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A TRIBUTE TO POLA HARBOURE: ISOPERIMETRIC
INEQUALITIES AND THE HMS EXTRAPOLATION THEOREM

CARLOS PÉREZ AND EZEQUIEL RELA

Abstract. We give a simpler proof of the Gagliardo estimate with a measure
obtained by Franchi, Pérez, and Wheeden [Proc. London Math. Soc. (3) 80
no. 3 (2000), 665–689], and improved by Pérez and Rela [Trans. Amer. Math.
Soc. 372 no. 9 (2019), 6087–6133]. This result will be further improved us-
ing fractional Poincaré type inequalities with the extra bonus of Bourgain–
Brezis–Mironescu as done by Hurri-Syrjänen, Mart́ınez-Perales, Pérez, and
Vähäkangas [Internat. Math. Res. Notices (2022), rnac246] with a new argu-
ment. This will be used with the HMS extrapolation theorem to get Lp type
result.

1. The isoperimetric inequality and extrapolation theory

It is a great pleasure for us to dedicate this article to Eleonor Harboure, Pola,
who played a central role in the development of modern Harmonic Analysis in Ar-
gentina. The first author is deeply grateful for her kind support during early stages
of his career. Both authors want to stress how influential the work of Pola was to
the mathematical community. This paper is also a tribute to the extrapolation
theorem of Pola, R. Maćıas, and C. Segovia which was published in the American
Journal of Mathematics [21] (see also [20]). See Theorem 2.1 in Section 2 for an
updated version. We will refer to it as the HMS extrapolation theorem. Thanks to
this result we can complete some of the main results obtained in [32] in the classical
setting. A fractional counterpart with the Bourgain–Brezis–Mironescu gain will be
obtained in the line of results as derived in [22] or [3].

The HMS extrapolation theorem was inspired by the classical extrapolation
theorem of Rubio de Francia [8, 10,18].
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266 CARLOS PÉREZ AND EZEQUIEL RELA

1.1. The classical context. A first purpose of this paper is to give a simple proof
of the following extension of the celebrated Gagliardo’s inequality which can be seen
as an extension of the classical isoperimetric inequality although the best constant
was not obtained by Gagliardo.

Q will denote throughout the paper the family of cubes Q, i.e. a cartesian prod-
uct of n intervals of the same length `pQq in Rn and

fQ :“ ´
ż

Q

fpxq dx

is the average of f over the cube Q. M will always denote the maximal function
operator:

Mfpxq “ sup
QQQQx

´

ż

Q

|fpyq| dy,

The centered version with respect to euclidean balls of this operator is defined as

M cfpxq “ sup
rą0

´

ż

Bpx,rq

|fpyq| dy.

Since we are considering the euclidean space Rn endowed with the Lebesgue mea-
sure, both maximal operators defined above are pointwise comparable, up to a
dimensional constant.

The main principle of this paper is that Theorem 1.1 below combined with the
HMS extrapolation theorem yields the classical Lp Ñ Lp

˚ Sobolev embedding and
the modern one with the right class of weights.

Theorem 1.1. Let µ be any measure in Rn, n ě 2, then there exists a dimensional
constant cn such that for any cube Q P Q and any Lipschitz function f , we have

}f ´ fQ}Ln1,8pQ,dµq ď c

ż

Q

|∇fpxq|pM cpχ
Q
µqpxqq

1
n1 dx. (1.1)

As a consequence,

}f ´ fQ}Ln1 pQ,dµq ď c

ż

Q

|∇fpxq|pM cpχ
Q
µqpxqq

1
n1 dx, (1.2)

and hence,
ˆ
ż

Rn
|fpxq|n

1

dµpxq

˙
1
n1

ď cn

ż

Rn
|∇fpxq|pM cµpxqq

1
n1 dx, (1.3)

where f is a Lipschitz function with compact support.

Some vector-valued extensions of these results have been obtained in [31] even
with the sharp isoperimetric constant (1.5) when the global situation is considered.

