ωXB . On the other hand, if 5B ∈ Fβ , (1.8.b) lead us to∫
{Mβf>mBω}

Mβf dµ ≤ C
∫

1
2B

ω dµ (3.4)

+
∫

(Nβ(B)−5B)∩{Mβf>mBω}
Mβf dµ.

It is not difficult to see that B ⊂ 2V for every ball V ∈ Fβ(Ω) such that
V ∩B 6= ∅ and V ∩ (Nβ(B)− 5B) 6= ∅. Then B ⊂ Ṽ and so µ(B) ≤ Cµ(V ), which,
in turn, implies Mβf(y) ≤ CmBω for every y ∈ Nβ(B)−5B. In consequence, from
(3.4), the weak type boundedness (1, 1) of Mβ (Theorem 1.1 in [6]), and the fact
that ω is doubling on Fβ (it is obvious from (1.8.b)), we get∫

{Mβf>mBω}
Mβf dµ ≤ C

(∫
1
2B

ω dµ+mBωµ({Mβf > mBω})
)

(3.5)

≤ C
∫

1
2B

ω dµ.

Besides that, taking λ > mBω, Lemma 3.1 gives us a sequence {Bj} of disjoint
balls in Fβ such that ⋃

j

Bj ⊂ {Mβf > λ} ⊂
⋃
j

B̃j .

Applying (3.1.a) we can obtain

µ ({Mβf > λ}) ≥
∑
j

µ(Bj)

≥ C

λ

∫⋃
j
B̃j

f dµ

≥ C

λ

∫
{Mβf>λ}

f dµ

≥ C

λ

∫
{f>λ}

f dµ.

Integrating both sides with respect to λ, Fubini’s Theorem together with (3.3) and
(3.5) lead us to∫ ∞

mBω

1
λ

(∫
{f>λ}

f dµ

)
dλ ≤ C

∫ ∞
mBω

µ ({Mβf > λ}) dλ (3.6)

≤ C
∫
{Mβf>mBω}

Mβf dµ

≤ C
∫

1
2B

ω dµ.
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Recalling that f = ωXB , Fubini’s Theorem again allows us to get∫ ∞
mBω

1
λ

∫
{f>λ}

f dµ dλ =
∫
{f>mBω}

f log
(

f

mBω

)
dµ

=
∫
B

ω log+
(

ω

mBω

)
dµ,

which, together with (3.6), obviously proves (1.8.c).
Let ε ∈ (0, 1). Given B ∈ Fβ and E ⊂ B such that µ(E) > 0, we define

E0 = {x ∈ E/ω(x) > ε
2µ(E)

∫
B
ω dµ}. Then, assuming (1.8.c) holds, we obtain

log+
(
εµ(B)
2µ(E)

)∫
E0

ω dµ ≤
∫
B

ω log+
(

ω

mBω

)
dµ (3.7)

≤ C
∫
B

ω dµ.

On the other hand, we have∫
E−E0

ω dµ ≤ εµ(E − E0)
2µ(E)

∫
B

ω dµ

≤ ε

2

∫
B

ω dµ.

This inequality assures us that if ω(E) > εω(B), then ω(E0) > ε
2ω(B), and so,

from (3.7)

log+ εµ(B)
2µ(E) ≤ C

ω(B)
ω(E0) <

2C
ε
.

Consequently, ε
2e
− 2C

ε µ(B) < µ(E). Finally, taking θ = ε
2e
− 2C

ε , which belongs to
(0, 1), and noting that (1.8.c) implies ω is doubling on Fβ , we prove (1.8.d).

In order to see that (1.8.d) implies (1.8.a), we consider again, as in the beginning
of section 2, the metric δ such that δ ≤ d ≤ 3δ and each δ-ball Bδ(x0, r), with
r < (β/3)d(x0,Ωc), is a space of homogeneous type endowed with the restriction
of µ. Given one of these balls, say Bδ, we have Bδ ⊂ 3Bd, where Bd denotes the
d-ball with same centre and radius as Bδ. Then, since Bd ∈ F β

3
, we get

ω(3Bd) ≤ Dω(Bd) ≤ Dω(Bδ),
where D denotes the doubling constant of ω associated to Fβ .

