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Vol. 66, No. 1, 2023, Pages 91–115
Published online: September 21, 2023
https://doi.org/10.33044/revuma.4361

AVATARS OF STEIN’S THEOREM IN THE COMPLEX SETTING

ALINE BONAMI, SANDRINE GRELLIER, AND BENOÎT SEHBA

This paper is dedicated to Eleonor Harboure, Pola, a colleague and friend
whose memory will live on

Abstract. In this paper, we establish some variants of Stein’s theorem, which
states that a non-negative function belongs to the Hardy space H1(T) if and
only if it belongs to L log L(T). We consider Bergman spaces of holomorphic
functions in the upper half plane and develop avatars of Stein’s theorem and
relative results in this context. We are led to consider weighted Bergman
spaces and Bergman spaces of Musielak–Orlicz type. Eventually, we charac-
terize bounded Hankel operators on A1(C+).

1. Introduction

This article follows naturally our previous work [4] where we considered an
analog of Stein’s Theorem, but with an estimate on the whole space Rn instead of
a local estimate. Recall that Stein’s Theorem ([12]) says that, whenever f is an
L1 non negative function, which is supported in a ball B, its Hardy–Littlewood
maximal function Mf is integrable on B if and only if f ln(e + f) is integrable.
When working on the whole Rn, one may be interested in having f in the Hardy
space H1(Rn), that is, the space of integrable functions such that all its Riesz
transforms are integrable. In this setting, the fact that a function of H1(Rn) has
integral 0 induces to replace the assumption f non negative by f = g − (

∫
g)χQ

with g non negative and Q a fixed cube of measure 1. We then proved in [4] that f
is in H1(Rn) if and only if |f |(ln(e+ |f |) + ln(e+ |x|)) is integrable. This condition
may be interpreted as the fact that f belongs to a Musielak-Orlicz space, related
to the Musielak function (x, t) 7→ t(ln(e+ t) + ln(e+ |x|)).

It was natural to consider the same problem in the upper half-space

C+ := {z ∈ C, =m(z) > 0},

with the Bergman projection P replacing the Riesz transforms. It happens that
in this case we do not need Musielak-Orlicz spaces, but only weighted L1 spaces.
Here L1(C+) is the space of integrable functions for the volume measure on C+
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noted as
dV (z) = dx dy z = x+ iy,

while L1
Ω(C+) is the space of integrable function for the measure ΩdV . As usual,

the weight Ω is assumed to be measurable and non negative. Recall that the kernel
of the Bergman projection P is given by

K(z, ζ) = 1
π(z − ζ)2

.

We call P+ the operator with kernel |K(z, ζ)|.
Our analog of Stein’s theorem is the following.

Theorem 1. Assume that f is an integrable function, which is supported in a strip
{|x| < a}. Then Pf is integrable in any strip {|x| < b} if f ln(e+y−1) is integrable.
Moreover, when f is also non negative, this is a necessary and sufficient condition
for P+f to be integrable in the strip {|x| < a}.

Our next aim is to suppress the assumption on the support of f as in the case
of H1(Rn). Let us recall that integrable holomorphic functions have integral zero.
Moreover, as we will see, a function f ∈ L1 ∩ L2 such that Pf is in L1, has itself
integral zero. This leads us to subtract a term to f , as we did in Rn, when f does
not have integral zero.

So we consider the operator TK , defined by

TKf(z) =
∫
C+

K(z, ζ)f(ζ)dV (ζ)−
(∫

C+

f(ζ) dV (ζ)
)
K(z, i).

We prove that TK maps the weighted space L1(ωdV ) into L1 with

ω(z) := ln
(
e+ 1
=m(z)

)
+ ln(e+ |z|), z ∈ C+. (1.1)

Moreover there is a kind of converse when the Bergman kernel is replaced by its
modulus.

As in the case of Rn, the condition that appears here is reminiscent of other
properties that involve Bergman spaces, and which we also give in this paper.
Indeed, while the Musielak-Orlicz function given above appeared for products of a
function in H1(Rn) and a function of its dual, this weight ω appears for products
of a holomorphic function of the Bergman space A1(C+) and a function of its dual
space.

Let us fix some notations before going on. We use the notation H(C+) for the
set of holomorphic functions in C+. We recall that for 0 < p <∞, the Hardy space
Hp(C+) consists of all analytic functions f on C+ such that

‖f‖p := sup
y>0

(∫
R
|f(x+ iy)|pdx

)1/p
<∞.
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Let 1 ≤ p < ∞. For a weight Ω defined on C+, we denote by LpΩ(C+), the set of
all measurable functions f on C+ such that

‖f‖pΩ :=
∫
C+

|f(z)|pΩ(z) dV (z) <∞.

The Bergman space ApΩ(C+) is the subset of LpΩ(C+) consisting of holomorphic
functions. We remark that depending on the weight Ω, this set can be trivial.

When Ω(z) = (=m(z))α, we recover the classical (weighted) Bergman space
denoted by Apα(C+) (see [2]). This space is nontrivial only if α > −1.

For α > −1, the Bergman projection Pα is the orthogonal projection from
L2
α(C+) into its closed subspace A2

α(C+). It is defined by

Pαf(z) =
∫
C+

Kα(z, w)f(w)dVα(w)

where
Kα(z, w) = cα

(z − w̄)2+α

is the Bergman kernel, dVα(w) = (=m(w))αdV (w) and cα is a constant that de-
pends only on α.

Our proofs will use different values of α, and our results can be generalized to all
α > −1, but we come back in this introduction to the particular case of α = 0. It is
well-known (see [8]) that the dual space of A1(C+) is the space of Bloch functions
modulo constants. Recall that a function f is a Bloch function if

=m(z)|f ′(z)| ≤ C.
It is easy to see that the product of a function f ∈ A1(C+) and a Bloch function
g belongs to the space L1

ω−1(C+), see Corollary 1. In fact, as we shall see in §6
below, it belongs to the a priori smaller space Alog(C+) of holomorphic functions
such that f/(ln(e+ |f |) + ln(e+ |z|) is integrable. It can be seen that A1

ω−1(C+) is
the smallest Banach space containing Alog(C+). In particular, they have the same
dual space, and the multipliers of the Bloch space are characterized in terms of this
dual space, that is, they belong to the space Blog(C+) of holomorphic functions f
such that

=m(z)|f ′(z)| ≤ C

ω(z) .