Theorem 1.1 is implicit in [16] in a different more general context and was made
explicit and extended in [32]. Inequality (1.2) follows from (1.1) by using the well
known truncation method, also called the “weak implies strong” argument, which
will be used several times in this article. This method can be found in Maz’ya [27].
See also [32] and the very nice survey article of the method [19]. Theorem 1.1 has
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ISOPERIMETRIC INEQUALITIES AND HMS EXTRAPOLATION THEOREM 267

been extended in [29] in different directions using a different direct approach, in
particular the truncation method is avoided.

Certainly, (1.1) is motivated by the well known Fefferman-Stein inequality [13],
}Mf}

L1,8pdµq
ď cn }f}

L1pMµq

from which we deduce, for p P p1,8q, that
}Mf}

Lppdµq
ď cn p

1 }f}
LppMµq

,

where µ is any general measure. This is probably the main motivation to define
the A1 class of weights, namely those weights w such that

Mw ď cw,

being the best constant rwsA1 which is a number bigger or equal than one. A rele-
vant well known class of A1 weights is given by the celebrated Coifman-Rochberg
theorem [5], that is for δ P p0, 1q, then pMµqδ P A1 and

rpMµqδs
A1
ď

cn
1´ δ , (1.4)

whenever the function Mµ is finite almost everywhere. Observe that the weight
defined by pM cpχ

Q
µqpxqq

1
n1 in Theorem 1.1 satisfies the A1 condition by (1.4) since

it is comparable to pMpχ
Q
µqpxqq

1
n1 up to a dimensional constant.

Inequality (1.3) with the choice of dµ “ dx is part of the large family of Sobolev
type inequalities. However in this case, namely when p “ 1, it is not due to Sobolev
but to E. Gagliardo [17]. Gagliardo’s proof did not, however, give the best possible
constant. This was obtained by Maz’ya [27] and, independently, by H. Federer and
W. H. Fleming [12] yielding an extension of the isoperimetric inequality in Rn,

αn|Ω|
n´1
n ď Hn´1pBΩq, (1.5)

which holds for any sufficiently smooth domain Ω where αn “ n |B1p0q|
1
n . As

usual, |Ω| denotes the n-dimensional volume of Ω and Hn´1 the pn´1q-dimensional
Hausdorff measure. Namely, (1.5) is equivalent to

αn

ˆ
ż

Rn
|fpxq|n

1

dx

˙
1
n1

ď

ż

Rn
|∇fpxq| dx, (1.6)

for any Lispchitz function with compact support, being αn the best possible con-
stant. This shows that (1.3) can be seen as a non-sharp version of (1.6) from which
we have

Corollary 1.2. Let Ω be a bounded domain with smooth boundary BΩ in Rn and
let µ be a measure. Then,

µpΩq
n´1
n ď cn

ż

BΩ
pM cµq

1
n1 dHn´1,

This result can be seen as an extension of the main result obtained by David-
Semmes in [9] and improved in [36].

We finish this section with the following natural conjecture.
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268 CARLOS PÉREZ AND EZEQUIEL RELA

Conjecture 1.3. Let Ω and µ be as before. Then, the following estimate holds for
any Lispchitz function with compact support,

αn

ˆ
ż

Rn
|fpxq|n

1

dµpxq

˙
1
n1

ď

ż

Rn
|∇fpxq|pM cµpxqq

1
n1 dx,

where αn the best possible constant.

We remit to Osserman [30], Ziemer [37] or Talenti [35] for more information
about this topic.

1.2. The influence of the extrapolation theory. The appearance of the factor
pMµpxqq

1
n1 in Theorem 1.1 gives rise in a natural way to the definition of the A1,n1

class of weights which will play a central role in this paper. More precisely, it will
be the starting point in the main applications of the HMS extrapolation theorem.
This class is defined as the weights w, such that

Mpwn
1

q ď cwn
1

Observe that A1,n1 is a subclass of A1. Also observe that A1,n1 is part of a larger
family of weights denoted by Ap,p˚ and defined by,

rwsAp,p˚ “ sup
Q

ˆ

´

ż

Q

wp
˚

˙ˆ

´

ż

Q

w´p
1

˙

p˚

p1

ă 8. (1.7)

p˚ is the usual Sobolev exponent,
1
p
´

1
p˚
“

1
n
.