Let us prove that (1.8.d) holds for δ-balls as well. To this aim we take a δ-ball
Bδ as before and consider E ⊂ Bδ. Then E ⊂ Bd, where Bd denotes, as before,
the d-ball with same centre and radios as Bδ. Then, choosing ε ∈ (0, 1) such that
εD ∈ (0, 1), we get θ ∈ (0, 1) such that

ω(E)
ω(Bδ)

≤ ω(E)D
ω(3Bd)

< Dε,

whenever µ(E) < θµ(Bδ), since µ(Bδ) ≤ µ(3Bd). This proves (1.8.d) for these
δ-balls.
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A careful examination of the proof of Theorem 2.2 in [9](Theorem (2.2) there)
reveals that it can be done by assuming (1.8.d) instead of the Ap condition. Then,
there exists q > 1 such that the inequality(

1
µ(B)

∫
B

ωq dµ

) 1
q

≤ C 1
µ(B)

∫
B

ω dµ,

holds for every ball B ∈ F β
3
. By denoting dυ = ωdµ, the above inequality can be

written as follows:
1∫

B
ω−1 dυ

∫
B

ωq−1 dυ ≤
(
C

1∫
B
ω−1 dυ

∫
B

ω dµ

)q
.

It follows easily that ω−1 ∈ A
β
3
1+ 1

q−1
but with respect to the measure υ instead of µ.

Then, since (1.8.d) imply ω is doubling on Fβ , Theorem 2.2 can be applied again
to ω−1 with the measure υ to obtain a reverse Hölder inequality for ω−1 respect to
υ. Reasoning in a similar way as before we get ω ∈ A

β
3
p with respect to µ. Finally,

from Remark 1.4 it follows ω ∈ Aβ∞, as we wanted to prove. �

4. Proof of Theorem 1.8

Here we are in the particular case X = Rn, d the euclidean metric and µ the
Lebesgue measure. Let us start proving the following proposition.

Proposition 4.1. Let ω be a non negative function in L1
loc(Ω, dµ) and β ∈ (0, 1).

The following statements are equivalent.
(4.1.a) There exists C > 0 such that∫

B̃

|Rβ,ηj (ωXB)| dx ≤ C
∫
B

ω dx,

for j = 1, . . . , n and every B ∈ Fβ.
(4.1.b) There exists C > 0 such that∫

B̃

|Rj(ωXB)| dx ≤ C
∫
B

ω dx,

for j = 1, . . . , n and every B ∈ Fβ.

Proof. Given B = B(x0, r) ∈ Fβ , notice that Rβ,ηj (ωXB) and Rj(ωXB) are finite
a.e. in Ω since the operators are of weak type (1, 1) (in particular, for Rβ,ηj , this
result was proved in [7], Theorem 4.1). Let us see that (4.1.a) implies (4.1.b). For
each j is clear that

|Rj(ωXB)(x)| ≤ |Rj(ωXB∩B(x, β2 d(x,Ωc)))(x)|

+ |Rj(ωXB∩Bc(x, β2 d(x,Ωc)))(x)| = I + II

for almost every x ∈ Ω. We can estimate I as follows:
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I =

∣∣∣∣∣Rβ,ηj (ωXB)(x)−
∫
Bc(x, β2 d(x,Ωc))

xj − yj
|x− y|n+1 η

(
|x− y|
βd(x,Ωc)

)
ωXB dy

∣∣∣∣∣
≤ |Rβ,ηj (ωXB)(x)|+

(
2

βd(x,Ωc)

)n ∫
B

ω dy.

On the other hand, for x ∈ B̃ we have

II ≤
(

2
βd(x,Ωc)

)n ∫
B

ω dy.

Then, from the estimates of I and II, we get∫
B̃

|Rj(ωXB)| dx ≤
∫
B̃

|Rβ,ηj (ωXB)| dx

+ 2
(

2
β

)n(∫
B̃

dx

d(x,Ωc)n

)(∫
B

ω dx

)
.