Finally, one would like to know whether a function in A1
ω−1(C+) is weakly fac-

torized, that is, may be written as a sum
∑
fjgj with fj ∈ A1(C+) and gj Bloch

functions, with an adapted normalization. As in the seminal paper of Coifman
and Rochberg [7], this is done after an atomic decomposition of the space, based
on the fact that the projector Pα, α > 0 reproduces the functions of A1

ω−1(C+).
As a consequence, we characterize the symbols of bounded Hankel operators (see
Paragraph 5.3 for the definition).
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Theorem 2. Let b be in B(C+). Then the Hankel operator hb extends to a bounded
operator from A1(C+) to itself if and only if b ∈ Blog(C+).

It should be emphasized that all this can be adapted to the unit disk and, as
well to the unit ball of Cn. One can consult [3] on factorization properties. Our
aim, here, is to understand how the behavior at infinity influences these questions.

When the Bergman projection is replaced by the Szegö projection and Bergman
spaces by Hardy spaces, part of the results are contained in our previous work [4].
The factorization questions are treated in [6] and involve a Hardy space of Musielak
type. Remark that, in this case, one has an exact factorization. We do not know
whether one can replace weak factorization by exact factorization in the Bergman
setting. There is a large literature on products of functions respectively in H1 and
BMO (see in particular [5, 9]).

The paper is organized as follows. In Section 2, we start by studying the inte-
grability of the modulus of the Bergman kernels with respect to the weights ω and
ω−1. Such integrability properties are fundamental throughout the paper. In Sec-
tion 3, we prove Theorem 1 and extend it to non-compactly supported functions.
Then, we consider L∞-problems through duality and Bloch spaces in Section 4.
By the way, we characterize the multipliers of Bloch space and the dual space of
A1
ω−1(C+). Section 5 is devoted to products of functions in A1(C+) and Bloch

and to Hankel operators. The proof of Theorem 2 is given. We end the paper by
proving that A1

ω−1(C+) is the smallest Banach spaces containing the products of
functions in A1(C+) and Bloch.

In the following, we will use the notation A . B (respectively A & B, A ' B)
whenever there exists a uniform constant C > 0 such that A ≤ CB (respectively
A ≥ CB, respectively A . B et A & B).

2. Weights and reproducing formulas

In the following we will consider the weight ω, already defined (1.1) in the
introduction by

ω(z) := ln
(
e+ 1
=m(z)

)
+ ln(e+ |z|), z ∈ C+.

We establish the following lemma.

Lemma 1. Let α > 0, and β > −1. Then there is a constant C = Cα,β > 0 such
that for any z0 ∈ C+,∫

C+

ω(z) dVβ(z)
|z − z0|2+α+β ≤ C(=m(z0))−αω(z0).

∫
C+

dVβ(z)
|z − z0|2+α+βω(z) ≤ C

(=m(z0))−α
ω(z0) .
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Proof. Let I be the interval centered at <ez0 with length 2=m(z0). We denote by
Qz0 the square over I. Remark that there exist two constants c and C such that

B(z0, c=m(z0)) ∩ C+ ⊂ Qz0 ⊂ B(z0, C=m(z0)). (2.1)
Here the notation B(·, ·) stands for an Euclidean ball in the complex plane.

We will only consider the second inequality of the lemma. The first one follows
from slight modifications. We start by proving that∫

Qz0

dVβ(z)
ω(z) .

(=m(z0))2+β

ω(z0) . (2.2)

Remark 1. Inequality (2.2) may be interpreted as the fact that ω−1 belong to the
Bèkollè-Bonami class B1 of weights (see [1]). The same holds for ω. This is a
necessary and sufficient condition for having weak L1 inequalities for the Bergman
projection.

Recall that Qz0 satisfies (2.1). We split the proof of (2.2) into three cases:
ω(z0) ' 1, ω(z0) ' ln(1/y0) and ω(z0) ' ln(|z0|). Here, we write z0 = x0 + iy0 and
z = x+ iy. The proof is direct when ω(z0) ' 1. Let us next assume that y0 < 1/2
and ω(z0) ' ln(1/y0). In this case, it is sufficient to prove that∫

Qz0

yβ

ln(1/y)dxdy .
y2+β

0
ln(e+ 1/y0) ,

which is straightforward. Assume finally that ω(z0) ' ln(|z0|), with |z0| > 2. If
|z0| > 2y0, then |z| ' |z0| and ω(z) & ln(|z0|), so that we conclude directly. If
2y0 > |z0| > 2, then ω(z0) ' ln(y0). We write now that∫

Qz0

yβ

ln(y)dxdy .
y2+β

0
ln(y0) .

We have proved (2.2) in all cases.
Let us go on with the proof. For j ∈ N, we define zj := x0 +i2jy0. Put E0 = Qz0

and for j ≥ 1, Ej = Qzj \Qzj−1 . The inequality (2.2) is valid for zj in place of z0,
so that ∫

Qzj

dVβ(z)
ω(z) .

2(2+β)j(=m(z0))2+β

ω(zj)
.

Moreover, for j ≥ 1, the fact that z does not belong to Qzj−1 implies that |z−z0| ≥
c2j−1=m(z0). So, for j ≥ 1,∫

Ej

dVβ(z)
|z − z0|2+α+βω(z) .

2−αj(=m(z0))−α
ω(zj)

.

A computation analogous to the one we did for (2.2) gives the same estimate for
j = 0. As C+ is the union of the sets Ej , j ≥ 0, it remains to prove that

∞∑
j=0

2−αjω(zj)−1 . ω(z0)−1.
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From the expression of ω, one deduces that ω(zj) ≥ ω(z0) − j ln 2. We also know
that ω ≥ 1. We cut the sum into two parts, the first one with j < ω(z0)/2. Both
sums are bounded by a constant times ω(z0)−1, which we wanted to have. �

Remark 2. The same proof allows us to obtain the same conclusions as in Lemma 1
when ω is replaced on both sides by one of the three weights ωj , j = 0, 1, 2, with
ω0 ≡ 1, ω1(z) = ln(e+ (=m(z))−1) and ω2(z) = ln(e+ |z|).