This condition was introduced by B. Muckenhoupt and R. Wheeden in [28]. We
remit to Section 2 for more information about this class of weights.

The second purpose of this paper is to use Theorem 1.1 combined with the HMS
extrapolation theorem to derive following new local result.

Corollary 1.4. Let p P r1, nq and let w P Ap,p˚ . Then there exists a constant cn,p
such that for any cube Q,

}wpf ´ fQq}Lp˚ pQ,dxq ď cn,prws
1
n1

Ap,p˚

ˆ
ż

Q

|w∇f |pdx
˙

1
p

.

As a consequence we have the global estimate

}wf}Lp˚ pRnq ď cn,p rws
1
n1

Ap,p˚
}w∇f}LppRnq.

The main novelty of this result lies in the fact that the exponent of the constant
in front rws

1
n1

Ap,p˚
is the sharpest possible.

Another nice improvement of this result using mixed A1 ´ A8 bounds can be
found in [33].

Of course, this result contains as well the very well known Poincaré–Sobolev
inequalities on cubes (see (2.1) below). Being a bit more precise, it is necessary to
use the sharp version of the HMS extrapolation theorem obtained in [25] to derive
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ISOPERIMETRIC INEQUALITIES AND HMS EXTRAPOLATION THEOREM 269

this sharp result. In other words, a good “weighted” initial estimate like (1.1)
carries all the relevant information thanks to the HMS extrapolation theorem.

A pp˚, pq extension of (1.1) and hence of (1.2) is contained in the following
theorem which can be found in [32].

Theorem 1.5. Let w be a weight in Rn, n ě 2. Then if 1 ď p ă n we have that
ˆ
ż

Q

|f ´ fQ|
p˚wdx

˙
1
p˚

ď C

ˆ
ż

Q

ˆ

|∇f |
w

M cpwχ
Q
q

1
n1

˙p

wdx

˙

1
p

.

This estimate is interesting on its own since nothing is assumed on the weight w.
However, it does not produce the class of weights Ap,p˚ from Corollary 1.4 since
we are clearly restricted to the case A1,n1 due to the presence of pM cwq

1
n1 . There

should be a proof more in the spirit of the proof of (1.2) (see Section 3).
An interesting observation is that a similar result holds for higher order deriva-

tives but only in the weak case, namely

}f ´ PQf}L
n

n´m
,8
pQ,dµq

ď c

ż

Q

|∇mfpxq|pM cpχ
Q
µqpxqq

n´m
n dx, (1.8)

where PQf is an appropriate polynomial of order m´ 1. This estimate seems not
be known. Recall that the polynomial PQf is an optimal special polynomial in the
sense that

inf
πPPm

ˆ

1
|Q|

ż

Q

|f ´ π|
p

˙1{p
«

ˆ

1
|Q|

ż

Q

|f ´ PQf |
p

˙1{p
,

where Pm is the family of polynomials of degree lees or equal than m´1. Roughly
speaking PQf is the Taylor polynomial of f on Q.

The proof of (1.8) is the same as in the case m “ 1 using an extension of the
representation formula (2.3),

|fpxq ´ PQfpxq| ď cn,m Imp|∇mf |χ
Q
qpxq x P Q.

See [1] and [26, p. 45]. The drawback of this approach is that the truncation method
cannot be applied in the case of higher order derivatives. However, we believe that
the strong result is true and we conjecture it.

Conjecture 1.6. There is a constant c depending on n,m such that

inf
πPPm

}f ´ π}
L

n
n´m pQ,dµq

ď C

ż

Q

|∇mfpxq| pM cpχ
Q
q
n´m
n dx.

Recall that for the usual case dµ “ dx, the result holds by iteration from the
case m “ 1 which seems not feasible for this general situation.

1.3. The new millennium’s, the influence of BBM. Theorem 1.1 was im-
proved in [22] to the context of the influential work by Bourgain, Brezis and
Mironescu in [2, Theorem 2.10]. The third purpose of this paper is to give a
different proof of this [22] result which is the following.
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270 CARLOS PÉREZ AND EZEQUIEL RELA

Theorem 1.7 ( [22]). Let µ be a measure in Rn and let 0 ă δ ă 1. Then there
exists a dimensional constant cn such that for any Q P Q and any f P L1

locpRnq

ˆ
ż

Q

|fpxq ´ fQ|
n
n´δ dµpxq

˙

n´δ
n

(1.9)

ď cn p1´ δq
ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

dyM cpχ
Q
µqpxq

n´δ
n dx.