If 5r ≤ βd(x0,Ωc), it follows that 5r( 1
β − 1) ≤ d(x,Ωc) for every x ∈ 5B. Then∫

B̃

dx

d(x,Ωc)n ≤
C

rn

∫
5B
dx = C. (4.2)

In the case 5r > βd(x0,Ωc), we have B̃ = Nβ(B). Following the proof of Lemma
2.3 in [6] (see p. 616), we know that there exists a constant C, independent of B,
such that d(x,Ωc) ≥ Cr for every x ∈ Nβ(B). In consequence, we can obtain (4.2)
again. Finally, (4.1.a) implies (4.1.b). Taking into account that

Rβ,ηj (ωXB)(x) = Rj(ωXB)(x)−
∫
B

xj − yj
|x− y|n+1

(
1− η

(
|x− y|
βd(x,Ωc)

))
ω dy

for almost every x ∈ Ω, a similar reasoning as before allows us to get that (4.1.b)
implies (4.1.a). �

Proof of Theorem 1.8 Proposition 4.1 proves that (4.1.a) and (4.1.b) are equiv-
alent. Let us see that (4.1.b) implies (1.8.b). With this aim in mind, we take a
ball B = B(x0, r) ∈ Fβ and denote f(x) = ω(x)XB(x) and g(x) = −f(x+y0) with
y0 ∈ Rn.

Claim: It is possible to choose y0 ∈ Rn such that |y0| = δr with 0 < δ < 1−β
2 ,

and ∫
Rn
|Rj(f + g)| dx ≤ C

∫
Rn
f dx, (4.3)

with C a constant not depending on B.

Assuming the claim is valid and proceeding in an analogous way as in the proof
of (ii)⇒(iii) in Theorem 1 of [4], we obtain

Mf(x) ≤ C
(
|B|−1

∫
f dx+ sup

t>0
|((f + g) ∗ Pt)(x)|

)
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for every x ∈ B̃, where M denotes the classical Hardy–Littlewood maximal and Pt
is the Poisson kernel. Then, integrating both sides over B̃, we get∫

B̃

Mβf dx ≤
∫
B̃

Mf dx

≤ C
(∫

B̃

f dx+
∫
B̃

sup
t>0
|(f + g) ∗ Pt| dx

)
.

As in [4] it can be proved that the second integral on the right side is bounded
by a constant times the first. This allows us to obtain∫

B̃

Mβ(ωXB) dx ≤ C
∫
B

ω dx.

A careful examination of the proof that (1.8.b) imply (1.8.c) (see Theorem (1.8))
leads to the conclusion that considering the inequality above instead of the one in
(1.8.b) allows us to get the inequality in (1.8.c) but with ω(B) instead of ω( 1

2B)
on the right hand side. This, in turn, lead us to (1.8.d) but without assuring
the doubling condition. However, in the particular case of µ being the Lebesgue
measure in Rn, this is enough to prove ω is doubling on Fβ . In fact, taking ε = 1

2
its corresponding θ in (0, 1) and t = (1− θ)−1/n, we get

µ(B − t−1B) = (1− t−n)µ(B)
= θµ(B)

for every B ∈ Fβ and, in consequence,

ω(B − t−1B) ≤ 1
2ω(B),

which obviously imply ω(B) ≤ 2ω(t−1B). So, (1.8.b) can be obtained.

Let us see that our claim is valid. To begin with, we take y0 ∈ Rn such that
|y0| = δr with 0 < δ < 1−β

2 . Note that |y0| < (1−β)βd(x0,Ωc) < (1−β)d(x0,Ωc).
Then, B(x0 + y0, r) ⊂ B(x0, d(x0,Ωc)).

If B = B(x0, r) ∈ F β
5
, noting that 2|y0| < 4r, we get∫

Rn−5B
|Rj(f + g)| dx ≤

∫
B

ω(x)
∫
|x−z|>2|y0|

∣∣∣∣∣ xj − zj
|x− z|n+1 −

xj − zj + y0
j

|x− z + y0|n+1

∣∣∣∣∣ dz dx
≤ C

∫
B

ω(x) dx,

where y0 = (y0
1 , . . . , y

0
n), since the kernel of Rj satisfies a Hörmander’s condition.

On the other hand,∫
5B
|Rj(f + g)| dx ≤

∫
5B
|Rjf | dx+

∫
5B
|Rjg| dx. (4.4)
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We can estimate the last integral as follows:∫
5B
|Rjg| dx ≤

∫
B(x0,5r+|y0|)

|Rjf | dx

≤
∫

6B−5B
|Rjf | dx+

∫
5B
|Rjf | dx

≤
∫
B

ω(y)
(∫

4r≤|x−y|≤7r

dx

|x− y|n

)
dy +

∫
5B
|Rjf | dx

≤ C
∫
B

ω dx+
∫

5B
|Rjf | dx.

Then, from (1.11.a) and (4.4), we obtain (4.3), since B̃ = 5B.