Remark 3. We have as well bounds below in Lemma 1: just write that the integral
is bounded below by the integral on the disc with center z0 and radius =m(z0)/2.
Within this disc, which has measure c=m(z0)2+β, the function to integrate is equiv-
alent to =m(z0)−2−α−βω(z0)±1.

Let us use the notation L1
ω−1,α(C+) = L1(C+, ω

−1(z) dVα(z)).

Proposition 1. Let α > 0, and β > −1. Then the Bergman projector Pα+β is
bounded from L1

ω−1,β(C+) to L1
ω−1,β(C+).

Proof. This is a direct consequence of Fubini Theorem and Lemma 1. �

Let us now introduce the following weighted space.

L∞ω,α(C+) := {f measurable : sup
z∈C+

(=m(z))αω(z)|f(z)| <∞}.

Then L∞ω,α(C+) is a Banach space with norm

‖f‖∞,ω,α := sup
z∈C+

(=m(z))αω(z)|f(z)|.

Proposition 2. Let α > 0. Then the Bergman projection P2α maps L∞ω,α(C+)
boundedly into itself.

Proof. That P2α is well-defined and bounded on L∞ω,α(C+) follows directly from
Lemma 1. �

3. Avatars of Stein theorem in the Bergman setting

3.1. Local smoothness. This subsection is devoted to the proof of Theorem 1.
We first prove the sufficient condition. It is sufficient to consider P+, since |Pf | ≤
P+f . We use the notations z = x + iy and ζ = u + iv. The integrability of P+f
for y > a follows at once. Indeed, |z − ζ|−2 < y−2, and the integral of y−2χy>a on
the strip |x| < b is bounded by 2b

a . It remains to consider the integral of |z − ζ|−2

on the domain |x| < a, y < a. One has∫
|x|<a,y<a

|z − ζ|−2dV (z) ≤
∫
|x|>0,y<a

(
x2 + (y + v)2)−1

dx dy

= π

∫
0<y<a

dy

y + v
= π ln(1 + a/v)
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which allows us to conclude.
The necessary condition for P+ comes from the estimate∫

|x|<a,y<a/2
P+f(x+ iy) dxdy ≥

∫
|u|<a,v<a/2

f(u+ iv)J(u, v)dudv,

where, for |u| < a and v < a/2,

J(u, v) =
∫
|x|<a,y<a/2

(
(x− u)2 + (y + v)2)−1

dx dy

≥
∫
|x−u|<y+v,|x|<a,y<a/2

dxdy

(y + v)2

≥
∫ a/2

0

dy

y + v
= 1

2 ln
(

1 + a

2v

)
.

We have used the fact that the interval of x’s such that |x| < a, |x−u| < y+ v has
length at least y + v. The conclusion follows at once.

3.2. Smoothness of L1-type. In this section, we are interested in sufficient con-
ditions which ensure that a holomorphic function is integrable on C+. We first
prove the next lemma.

Lemma 2. We have the inequality∫
C+

∣∣(z − ζ)−2 − (z + i)−2∣∣ dV (z) . ω(ζ).

Proof. We write z = x+ iy and ζ = ξ + iλ. We cut the domain of integration into
pieces.

(1) y < 1 : we consider the two terms separately: the second one has a bounded
integral, while integrating first in x, we find that∫

y<1

∫
R
|z − ζ|−2dx dy = π

∫
y<1

(y + λ)−1dy = π ln(1 + 1
λ

) . ln(e+ 1
λ

).

(2) |ζ − i| < |z + i|/2 : the function to integrate is bounded by C |ζ−i||z+i|3 , whose
integral is bounded by a constant in this domain of integration.

(3) y > 1 and |z + i| ≤ 2|ζ − i| : we again consider separately the two terms
and start by integrating in x. We get twice the same bound∫ 2|ζ|+2

1

dy

y
. ln(e+ |ζ|).

�

Remark 4. As a consequence, the following inequality holds:∣∣∣∣∣
∫
C+

(
|z − ζ|−2 − |z + i|−2) dV (z)

∣∣∣∣∣ . ω(ζ).
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Define the following operator for f ∈ L1(C+) and z ∈ C+

TKf(z) := Pf(z)−
( ∫

fdV
)
K(z, i).

Here K stands for the Bergman kernel K0. Remark that for functions of integral 0,
this operator coincides with the Bergman projector.

As an immediate consequence of the lemma, we get the following result.

Theorem 3. The operator TK maps L1(ωdV ) into A1(C+).

The proof is direct since the kernel of TK is given by

(z, ζ) 7→ 1
(z − ζ)2

− 1
(z + i)2 .

Remark 5. As functions in A1(C+) have integral 0, for a function f in A1(C+)
we have

TKf = Pf = f.

Remark 6. As stated in the introduction, if f ∈ L1(C+) ∩ L2(C+) and Pf ∈
L1(C+), then f also has integral 0 so that TKf = Pf . Indeed, since Pf ∈ A1(C+),
it has integral zero so that, for m > 4,

0 =
∫
C+

Pf(z)dV (z)

= lim
ε→0

∫
C+

Pf(z)(1 + iεz)−mdV (z)

= lim
ε→0
〈Pf, (1− iεz)−m〉 = lim

ε→0
〈f, P (1− iεz)−m〉

= lim
ε→0
〈f, (1− iεz)−m〉

= lim
ε→0

∫
C+

f(ζ)(1 + iεζ)−mdV (ζ)

=
∫
C+

f(ζ)dV (ζ).

From Remark 4, the operator of kernel

(z, ζ) 7→ 1
|z − ζ|2

− 1
|z + i|2

has the same boundedness property. We are going to prove that it also satisfies a
partial converse result which may be interpreted as an avatar of Stein’s Theorem
in the Bergman setting.
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Theorem 4. The operator |TK | defined by

|TK |f :=
∫
|K(·, ζ)|f(ζ) dV (ζ)−

∫
fdV × |K(·, i)|

maps L1(ωdV ) into L1(dV ). Moreover, for positive integrable functions f , the
integrability condition f ∈ L1(ωdV ) is necessary to get |TK |f ∈ L1(dV ) whenever
the support of f is assumed to be included in {z ∈ C+, <e(z) > 0}.