Our proof is based on a similar idea of the proof of Theorem 1.1.
This result improves the one in [22] since it is valid for general measures µ instead

of (general) weights and the smaller centered maximal function of the right hand
side instead of the non-centered one.

As a corollary we obtain the following global fractional isoperimetric inequality
follows with the p1´ δq gain.

Corollary 1.8. Let µ be a measure in Rn and let 0 ă δ ă 1. There is a positive
dimensional constant cn such that,

ˆ
ż

Rn
|f |

n
n´δw

˙

n´δ
n

ď cn p1´ δq
ż

Rn

ż

Rn

|fpxq ´ fpyq|
|x´ y|n`δ

dy pMwpxqq
n´δ
n dx,

for an appropriate class of functions f .

As before some vector-valued extensions of these results have been obtained
in [31].

We remark that Theorem 1.7 yields Theorem 1.1. Indeed, it is shown in [29]
(also [23]) that for any δ P p0, 1q,

ż

Q

ż

Q

|fpxq ´ fpyq|

|x´ y|n`δ
dy wpxqdx ď

cn`pQq
1´δ

δp1´ δq

ż

Q

|∇fpxq|Mwpxq dx.

Then, combining this result with Theorem 1.7, using that M cpχ
Q
µqpxq

n´δ
n is an

A1 with constant cn
δ (see (1.4)) and letting δ Ñ 1` yields estimate (1.2).

In this paper we give an alternative proof of Theorem 1.7 using the same key
idea as in the proof of (1.2) shown here. First, the following appropriate and key
weak type estimate

}f ´ fQ}
L

n
n´δ

,8
pQ,dµq

ď cn p1´ δq
ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

dyMµpxq
n´δ
n dx.

is proved in (3.8). This combined with a variant of the truncation method for the
gradient, called the “fractional truncation method”, see [11, Theorem 4.1] and [4,
Proposition 2.14] yields the strong type estimate (1.9). We remit to [22] for further
details.

As a consequence of Theorem 1.7 we derive a fractional version of Corollary 1.4.
The key point is to use an adaptation of the HMS theorem as done in the proof of
Corollary 1.4 due to the special structure of the right fractional Lp version of the
right-hand side. Specifically, the following result can be obtained.
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ISOPERIMETRIC INEQUALITIES AND HMS EXTRAPOLATION THEOREM 271

Theorem 1.9. Let p P r1, nδ q and let w P Ap,p˚
δ

. Then there exists a constant cn,p
such that for any cube Q,

}wpf ´ fQq}
L
p˚
δ pQ,dxq

ď cn,pp1´ δq
1
p rws

n´δ
n

A
p,p˚

δ

ˆ
ż

Q

ż

Q

|upxq ´ upyq|p

|x´ y|n`pδ
dy wdx

˙
1
p

.

As a consequence, we have the global estimate

}wf}Lp˚ pRnq ď cn,p p1´ δq
1
p rws

n´δ
n

A
p,p˚

δ

ˆ
ż

Rn

ż

Rn

|upxq ´ upyq|p

|x´ y|n`pδ
dy wdx

˙
1
p

.

2. Some preliminaries and their history

‚ The rough prehistory:
As already mentioned, Theorem 1.5 yields

ˆ

1
|Q|

ż

Q

|f ´ fQ|
p˚
˙1{p˚

ď c `pQq,

ˆ

1
|Q|

ż

Q

|∇f |p
˙1{p

Q P Q. (2.1)

from which we derive the global result usually called the Gagliardo–Nirenberg–
Sobolev inequalities,

}f}
Lp˚ pRnq

ď cn }∇f}
LppRnq

, f P C1
c pRnq, (2.2)

when 1 ď p ă n. Extensions and new variations of this estimate can be found
in [6, 7].