Now, if B 6∈ F β
5
, we have B̃ = Nβ(B). Note that 2|y0| < β(1 − β)d(x0,Ωc) ≤

βd(z,Ωc) for every z ∈ B. So, B(z, t) ∈ Fβ for every t ∈ (2|y0|, βd(z,Ωc)), which
implies that x ∈ Nβ(B) for every x such that |x − z| ≤ 2|y0| for some z ∈ B. In
consequence, from Hörmander’s condition,∫

Rn−Nβ(B)
|Rj(f + g)| dx

≤
∫
B

ω(z)
∫
Rn−Nβ(B)

∣∣∣∣∣ xj − zj
|x− z|n+1 −

xj − zj + y0
j

|x− z + y0|n+1

∣∣∣∣∣ dx dz
≤
∫
B

ω(z)
∫
|x−z|>2|y0|

∣∣∣∣∣ xj − zj
|x− z|n+1 −

xj − zj + y0
j

|x− z + y0|n+1

∣∣∣∣∣ dx dz
≤ C

∫
B

ω dz.

(4.5)

On the other hand,∫
Nβ(B)

|Rj(f + g)| dx ≤
∫
Nβ(B)

|Rjf(x)| dx+
∫
Nβ(B)

|Rjf(x+ y0)| dx

≤ C
∫
B

ω dx+
∫
Nβ(B)+y0

|Rjf | dx

≤ C
∫
B

ω dx+
∫

(Nβ(B)+y0)−Nβ(B)
|Rjf | dx.

(4.6)

In order to estimate the last integral, we recall that x ∈ Nβ(B) for every x such
that |x−z| < 2|y0| for some z ∈ B. In addition, appealing to the proof of Lemma 2.3
in [6] (see the proof of Claim 3 on p. 616) once again, we get d(x0,Ωc) ≤ cr with
c not depending on B. This implies |x + y0 − z| ≤ |x − z| + |y0| ≤ cr for every
x ∈ Nβ(B) and z ∈ B. Then, we get
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∫
(Nβ(B)+y0)−Nβ(B)

|Rjf | dx ≤
∫
B

ω(z)
(∫

2δr<|x−z|<Cr

dx

|x− z|n

)
dz

≤ C
∫
B

ω dz.

This estimate, together with (4.5) and (4.6) proves (4.3) in this case, concluding
the proof of the claim.

Taking into account that Rβ,ηj is bounded on Lp(Ω, dx), 1 < p <∞, the reason-
ing applied in section 3 to prove that (1.8.a) implies (1.8.b) can be used again to
prove, this time, (1.11.b). This finishes the proof of the theorem.

5. Proof of Theorem 1.12

We are in the same geometrical setting as in section 3, that is, X = Rn, with
the euclidean metric and the Lebesgue measure. The proof of Theorem 1.9 will
require some previous technical results.

Lemma 5.1. Let 0 < β < 1 and γ = 6β
7+β . Then Sγ(B) ⊂ Eβ( 1

2B) for every
B ∈ F γ

10
.

Proof. Let B = B(x0, r) ∈ F γ
10

. Then, for x ∈ B and y ∈ 1
2B, we have

|x− y| ≤ |x− x0|+ |x0 − y| < r + 1
2r <

3
10
γ

2 d(x0,Ωc). (5.2)

On the other hand

d(x0,Ωc) ≤ |x0 − z|+ d(z,Ωc)

<
γ

10d(x0,Ωc) + d(z,Ωc)

for every z ∈ B, which implies

(1− γ

10)d(x0,Ωc) < d(z,Ωc).

Consequently,
γ

2 d(x0,Ωc) <
γ

2(1− γ
10 )d(z,Ωc) < 5

9γd(z,Ωc)

for every z ∈ B. Then, from this and (5.2), we get

|x− y| < γ

6 d(x,Ωc) (5.3)

for every x ∈ B and y ∈ 1
2B, and so

|z − y| ≤ |z − x|+ |x− y|

< γd(x,Ωc) + γ

6 d(x,Ωc) = 7
6γd(x,Ωc) (5.4)

for z ∈ B(x, γd(x,Ωc)).
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From (5.3), we can also obtain (1 − γ
6 )d(x,Ωc) < d(y,Ωc) for every x ∈ B and

y ∈ 1
2B. Then, from (5.4) it follows

|z − y| < 7
6

γ

1− γ
6
d(y,Ωc)

= βd(y,Ωc)

for every x ∈ B, y ∈ 1
2B and z ∈ B(x, γd(x,Ωc)), which obviously proves

B(x, γd(x,Ωc)) ⊂ B(y, βd(y,Ωc))
for every x ∈ B and y ∈ 1

2B, that is Sγ(B) ⊂ Eβ( 1
2B). �

The next lemma shows an important property of the classes Bβp . It is not difficult
to see that it holds in the more general geometric setting of sections 2 and 3 as
well.