Remark 7. This result is also true with Pα, i.e. when K is replaced by Kα and
dV by dVα.

Proof. The proof of the boundedness of |TK | follows easily from Remark 4. One
has only to prove the necessary condition on non negative f to get |TK |f in L1.

Assume that f is such that |TK |f ∈ L1(C+). We will use the same steps as
in the proof of Lemma 2. We first write that the integral of |TK |f on the set
{z = x+ iy, y < 1} is finite. We know that the term in |z+ i|−2 has a finite integral
on this set. So we have∫

y<1

∫
R

∫
C+

|z − ζ|−2f(ζ)dζdz <∞.

We are dealing with positive functions so that we can use Fubini’s Theorem. This
reduces to

∫
C+

f(ζ)
(∫ 1

0

∫
R

dxdy

(x− u)2 + (y + v)2

)
dV (ζ) = π

∫
C+

f(ζ) ln
(

1 + 1
v

)
dV <∞.

Hence ∫
C+

f(ζ) ln
(
e+ 1
=m(ζ)

)
dV (ζ) <∞.

Next, we consider the integral on y > 1 and prove that∫
C+

f(ζ) ln (e+ |ζ|) dV (ζ) <∞

under the additional assumption that the support of f is included in the set {z ∈
C+, <e(z) > 0}. We will use the fact that∫

x>0,y>1
|TK |f(−x+ iy)| dxdy <∞.

Since the difference (x2 + y2)−1 − (x2 + (y + 1)2)−1 is integrable on this domain,
it follows that∣∣∣∣∫

u,v>0

[
((x+ u)2 + (y + v)2)−1 − (x2 + y2)−1] f(u+ iv)dudv

∣∣∣∣
is integrable on the quadrant x, y > 0. But the bracket is always negative, so that
we are led to find some subset Eζ for which

Iζ :=
∫
Eζ

[
|z|−2 − |z + ζ|−2] dxdy ≥ c ln(e+ |ζ|).
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100 ALINE BONAMI, SANDRINE GRELLIER, AND BENOÎT SEHBA

Take for Eζ the set of z in the quadrant such that 1 < |z| ≤ |ζ|/2, so that

Iζ ≥
3
4

∫
Eζ

|z|−2dV (z) ≥ 3π
8 ln(|ζ|/2).

We conclude directly. �

4. Bloch functions, multipliers, duality

4.1. Smoothness of L∞-type. We will show that Theorem 3 may be seen as a
byproduct of the fact that the Bergman projector maps L∞(C+) into the Bloch
class. Indeed, let us recall the definition and some basic properties of the Bloch
space. The Bloch space B(C+) is the space of holomorphic functions such that

‖f‖B := sup
z
=m(z)|f ′(z)| <∞.

It is a semi-norm on B(C+), but a norm on Ḃ(C+) = B/C, whose elements are
equivalence classes modulo constants. Recall that Ḃ(C+) identifies with the dual
of A1(C+). The fact that constants are in the equivalence class of 0 is explained by
the fact that functions in A1(C+) have mean 0. The pairing between f ∈ A1(C+)
and g ∈ ˙B(C+) is given by

〈f, g〉A1,B =
∫
C+

f(z)g′(z)(=m(z)) dV (z). (4.1)

We will also be interested by the space of Bloch functions itself and consider the
norm on it given by

‖f‖+B := |f(i)|+ ‖f‖B.
The following lemma is elementary:

Lemma 3. Bloch functions satisfy the inequality
|f(z)| ≤ C‖f‖+B ω(z), (4.2)

where ω is given by formula (1.1)

Proof. Indeed, let z = x+ iy. For |x| ≤ y, we just write
|f(z)− f(i)| ≤ |f(x+ iy)− f(iy)|+ |f(iy)− f(i)| ≤ C + C| ln y|.

For |x| ≥ y, we write
|f(z)− f(i)| ≤|f(x+ iy)− f(x+ i|x|)|+ |f(x+ i|x|)− f(i|x|)|

+ |f(i|x|)− f(iy)|+ |f(iy)− f(i)|.

The two new terms are bounded by C ln( |x|y ), and we conclude easily. �

As a direct consequence, we have the following corollary.

Corollary 1. The pointwise product of a function in the Bergman space A1(C+)
and a function in the Bloch space belongs to the space A1

ω−1(C+). Moreover, for
f ∈ A1(C+) and g ∈ B(C+), one has

‖fg‖A1
ω−1
. ‖f‖A1‖g‖+B .
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As described in the introduction, we will find later on a better result, namely
those products are in Alog(C+), see Proposition 13.

Next, it is classical that the Bergman projector maps L∞(C+) into the Bloch
space, and so into the space of functions f that satisfy (4.2). To prove this, one
has first to give a meaning to the Bergman projection of a bounded function.
Classically, one considers the operator Q with kernel

(z, ζ) 7→ K(z, ζ)−K(i, ζ),
which is an integrable kernel in the variable ζ by Lemma 2. It is easy to verify that
Q is the adjoint operator of TK , which gives a proof by duality of Theorem 3.

4.2. Multipliers. Let us take the following definition.

Definition 1. Let Blog(C+) be defined by

Blog(C+) := {g ∈ H(C+) : ∃ C > 0 s.t. =m(z)|g′(z)| ≤ Cω−1(z) ∀z ∈ C+}.

As for BMO functions, this space enters into the characterization of multipliers
of the Bloch functions. A holomorphic function g is called a multiplier of the Bloch
functions whenever, for any f in B(C+), the product fg also a Bloch function. A
simple use of the closed graph theorem allows us to see that for such a multiplier,
which is automatically a Bloch function, there exists a constant C such that the
following inequality is satisfied.

‖fg‖+B ≤ C‖f‖
+
B . (4.3)

The next proposition is reminiscent of the theorem on BMO multipliers of [11] in
the unit disc and of [10] in the unbounded setting.

Proposition 3. Multipliers of the Bloch space consist in bounded functions that
are in the class Blog.