The most common approach to prove (2.1) is based on the following pointwise
estimate which controls the oscillation of the function by the fractional integral
(see [24,34])

|fpxq ´ fQ| ď cn I1p|∇f |χQqpxq. (2.3)
It is an interesting fact that (2.3) is equivalent to the following averaged result,

1
|Q|

ż

Q

|f ´ fQ| ď cn
`pQq

|Q|

ż

Q

|∇f |,

as shown first in [15] (see an extension in [32], Theorem 11.3). Then the proof of
(2.1) in the range 1 ă p ă n is based on the boundedness

I1 : LppRnq Ñ Lp
˚

pRnq (2.4)

which is a well known classical result (see the recent monograph [24]), being the
boundedness false when p “ 1, 1˚ “ n

n´1 “ n1. I1 is the Riesz potential operator
of order α “ 1 given by the expression

Iαfpxq “

ż

Rn

fpyq

|x´ y|n´α
dy, 0 ă α ă n.

An interesting fact is that the strong inequality (2.1) with p “ 1, namely
ˆ

´

ż

Q

|fpxq ´ fQ|
n1 dx

˙
1
n1

ď cn `pQq

ˆ

´

ż

Q

|∇fpxq| dx
˙

,
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272 CARLOS PÉREZ AND EZEQUIEL RELA

follows from the weak endpoint boundedness of I1, namely

I1 : L1pRnq Ñ Ln
1,8pRnq.

To obtain the corresponding strong inequality (2.1) we may use the (already men-
tioned) truncation method of Maz’ya [27].
‚ The rough weighted theory:
A relevant extension of (2.4) and hence of (2.1) and (2.2) in the case p ą 1 was

obtained by B. Muckenhoupt and R. Wheeden [28]. They showed in this paper
that I1 satisfies weighted bounds of the form

}wI1f}Lp˚ pRnq ď c }wf}LppRnq (2.5)

if and only if w P Ap,p˚ already defined in (1.7),

rwsAp,p˚ “ sup
Q

ˆ

´

ż

Q

wp
˚

˙ˆ

´

ż

Q

w´p
1

˙

p˚

p1

ă 8.

Again, at the endpoint p “ 1 only the weak boundedness holds, and Muckenhoupt
and Wheeden proved that

}I1f}Ln1,8pwn1 q ď c }wf}L1pRnq

holds if and only if w P A1,n1 , i.e.
ˆ

´

ż

Q

wn
1

˙

ď c inf
Q
pwn

1

q

where the smallest constant c is denoted as rwsA1,n1 .

}wf}Lp˚ pRnq ď c }w∇f}LppRnq, f P C8c pRnq.

‚ Precise weighted estimates: The HMS theorem:
Now, besides its dependence on the dimension and p, the constant c in (2.5) also

depends on the constant rwsAp,p˚ .
The optimal weighted bound for I1 was proven in [25]

}wI1f}Lp˚ pRnq ď cp rws
1
n1

maxt1, p
1

p˚
u

Ap,p˚
}wf}LppRnq, 1 ă p ă n,

which leads to the following improvement of (2.1) whenever p P p1, nq,

}wpf ´ fQq}Lp˚ pQ,dxq ď cn,p rws
1
n1

maxt1, p
1

p˚
u

Ap,p˚

ˆ
ż

Q

|w∇f |pdx
˙

1
p

. (2.6)

However (2.6) has being improved in Corollary 1.4 combining (1.2) of our mea-
sured version of the Isoperimetric inequality Theorem 1.1 with a variation of the
following update version of the HMS extrapolation theorem which can be found
in [25].

Before stating the theorem we need a general version of the Ap,p˚ class already
introduced. In [28], the authors characterized the weighted strong-type inequality
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for fractional operators in terms of the so-called Ap,q condition. For 1 ă p ă n
α

and q defined by
1
q
“

1
p
´
α

n
,

they showed that for a finite constant C and for all f ě 0,

}wTαf}LqpRnq ď C }wf}LppRnq

where Tα “ Iα or Mα, if and only if w P Ap,q, namely

rwsAp,q ” sup
Q

ˆ

1
|Q|

ż

Q

wq dx

˙ˆ

1
|Q|

ż

Q

w´p
1

dx

˙q{p1

ă 8.