Lemma 5.5. Given 0 < β < 1 and p > 0, if ω ∈ Bβp , then ω satisfies a doubling
condition on Fβ, i.e.: there exists C > 0 such that ω(B) ≤ Cω( 1

2B) for every
B ∈ Fβ.

Proof. Let B = B(x0, r) ∈ Fβ . Then, if ω ∈ Bβp , we can write

ω(B) ≤
∫
r
2<|x0−y|<r

(
r

|x0 − y|

)n+p
ω(y) dy + ω

(
1
2B
)

≤ C
(r

2

)n+p ∫
Sβ( 1

2B)− 1
2B

ω(y)
|x0 − y|n+p dy + ω

(
1
2B
)

≤ Cω
(

1
2B
)
,

and the lemma is done. �

Now, we introduce a definition that will be useful to proof other properties of
Bβp .

Definition 5.6. Given 0 < β < 1 and p > 0, we say that a weight ω belongs to
B̃βp whenever

ω(B) ≤ Ctn+p−εω

(
1
t
B

)
for every B ∈ Fβ , t > 1 and some constants C > 0 and ε > 0 independent of B
and t.

The following couple of technical results will allow us to connect the classes B̃βp
and Bβp .

Lemma 5.7. Let M > 0 and ϕ be a non decreasing and non negative function
defined on (0,M ] such that∫ M

t

ϕ(s)
sr+1 ds ≤ C1

ϕ(t)
tr

and ϕ(t) ≤ C2ϕ

(
1
2 t
)

(5.8)
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for every t ∈ (0,M ] and some positive constants C1, C2 and r > 0, not depending
on t. Then, the function g(t) = ϕ(t)

tr is quasi-decreasing on (0,M ] (i.e.: there
exists C > 0 such that g(t2) ≤ Cg(t1) for t1 ≤ t2).

Proof. It follows easily from the conditions on ϕ. �

Lemma 5.9. Let ϕ be a function as in Lemma 5.7. Then, the condition (5.8) is
equivalent to each one of the following statements.

(5.9.a) There exists a > 1 such that ϕ(t) ≤ ar

2 ϕ( ta ) for every t ∈ (0,M ]
(5.9.b) There exist positive constants C and ε such that ϕ(t) ≤ Cθr−εϕ( tθ )
for every θ ≥ 1 and t ∈ (0,M ].

Proof. The lemma can be proved following the same ideas with obvious changes of
those applied in the proof of Lemma (3.3) in [5]. �

Lemma 5.10. Let α, β ∈ (0, 1) and p > 0. Then B̃αp = B̃βp .

Proof. Note that each weight ω in B̃αp is doubling on Fα and, in consequence, on
Fγ for every γ ∈ (0, 1). The lemma is an immediate consequence of this fact. �

Lemma 5.11. Let p > 0 and β ∈ (0, 1). Then Bβp ⊂ B̃βp .

Proof. Let ω ∈ Bβp . Taking into account Lemma 5.5, it is not difficult to see that
there exists C > 0 such that ω(B) ≤ Cω(B − 1

2B) for every B ∈ F 2
5β

. With this
in mind, we denote β0 = 2

5β and take B = B(x0, r) ∈ F β0
2

. Then, for m ∈ N
satisfying β0

2m+1 d(x0,Ωc) ≤ r < β0
2m d(x0,Ωc)

C
ω(B)
rn+p ≥

∫
Sβ(B)−B

ω(y)
|x0 − y|n+p dy

≥
m−1∑
K=0

ω
(
B
(
x0,

β0d(x0,Ωc)
2K

)
−B

(
x0,

β0d(x0,Ωc)
2K+1

))
(
β0d(x0,Ωc)

2K

)n+p

≥ C̃
m−1∑
K=0

∫ β0d(x0,Ωc)
2K

β0d(x0,Ωc)
2K+1

ω(B(x0, u))
un+p+1 du

≥ C̃
∫ β0

2 d(x0,Ωc)

r

ω(B(x0, u))
un+p+1 du,

with C and C̃ independent of r and x0. This inequality and Lemma 5.9 imply
ω ∈ B̃

β0
2
p . Finally, Lemma 5.10 concludes the proof. �

The following lemma shows that the classes Bβp , like B̃βp and Aβp , are independent
of β.
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Lemma 5.12. Let α, β ∈ (0, 1) and p > 0. Then Bαp = Bβp .