Proof. It is clear that any function g ∈ Blog gives a multiplier of the Bloch space:
just write (fg)′ = f ′g+g′f. The first term satisfies the required inequality because
g is bounded, the second one because of the condition

=m(z)|g′(z)| ≤ Cω−1(z) (4.4)
on g′ and the estimate (4.2) on f .

Let us now prove that these conditions are necessary: let us take g satisfying
(4.3) for any Bloch function f . First, let us prove that g is bounded. We claim
that it is sufficient to prove that g is bounded in two cases: for z = x+ iy, the first
case is for those z such that |z|y ≥ 1 and |z| > 1, so that ω(z) ' ln(|z|); and the
second one is for |z|y ≤ 1 and y < 1/2, so that ω(z) ' ln(1/y). Indeed, if |z|y ≥ 1
but |z| < 1 or if |z|y ≤ 1 but y > 1/2, then ω(z) ' 1 and the boundedness of g is
obtained by taking f = 1 and using (4.2).

So let us consider the two cases described above. In the first case, we take as
test function f the function defined by f(ζ) = log(ζ) which has clearly a bounded
Bloch norm. It allows us to get |g(z)| ln(|z|) ≤ C ln(|z|) hence g is bounded on this
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set. In the second case, we take f(ζ) = log(ζ − x) − log(i − x), so that f(i) = 0.
Using again (4.2), we find

|g(z)|| ln(y)− ln(|i− x|) ≤ C ln(1
y

).

But, because of the assumptions, | ln(y) − ln(|i − x|)| = ln(1/y) + log(1 + 1/y) ≤
C ln(1/y), from which we conclude as before.

It remains to prove the bound on |g′(z)| (4.4). As g is bounded and f is Bloch,
we get from (4.3) that

=m(z)|g′(z)||f(z)| ≤ ‖fg‖B ≤ C‖f‖+B .

Then, we use the preceding test functions: for |z| > 1 and |z|y > 1/2, we take
f(z) = log(z). As ω(z) ' ln(|z|), on this set, we get =m(z)|g′(z)| . ω−1(z). The
second test function gives the expected estimate when ω(z) ' ln(1/y). �

4.3. Reproducing formula for A1
ω−1-functions. We first consider the weighted

Bergman space A1
ρ(C+), with ρ := (1 + ln(e+ 1/y))−1, i.e the space of all analytic

functions f such that

‖f‖A1
ρ

:=
∫
C+

|f(x+ iy)|ρ(y) dxdy <∞.

It is clear that A1(C+) is continuously embedded in A1
ρ(C+).

The following result can be obtained in the same way as in [2, Proposition 1.3].

Proposition 4. (i) There exists a constant C > 0 such that for all x+iy ∈ C+
and all f ∈ A1

ρ(C+), the following inequality holds.

|f(x+ iy)| ≤ C
(
y2ρ(y)

)−1 ‖f‖A1
ρ
.

(ii) There exists a constant C > 0 such that for all y ∈ (0,∞) and all f ∈
A1
ρ(C+),

‖fy‖1 := ‖f(·+ iy)‖1 ≤ C (yρ(y))−1 ‖f‖A1
ρ
.

We then obtain the following.

Proposition 5. Let f ∈ A1
ρ(C+). Then

(i) The function y 7→ ‖fy‖1 is non-increasing and continuous on (0,∞).
(ii) f(·+ iε) is in A1

ρ(C+) for any ε > 0, and tends to f in A1
ρ(C+) as ε tends

to zero.

Proof. By assertion (ii) in Proposition 4, we have that fy is in H1(C+), hence (i)
holds.

Let us prove (ii): first using (i), we obtain

‖f(·+ iε)‖A1
ρ

=
∫ ∞

0
‖fy+ε‖1ρ(y)dy ≤

∫ ∞
0
‖fy‖1ρ(y)dy = ‖f‖A1

ρ
.
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It is clear that f is the pointwise limit of f(·+ iε) as ε→ 0. Hence by (i) and [13,
Theorem 5.6], we have that

lim
ε→0
‖fy+ε − fy‖1 = 0

It follows from the above and the dominated convergence theorem that

lim
ε→0
‖f(·+ iε)− f‖A1

ρ
= lim
ε→0

∫ ∞
0
‖fy+ε − fy‖1ρ(y)dy = 0.

�

Remark 8. For any ε > 0, z 7→ f(z + iε) belongs to H1(C+) and, hence, is of
integral 0.

We now check the following.
Proposition 6. A1(C+) is a dense subspace of A1

ρ(C+).
Proof. Let m > 0 be a large enough integer. Then for any ε > 0, the function
gε(z) = (1− iεz)−m is in A1(C+).

Let f ∈ A1
ρ(C+). Define

F (ε)(z) = gε(z)f(z + iε).
Then by using assertion (ii) in Proposition 5, one sees that F (ε) belongs to A1

ρ(C+).
Also observing that y 7→ (y2ρ(y))−1 is non-increasing, one obtains from assertion
(i) in Proposition 4 that the factor f(z+iε) is bounded and hence that F (ε) belongs
to A1(C+).

Clearly, as ε→ 0, we have that F (ε) → f . That
lim
ε→0
‖F (ε) − f‖A1

ρ
= 0

then also follows from the dominated convergence theorem. �

Proposition 7. The set A1
ρ(C+) ∩A1

ω−1(C+) is dense in A1
ω−1(C+).

Proof. Let f ∈ A1
ω−1(C+). Consider fε(z) = (1 − iεz)−1f(z). Clearly, fε tends

to f as ε tends to 0. Moreover, since (1 + ε|z|)−1ρ(z) ≤ Cεw(z)−1, we have that
fε ∈ A1

ρ(C+). As |f(z)−fε(z)| ≤ 2|f(z)|, it follows from the dominated convergence
theorem that ‖f − fε‖A1

ω−1
→ 0 as ε→ 0. �

We will need the following.
Proposition 8. The Bergman projection Pα, α > 0, is bounded on L1

ρ(C+). More-
over, Pα reproduces the functions in A1

ρ(C+).
Proof. That Pα maps L1

ρ(C+) boundedly intoA1
ρ(C+) can be obtained as in Lemma 1.