The sharp version of the HMS theorem is the following.

Theorem 2.1. Suppose that T is an operator defined on an appropriate class of
functions. Suppose further that p0 and q0 are exponents with 1 ď p0 ď q0 ă 8,
and such that

}wTf}Lq0 pRnq ď crwsγAp0,q0
}wf}Lp0 pRnq

holds for all w P Ap0,q0 and some γ ą 0. Then,

}wTf}LqpRnq ď crws
γmaxt1, q0

p10

p1

q1
u

Ap,q
}wf}LppRnq

holds for all p and q satisfying 1 ă p ď q ă 8 and
1
p
´

1
q
“

1
p0
´

1
q0
,

and all weight w P Ap,q.

Two important remarks are in order. The first one is that the proof provided
in [25] follows the original one in [21], except for the careful track of the depen-
dence of the estimates in terms of the Ap,q constants. The second remark is the
observation that there is no need to consider operators T as such, it is enough to
consider “inequalities with weights”, which are well defined on each step. In our
context we are dealing with Poincaré or Poincaré–Sobolev type estimates with the
appropriate weights. An idea of this sort was considered in [32], in the proof of
Corollary 1.11.

3. Proofs

For the proofs we will use the following lemma. We use here the standard
notation, for 0 ă α ă n, we define the Riesz potential of a non-negative measurable
function u by

Iαupxq “

ż

Rn

upyq

|x´ y|n´α
dy , x P Rn (3.1)

Lemma 3.1. Let Q0 be a cube in Rn, µ be a measure and 0 ă α ă n. Then

IαpχQ0
µqpxq ď

cn
α
µpQ0q

α
nM cpµχ

Q0
qpxq

n´α
n (3.2)
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274 CARLOS PÉREZ AND EZEQUIEL RELA

for a.e. x P Q0. In particular we have

IαpχQ0
µqpxq ď

cn
α
`pQ0q

αM cpµχ
Q0
qpxq (3.3)

and if dµpyq “ wpyq dy for some w P A1, then

IαpχQ0µqpxq ď
cn
α
rws

n´α
n

A1
wpQ0q

α
nwpxq

n´α
n (3.4)

for a.e. x P Q0.

Estimate (3.2) is probably known, but we will provide an unusual argument, at
least in this context, for the convenience of the reader, which can also be found in
a work in preparation by I. Gardeazabal, E. Loriest, and C. Pérez. On the other
hand, (3.3) is well known.

Proof. For t ą 0 we let
Qx,t :“ Q

´

x, t´
1

n´α

¯

be the cube with centre at x and sidelength t´
1

n´α . Then, using the layer-cake
formula, we obtain

ż

Q0

dµpyq

|x´ y|
n´α “

ż 8

0
µ

ˆ"

y P Q0 : 1
|x´ y|

n´α ą t

*˙

dt

“

ż 8

0
µ
´!

y P Q0 : |x´ y| ă t´
1

n´α

)¯

dt

ď

ż 8

0
min

"

µpQ0q,
µpQx,tq

|Qx,t|
|Qx,t|

*

dt.

ď cn

ż 8

0
min

!

µpQq,M cpµqpxq
´

t´
1

n´α

¯n)

dt

“ cn

ż

´

Mcpµqpxq
µpQq

¯
n´α
n

0
µpQq dt

` cn

ż 8

´

Mcpµqpxq
µpQq

¯
n´α
n

M cpµqpxqt´
n

n´α dt

“
cn
α
µpQq

α
nM cpµqpxq

n´α
n .

From here, (3.3) and (3.4) are deduced immediately. �

Proof of Theorem 1.1 . Using the pointwise estimate from (2.3)
|fpxq ´ fQ| ď cn I1p|∇f |χQqpxq,

it is enough to prove that

}I1p|∇f |χQq|Ln1,8pQ,dµq ď C

ż

Q

|∇fpxq|M cpχQµqpxq
1
n1 dx. (3.5)

Consider the set defined by
EQ :“ tx P Q : I1p|∇f |χQqpxq ą 1u
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Then, since I1 is self-adjoint,

µpEQq ď

ż

EQ

I1p|∇f |χQqpxqdµpxq “
ż

Q

|∇fpxq| I1pχEQµqpxq dx

Using Lemma 3.1 with ν “ χEQµ we obtain

µpEQq ď cn µpEQq
1
n

ż

Q

|∇fpxq|M cpχQµqpxq
1
n1 dx.