Proof. Let ω ∈ Bαp . If β < α, it is obvious that ω ∈ Bβp , since Fβ ⊂ Fα and
Sβ(B) ⊂ Sα(B) for every B ∈ Fβ . Let us assume α < β. From Lemma 2.3, with
ε0 = 1 and λ = β, we get ε1

α
β and ε2 ∈ (0, 1) such that 0 < β + ε2 < 1 and

Sβ(B) ⊂ B(x0, (β + ε2)d(x0,Ωc)) for every B = B(x0, r) ∈ Fε1β . Then, for such
balls, we have

rn+p
∫
Sβ(B)−B

ω(y)
|x0 − y|n+p dy

≤ rn+p
∫
B(x0,(β+ε2)d(x0,Ωc))−B(x0,ε1βd(x0,Ωc))

ω(y)
|x0 − y|n+p dy

+ rn+p
∫
B(x0,ε1βd(x0,Ωc))−B

ω(y)
|x0 − y|n+p dy

≤ rn+p

(ε1βd(x0,Ωc))n+pω(B(x0, (β + ε2)d(x0,Ωc)))

+ rn+p
∫
Sα(B)−B

ω(y)
|x0 − y|n+p dy,

≤ C

(
rn+p

(ε1βd(x0,Ωc))n+p

(
(β + ε2)d(x0,Ωc)

r

)n+p−ε
+ 1
)
ω(B),

≤ Cω(B),

(5.13)

where we have applied Lemmas 5.10, 5.11 and the hypothesis on ω.
If B ∈ Fβ−Fε1β , since Sβ(B) ⊂ Nβ(B), it is an easy consequence of Lemma 3.1

in [6] that ω(Sβ(B)) ≤ Cω(B) with C independent of B. This implies

rn+p
∫
Sβ(B)−B

ω(y)
|x0 − y|n+p dy ≤ Cω(B),

which, together with (5.13), proves ω ∈ Bβp . �

Our last result is the converse to Lemma 5.11.

Lemma 5.14. Let p > 0 and β ∈ (0, 1). Then B̃βp ⊂ Bβp .

Proof. Given β ∈ (0, 1), we know from Lemma 2.3 that we can choose constants
θ1 and θ2 such that Sβ(B) ⊂ B(x0, θ1d(x0,Ωc)) for every ball B = B(x0, r) ∈ Fθ2
and θ2 < β < θ1 < 1. Then, we can obtain

rn+p
∫
Sθ2 (B)−B

ω(y)
|x0 − y|n+p dy ≤ r

n+p
∫
Sβ(B)−B

ω(y)
|x0 − y|n+p dy (5.15)

≤ ω(B(x0, θ1d(x0,Ωc)))
≤ Cω(B(x0, r))

for every ball B = B(x0, r) ∈ Fθ2 − F θ2
5

. Note that, in addition, we can chose θ1

such that 5θ1 ∈ (5β, 1) whenever β < 1
5 . Then, taking B = B(x0, r) ∈ F θ2

5
, for
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K0 ∈ N such that 5K0r ≤ θ2d(x0,Ωc) < 5K0+1r, we get Sθ2(B) ⊂ Sθ2(5K0B) ⊂
B(x0, θ1d(x0,Ωc)) ⊂ B(x0,

5θ1
θ2

5K0r) and B(x0,
5θ1
θ2

5K0r) ∈ F5θ1 . With this in
mind, we can proceed as follows:

rn+p
∫
Sθ2 (B)−B

ω(y)
|x0 − y|n+p dy ≤ r

n+p
∫
Sθ2 (5K0B)−5K0B

ω(y)
|x0 − y|n+p dy

+ rn+p
∫

5K0B−B

ω(y)
|x0 − y|n+p dy

= I + II.