As Pα reproduces the elements of A1(C+), Proposition 6 allows us to conclude that
this projector also reproduces functions in A1

ρ(C+). �

From Proposition 7 and Proposition 8, we obtain the following.
Corollary 2. The Bergman projection Pα, α > 0, reproduces the functions in
A1
ω−1(C+).
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4.4. Duality. We can now prove the following duality result.

Theorem 5. The dual space
(
A1
ω−1(C+)

)∗ of A1
ω−1(C+) identifies with Blog under

the pairing
〈f, g〉∗ =

∫
C+

f(z)g′(z)(=m(z)) dV (z), (4.5)

f ∈ A1
ω−1(C+), and g ∈ Blog(C+).

Proof. Let g ∈ Blog(C+). Then that (4.5) defines a bounded linear operator is
direct from the definition of the spaces involved.

Conversely, assume that Λ is an element of
(
A1
ω−1(C+)

)∗. Then Λ can be ex-
tended as an element Λ̃ of

(
L1
ω−1(C+)

)∗ with the same operator norm. Then
classical arguments give that there is an element h ∈ L∞(C+) such that for any
f ∈ L1

ω−1(C+),

Λ̃(f) =
∫
C+

f(z)h(z)ω−1(z) dV (z).

In particular, we have that for any f ∈ A1
ω−1(C+),

Λ(f) =
∫
C+

f(z)h(z)ω−1(z) dV (z).

Using Lemma 1, we obtain that the projector P2 is bounded from L1
ω−1(C+)

into A1
ω−1(C+). It follows that for f ∈ A1

ω−1(C+),

Λ(f) =
∫
C+

f(z)h(z)ω−1(z) dV (z)

=
∫
C+

P2(f)(z)h(z)ω−1(z) dV (z)

=
∫
C+

f(z)P2g(z)(=m(z)) dV (z),

where g(z) = (ω(z)=m(z))−1h(z). We note that g ∈ L∞ω,1(C+) and that using
Proposition 2, one obtains that P2 is bounded on L∞ω,1(C+). It follows that if we
define G to be a solution of G′(z) = P2g(z), then G ∈ Blog(C+). Hence

Λ(f) =
∫
C+

f(z)G′(z)(=m(z)) dV (z).

That is Λ is given by (4.5). The proof is complete. �

5. Products of functions in A1 and B(C+) and Hankel operators

5.1. Weak factorization. Our aim is to prove the following result.

Theorem 6. The product of a function in A1(C+) and a function in B(C+) is
in A1

ω−1(C+). Conversely, a weak factorization result holds: if f is a holomorphic
function in A1

ω−1(C+), then
f =

∑
gjhj ,
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with gj’s and hj’s holomorphic and such that

‖f‖L1(ω−1) '
∑
j

‖gj‖A1‖hj‖B.

The first part of the result has already been given in Corollary 1. The bound
above for ‖f‖L1(ω−1) comes from the inequality given there. So we only have to
concentrate on the weak factorization. The scheme of the proof is classical and
starts from the atomic decomposition of a function f ∈ A1(ω−1dV ), which we
state now.

Proposition 9. Let f ∈ A1
ω−1(C+). There exists a sequence of complex numbers

{ck} and a sequence of points {wk} in C+ such that

f(z) =
∞∑
k=0

ck
(=m(wk))2ω(wk)

(z − wk)4

with
∑
|ck| . ‖f‖L1(ω−1).

We leave its proof for the next section and concentrate on the weak factorization.
Recall that functions

f(z) = (=m(w))2ω(w)
(z − w)4 (5.1)

are called atoms. We know that ‖f‖L1(ω−1) ' 1 as a consequence of Lemma 1
and Remark 3. As a consequence of the atomic decomposition, it is sufficient to
factorize atoms, which we do now.

Proposition 10. Let f be an atom given by (5.1). There exist g ∈ A1(C+) and
θ ∈ B(C+) such that

f = g × θ
with

‖g‖A1 × ‖θ‖+B . 1.

Proof. The proof is in two steps. In the first one, we choose a non vanishing
holomorphic function θ which satisfies ‖θ‖+B . 1. In the second one, we prove that∫

C+

dV (z)
|z − w|4|θ(z)| .

=m(w)−2

ω(w) .

Constants must be independent of the choice of w. The second step is reminiscent
of Lemma 1. We will use it and its proof.
First step: Choice of θ. Our choice will depend on w = u+ iv.

(i) Assume first that v < 1/2 and ln(v−1) ≥ 3 ln(e+|w|) so that ω(w) ' ln v−1.
We choose

θ : z 7→ 1− log(z − w) + ln |w + i|+ log(i+ z).
θ is a holomorphic function on C+ and the computation of its derivative
and of its value at i leads to

‖θ‖+B := |θ(i)|+ inf{C > 0, (=m(z))|θ′(z)| ≤ C} ≤ 10.
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Hence θ belongs to the Bloch space of the upper plane with a uniform
norm. Moreover, when using the triangle inequality and the inequality
(a+ b) ≤ 2ab, a, b ≥ 1, we find that ln |z−w| ≤ ln |w+ i|+ ln |z+ i|+ ln 2,
which leads to <e(θ(z)) > 1− ln 2.

(ii) Assume that ln(v−1) ≤ 3 ln(e+ |w|), so that ω(w) ' ln(e+ |w|). We choose
θ(z) := 1 + ln(i+ z).

Again θ has a uniform Bloch norm. Furthermore, it satisfies
|θ(z)| ≥ ln(e+ |z|).

Second step: Estimate of g. In both cases,

g : z 7→ (=m(w))2ω(w)
(z − w)4θ(z)

is a well defined holomorphic function in the upper half plane. We will prove that
the inequality ‖g‖L1 . 1 is a consequence of lemma 1 with generalized to weights
ω1 and ω2 (see Remark 2).

(i) Assume first that v < 1/2 and ln(v−1) ≥ 3 ln(e + |w|) so that ω(w) '
ln(v−1) ' ω1(w). We proceed as in the proof of Lemma 1 and recover
the upper half plane as the union of E′ks, with E0 := Qw and Ek :=
Qwk \Qwk−1 , k ≥ 1. Recall that w = u+ iv and wk = u+ i2kv.