Hence, assuming µpEQq ą 0 (otherwise the inequality would be trivial)

µpEQq
1
n1

ď cn

ż

Q

|∇fpxq|M cpχQµqpxq
1
n1 dx.

Since this inequality is homogeneous in f we can replace f by f
t , t ą 0. Then for

any t ą 0,

tµtx P Q : I1p|∇f |qpxq ą tu
1
n1 ď cn

ż

Q

|∇fpxq|M cpχQµqpxq
1
n1 dx.

This yields (3.5) and hence the claim (1.1). �

We now proceed with the proof of the corollaries.

Proof of Corollary 1.2 . We will use the approach from [35] via mollified character-
istic functions. More precisely, consider u “ χΩ and, for any ε ą 0, the convolution

uεpxq :“ pJε ˚ uqpxq,

where Jεpxq “ 1
εn Jpx{εq for a good radial decreasing kernel J normalized so it has

integral 1 over Rn. We use (1.3) with uε instead of f and take the limit when εÑ 0.
The left hand side goes to µpΩq

1
n1 by using easy to check properties of approximate

identities. For the left hand side, we use a very nice connection between convoluted
radial decreasing kernels and maximal functions. More precisely, we know that
under the hypothesis on J , we have

sup
εą0

|pJε ˚ fqpxq| ďMfpxq,

since the L1 norm of J is one. In our situation, we use Gauss-Green equations to
obtain

|∇uεpxq| ď
ż

BΩ
Jεpx´ yq dHn´1pyq. (3.6)
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Integrating on the x variable as in (1.3) we get
ż

Rn
|∇uε| pM cµq

1
n1 dx ď

ż

Rn
pM cµq

1
n1 pxq

ż

BΩ
Jεpx´ yq dHn´1pyq dx

ď

ż

BΩ

ż

Rn
pM cµq

1
n1 pxqJεpx´ yq dx dHn´1pyq

“

ż

BΩ
pJε ˚ pM

cµq
1
n1 qpyqdHn´1pyq

ď

ż

BΩ
MppM cµq

1
n1 qqpyqHn´1pyq.

We used (3.6) in the last inequality. We conclude by observing that pM cµq
1
n1 q

is in fact an A1 weight and not only that, we also know how to compute its A1
constant(see (1.4)):

”

pM cµq
1
n1 q

ı

A1
ď

cn

1´ 1
n1

“ cnn.

We obtain then the uniform control
ż

Rn
|∇uεpxq| pM cµpxqq

1
n1 dx ď cn

ż

BΩ
pM cµq

1
n1 qpyqHn´1pyq

for every positive ε. Taking the limit when εÑ 0, we get the claimed inequality

µpΩq
n´1
n ď cn

ż

BΩ
pM cµq

1
n1 dHn´1.

�

Proof of Corollary 1.4 . For a fixed Q, we begin with estimate (1.2),

}f ´ fQ}Ln1 pQ,dµq ď cn

ż

Q

|∇fpxq|pM cpχ
Q
µqpxqq

1
n1 dx,

If dµ “ wn
1

dx with w P A1,n1 , we have

}wpf ´ fQq}Ln1 pQ,dxq ď cn rws
1
n1

1,n1

ż

Q

|∇fpxq| wpxq dx,

We now apply the HMS extrapolation Theorem 2.1 whose proof can be adapted
easily to this non-operator context with a gradient on the right hand side,1 with
parameters p0 “ 1, q0 “ n1, γ “ 1

n1 , to get

}wpf ´ fQq}Lp˚ pQ,dxq ď cn,p rws
1
n1

1,n1

ˆ
ż

Q

|w∇f |pdx
˙

1
p

.