(5.16)

Let us estimate I. Assuming 5θ1
θ2
B ⊂ 5K0B, we get

I ≤ rn+p
∫

5θ1
θ2

5K0B− 5θ1
θ2
B

ω(y)
|x0 − y|n+p dy

≤ rn+p
K0−1∑
K=0

∫
5θ1
θ2

5K+1B− 5θ1
θ2

5KB

ω(y)
|x0 − y|n+p dy

≤ Crn+p
K0−1∑
K=0

(
5θ1

θ2
5Kr

)−n−p
ω

(
5θ1

θ2
5K+1B

)

≤ C
K0−1∑
K=0

(
5θ1

θ2
5K
)−n−p(5θ1

θ2
5K+1

)n+p−ε
ω(B)

≤ C
(
θ2

5θ1

)ε
ω(B)

∞∑
K=0

5−Kε

≤ Cω(B),

where we applied that ω ∈ B̃βp .
On the other hand, if 5K0B ⊂ 5θ1

θ2
B, we obtain

I ≤ rn+p
∫

5θ1
θ2

5K0B− 5θ1
θ2
B

ω(y)
|x0 − y|n+p dy + rn+p

∫
5θ1
θ2
B−B

ω(y)
|x0 − y|n+p dy.

The first integral on the right side can be estimated as before, while the second
one is clearly lesser than a constant times ω(B). Let us see II.

II ≤ rn+p
K0−1∑
K=0

∫
5K+1B−5KB

ω(y)
|x0 − y|n+p dy

≤ C
K0−1∑
K=0

5−K(n+p)5K(n+p−ε)ω(B)

≤ Cω(B),

where we used once again that ω ∈ B̃βp .
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Finally, from (5.15) and (5.16), the estimates of I and II, and Lemma 5.12 we
get ω ∈ Bβp . �

Now, we are in position to prove the main result of this section.

Proof of Theorem 1.9. Let B = B(x0, r) ∈ F β
8
. Note that 2B ⊂ E β

2
(B) =⋂

x∈B B(x, β2 d(x,Ωc)). In addition, if y ∈ B(x, β2 d(x,Ωc)) for some x ∈ Ω, we get
η
(
|x−y|

βd(x,Ωc)

)
= 1. Then, following an analogous reasoning to that used in the proof

of Theorem 2 of [4] (see p. 533) we can obtain

rn+1
∫
E β

2
(B)−B

ω(y)
|x− y|n+1 dy ≤ Cω(B),

with C independent of B. Then, since F γ
10
⊂ F β

8
for γ = 6β

14+β , from Lemma 5.1
it follows

rn+1
∫
Sγ(B)−B

ω(y)
|x− y|n+1 dy ≤ Cω(B)

for every B ∈ F γ
10

. Consequently, ω ∈ B
γ
10
1 and, from Lemma 5.12, ω ∈ Bβ1 .

On the other hand, if B ∈ F β
5
, by reasoning as in [4] (see the proof of Theorem 2

there) it can be proved that∫
5B
|Rβ,ηj (ωXB)| dx ≤ C

∫
5B
ω dx (5.17)

≤ C
∫
B

ω dx

where the last inequality follows from the fact that ω is doubling.
In the case B ∈ Fβ − F β

5
, we know, from Lemma 2.3 in [6], that Nβ(B) can

be covered with a finite number of balls, say P1, . . . , Pm, belonging to F β
5
. It is

clear that for each Pi we can pick a ball Bi ∈ Fβ − F β
5

such that Pi
⋂
Bi 6= ∅

and Bi
⋂
B 6= ∅. If we choose balls P ∗i ∈ Fβ − F β

2
concentric with Pi, we get

P ∗i ⊂ Nβ(Bi) and Bi ⊂ Nβ(B) for each i. Then, we have∫
Nβ(B)

|Rβ,ηj (ωXB)| dx ≤
m∑
i=1

∫
P∗
i

|Rβ,ηj (ωXB)| dx

≤
m∑
i=1

ω(P ∗i )
[
Rβ,ηj (ωXB)

]
BMOβω

≤ C
m∑
i=1

ω (Nβ(Bi))

≤ C
m∑
i=1

ω(Bi)
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≤ C
m∑
i=1

ω (Nβ(B))

≤ Cω(B),

which, together with (5.17) and Theorem 1.8, proves ω ∈ Aβ∞ and finishes the
proof. �
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