On Ek, we use the the fact that |z − w| ≤ 2=m(wk), so that

<e(θ(z)) ≥ 1− ln 2 + ln+

(
1

|z − w|

)
& ln

(
e+ (=m(wk))−1) = ω1(wk).

Hence, proceeding as in the proof of Lemma 1, we have∫
|g(z)|dV (z) .

∑
k

ω1(w)
ω1(wk)2−2k.

We conclude by using the fact that ω1(wk) ≥ ω1(w)− k ln 2.
(ii) It remains to consider the case when ω(w) ' ln(e + |w|) = ω2(w). But then
|θ(z)| ≥ ln(e+|z|) = ω2(z). So, the required estimate follows directly from Lemma 1
with ω2 in place of ω. �

We now turn to the proof of the atomic decomposition.

5.2. Proof of the atomic decomposition. We prove the following atomic de-
composition, which we state for atoms that may be other powers of the Bergman
kernel.

Proposition 11. Let f be a holomorphic function in A1
ω−1(C+). For any α > 0,

there exists a sequence of complex numbers {ck} and a sequence of points {wk} in
C+ such that

f(z) = cα

∞∑
k=0

ck(=m(wk))αω(wk)
(z − wk)2+α

with
∑
|ck| ' ‖f‖L1(ω−1).
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Proof. As a first remark, it follows from Lemma 1 that∫
C+

=m(w)αω(w)
|z − w|2+αω(z)dV (z) ≤ C.

Hence, assuming
∑
|ck| finite, we get that the function

z 7→
∞∑
k=0

ck(=m(wk))αω(wk)
(z − wk)2+α

belongs to L1(ω−1dV ) with norm bounded by
∑∞
k=0 |ck|. It remains to prove that

any function f in A1
ω−1(C+) may be written under this form.

The scheme of the proof is classical and goes back to the work by Coifman and
Rochberg [7].
First, recall the notion of η-lattice in the terminology of [7]. The balls are in the
Bergman metric (see [2] for instance).

Definition 2. Suppose η is a given positive number less than 1 and d(·, ·) denote
the Bergman distance in C+. We will call a sequence of points {ζj} in C+ an
η-lattice if it satisfies the following properties:

(1) The balls Bj := B(ζj , η) cover C+:⋃
j

Bj = C+ (covering property).

(2) ζk /∈ Bj whenever j 6= k.
(3) There exists C > 0 such that any z ∈ C+ does not belong to more than C

different balls B(ζj , 2η) (overlapping property).
(4) The balls B̃j := B(ζj , η/2) are disjoint:

B̃j ∩ B̃k = ∅ whenever j 6= k.

In other words, the balls centered at ζj and of radius η give a Whitney covering of
C+.

The scheme of the proof of the atomic decomposition is to use an integral repre-
sentation formula and to discretize it on an η-lattice. If η is sufficiently small then
this produces a good approximation and iteration of the process yields the atomic
decomposition. By Corollary 2, the operator Pα, α > 0, reproduces A1

ω−1(C+)-
functions. Hence, for f ∈ A1

ω−1(C+)

f(z) =
∫
C+

Kα(z, w)f(w) dV (w)

where

Kα(z, w) = cα
=m(w)α

(z − w)2+α .

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



108 ALINE BONAMI, SANDRINE GRELLIER, AND BENOÎT SEHBA

Now we use the η-lattice given before to find a covering of C+ by disjoint sets
constructed by induction as follows:

E0 := B0 \

 ∞⋃
j=1

B̃j

 .

Ej := Bj \

(j−1⋃
k=0

Ek

)
∪

 ∞⋃
k=j+1

B̃k

 .

It is clear that B̃j ⊂ Ej ⊂ Bj and
⋃∞
j=0Ej = C+, Ej ∩ Ek = ∅ if j 6= k. Hence

f(z) =
∑
j

∫
Ej

Kα(z, w)f(w)dV (w).

Let g be given by

g(z) :=
∑
j

Kα(z, ζj)f(ζj)|Ej | = cα
∑
j

(=m(ζj))α

(z − ζj)2+α
f(ζj)|Ej |.

Then,

|f(z)− g(z)| =

∣∣∣∣∣∣
∑
j

∫
Ej

(Kα(z, w)f(w)−Kα(z, ζj)f(ζj)) dV (w)

∣∣∣∣∣∣
≤
∑
j

∫
Ej

|Kα(z, ζj)|ω(ζj)|f(w)− f(ζj)|
dV (w)
ω(ζj)

+
∑
j

∫
Ej

|Kα(z, w)−Kα(z, ζj)||f(w)|dV (w)

= I + II

One wants to prove that, for some universal constant C > 0,

|f(z)− g(z)| ≤ Cη
∑
j

∫
B(ζj ,η)

|f(ζ)|ω−1(ζ) dV (ζ)|Kα(z, ζj)|ω(ζj).

We first estimate the first term I. As usual we use the subharmonicity of the
moduli of holomorphic functions to get, for w ∈ Ej ,

|f(w)− f(ζj)| ≤ Cη
1

|B(ζj , η)|

∫
B(ζj ,2η)

|f(z)|dV (z).

On the other hand, as =m(z) ' =m(ζj) and |z| ≤ 2|ζj | for z ∈ B(ζj , 2η), one has
ω(ζj) & ω(z). Hence, it allows us to obtain

1
ω(ζj)

|f(w)− f(ζj)| ≤ Cη
1

|B(ζj , η)|

∫
B(ζj ,2η)

|f(z)|dV (z)
ω(z) ,

hence
I ≤ Cη

∑
j

∫
B(ζj ,2η)

|f(ζ)|ω−1(ζ) dV (ζ)|Kα(z, ζj)|ω(ζj).
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For the second term II, we use that, for w ∈ Ej
|Kα(z, w)−Kα(z, ζj)| ≤ Cη|Kα(z, ζj)|,

hence∫
Ej

|Kα(z, w)−Kα(z, ζj)||f(w)|dV (w) ≤ Cη|Kα(z, ζj)|ω(ζj)
∫
Ej

|f(w)|dV (w)
ω(ζj)

≤ Cη|Kα(z, ζj)|ω(ζj)
∫
Ej

|f(w)|dV (w)
ω(w) .