Observe an important point: the exponent maxt1, q0
p10

p1

q1 u in the outcome of the
Theorem 2.1 equals one since p0 “ 1 in our case. �

1We remark that it is not clear how to do it in the fractional context. This is the main obstacle
to prove Conjecture 1.9.
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For the proof of Theorem 1.7 we will need the following precise representation
lemma used in [22] based on the ideas in [14, 15]. The notation we use has been
already defined in (3.1).

Lemma 3.2. Let Q0 be a cube in Rn. Assume that 0 ă α ă n and consider
0 ă η ă n ´ α. Let f P L1pQ0q and let g be a non-negative measurable function
on Q0 such that for a finite constant κ,

´

ż

Q

|fpxq ´ fQ| dx ď κ `pQqα´

ż

Q

gpxq dx

for every cube Q Ă Q0. Then there exists a dimensional constant cn such that

|fpxq ´ fQ0 | ď cn
κ

η
IαpgχQ0qpxq

for almost every x P Q0. In the particular case that α “ η ă n
2 ,

|fpxq ´ fQ0 | ď cn
κ

α
IαpgχQ0qpxq.

Proof of Theorem 1.7. We will make use of the following “initial” starting point

´

ż

Q

|fpxq ´ fQ| dx ď cn p1´ δq`pQqδ´
ż

Q

ż

Q

|fpxq ´ fpyq|

|x´ y|n`δ
dy dx,

which can be found in [2]. Then apply Lemma 3.2 with α “ δ, κ “ cn p1´ δq and

gf,Qpxq :“
ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

dy χQpxq.
2

Then there exists a constant c “ cpnq such that
|fpxq ´ fQ| ď cn p1´ δq IδpχQgf,Qqpxq (3.7)

for almost every x P Q.
We claim first a corresponding weak version of (1.9) from Theorem (1.7), namely

}f ´ fQ}
L

n
n´δ

,8
pQ,dµq

ď cn p1´ δq
ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

dyMµpxq
n´δ
n dx. (3.8)

By (3.7) it is enough to prove

}IδpχQgf,Qq}L
n
n´δ

,8
pQ,dµq

ď cn

ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

dyMµpxq
n´δ
n dx. (3.9)

Define,
EQ :“ tx P Q : IδpχQgf,Qqpxq ą 1u

Since Iδ is self-adjoint,

µpEQq ď

ż

EQ

IδpχQgf qpxqdµpxq “

ż

Q

gf pxq IδpχEQµqpxq dx

ď cnµpEQq
δ
n

ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

pMµpxqq
n´δ
n dx

2The proof of Lemma 3.2 works for this very special case as well.
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by Lemma 3.1 and hence, assuming µpEQq ą 0,

µpEQq
1´ δ

n ď cn

ż

Q

ż

Q

|fpxq ´ fpyq|
|x´ y|n`δ

pMµpxqq
n´δ
n dx.

By homogeneity, we can replace f by f
t with t ą 0 which yields the estimate (3.9)

which proves the claim (3.8).
To finish the proof of the theorem we use the “truncation method” that works

as well in this context. We remit to [22] for a full account. �
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Basel, 2011. DOI MR Zbl

[9] G. David and S. Semmes, Strong A8 weights, Sobolev inequalities and quasiconformal map-
pings, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math.
122, Dekker, New York, 1990, pp. 101–111. MR Zbl

[10] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American
Mathematical Society, Providence, RI, 2001. DOI MR

[11] B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas, On improved fractional Sobolev-Poincaré
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[24] J. Kinnunen, J. Lehrbäck, and A. Vähäkangas, Maximal Function Methods for Sobolev
Spaces, Mathematical Surveys and Monographs 257, American Mathematical Society, Prov-
idence, RI, 2021. DOI MR Zbl

[25] M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional
integral operators, J. Funct. Anal. 259 no. 5 (2010), 1073–1097. DOI MR Zbl

[26] N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathema-
tischen Wissenschaften 180, Springer-Verlag, New York-Heidelberg, 1972. MR Zbl

[27] V. G. Maz’ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag,
Berlin, 1985. DOI MR Zbl

[28] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,
Trans. Amer. Math. Soc. 192 (1974), 261–274. DOI MR Zbl
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