It allows us to get the expected inequality. Integrating it over C+ with respect to
the measure ω−1dV , one gets by the overlapping property,

‖f − g‖L1(ω−1) ≤ Cη‖f‖L1(ω−1). (5.2)

Let A be the linear operator

A :
{
A1
ω−1(C+) → A1

ω−1(C+)
f 7→ g

then for η small enough, inequality (5.2) implies

‖I −A‖A1
ω−1→A

1
ω−1
≤ 1

2
hence (I−A) is a contraction so that A is invertible. Eventually, any f ∈ A1

ω−1(C+)
may be written as

f = Ah = cα
∑
j

(=m(ζj))α

(z − ζj)2+α
h(ζj)|Ej |

for some h ∈ A1
ω−1(C+) with

‖h‖A1
ω−1
. ‖f‖A1

ω−1
.

It remains to prove that ∑
j

|h(ζj)|
|Ej |
ω(ζj)

. ‖f‖A1
ω−1

.

We are going to prove that∑
j

|h(ζj)|
|Ej |
ω(ζj)

. ‖h‖A1
ω−1

.

From the subharmonicity of h,

|h(ζj)|
|Ej |
ω(ζj)

≤ |Ej |
|Bj |ω(ζj)

∫
Bj

|h(w)|dV (w) .
∫
Ej

|h(w)|dV (w)
ω(w) .

Summing on j gives the expected estimate. This completes the proof of Theorem 6.
�
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5.3. Hankel operators. Recall that the operator hb is defined, for b in L∞(C+)
and f in A2(C+), by hb(f) := P (bf). To extend this definition, observe that, for
any g ∈ A2(C+), one has also

〈hb(f), g〉 = 〈b, fg〉.

This allows us to extend the definition of Hankel operators on A2(C+) to symbol
in B(C+) by

〈hb(f), g〉 = 〈b, fg〉A1,B.

The notation 〈·, ·〉A1,B stands for the duality bracket between A1(C+) and B(C+),
and is given by (4.1).

It is well known that a necessary and sufficient condition on b to get a bounded
operator on A2(C+) is b in the Bloch class. The next theorem gives a necessary
and sufficient condition to extend hb into a bounded operator on A1(C+).

Theorem 7. Let b be in B(C+). Then the Hankel operator hb extends to a bounded
operator from A1(C+) to itself if and only if b ∈ Blog(C+). Moreover,

‖hb‖ ' ‖b‖Blog .

Proof. From the definition, if f and g in A2(C+),

〈hb(f), g〉 = 〈b, fg〉A1,B.

We claim that this formula makes sense also for b ∈ Blog(C+), f ∈ A1(C+) and
g ∈ B(C+). Indeed, if b ∈ Blog(C+), f ∈ A1(C+) and g ∈ B(C+), the quantity∫

C+

f(z)g(z)b′(z)=mzdV (z)

is well defined since fg ∈ A1
ω−1(C+). Moreover, the corresponding operator is

bounded from A1(C+) into itself since∣∣∣∣∣
∫
C+

f(z)g(z)b′(z)=mzdV (z)
∣∣∣∣∣ ≤ ‖b‖Blog‖f‖A1‖g‖B.

For the converse statement, we assume that hb is well defined and bounded on
A1(C+) and we prove that it is necessary for b to be in Blog(C+). By Theorem 5,
it is sufficient to prove that, for a dense subset, we have

|〈b, F 〉A1
ω−1 ,Blog | =

∣∣∣∣∣
∫
C+

b′(z)F (z)=mzdV (z)
∣∣∣∣∣ ≤ C‖F‖A1

ω−1
(5.3)

for some uniform constant. Consider the dense subset of functions in A1
ω−1(C+)

with finite atomic decomposition,

F =
∑
finite

aj
=m(ζj)2ω(ζj)

(z − ζj)4 ,
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with
∑
|aj | ≤ C‖F‖A1

ω−1
. We use the factorization of each term given in Proposi-

tion 10 to conclude that

〈b, F 〉A1
ω−1 ,Blog =

∑
finite

aj〈b′, fjgj〉1

with

〈b′, f〉1 :=
∫
C+

b′(z)f(z)=m(z)dV (z).

The boundedness of hb on A1(C+) allows us to say that

|〈b′, fjgj〉1| = |〈hb(fj), gj〉| ≤ C

for some uniform constant C. Inequality (5.3) follows at once. �

Remark 9. One may also define a Hankel operator on B(C+) as the adjoint op-
erator of hb acting on A1(C+). From the symmetry of the definition, this adjoint
coincides with hb and the analogous result holds.

6. Associated Bergman-Musielak space

Here we are interested in the Bergman-Musielak space Alog(C+) and its links
with A1

ω−1(C+).

Definition 3. A holomorphic function f is in Alog(C+) if and only if

‖f‖Alog := inf{λ > 0 ;
∫
C+

|f(z)|/λ
ln(e+ |f(z)|/λ) + ln(e+ |z|)dV (z) ≤ 1}.

‖ · ‖Alog is a homogeneous quasi-norm. From the properties of the Musielak
function

Φ(t, z) := t

ln(e+ t) + ln(e+ |z|)

it is easy to deduce that f is in Alog(C+) if and only if∫
C+

|f(z)|
ln(e+ |f(z)|) + ln(e+ |z|)dV (z) <∞.

Moreover, ‖f‖Alog ' 1 if and only if∫
C+

|f(z)|
ln(e+ |f(z)|) + ln(e+ |z|)dV (z) ' 1.
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6.1. Embedding. In this part, we establish the inclusion of Alog(C+) into the
weighted space A1

ω−1(C+), as well as the fact that A1
ω−1(C+) is the smallest space

having this property.

Proposition 12. The space Alog(C+) is continuously embedded in the weighted
space A1

ω−1(C+).

Proof. By homogeneity it is sufficient to prove the existence of a constant C such
that ∫

C+

|f(z)|
ln(e+ y−1) + ln(e+ |z|) dV (z) ≤ C

whenever f is a holomorphic function that satisfies the inequality∫
C+

|f(z)|
ln(e+ |f(z)|) + ln(e+ |z|) dV (z) ≤ 1.

Here z = x + iy. We prove pointwise inequalities between the two functions to
integrate. We can replace ln(e+ |f(z)|) by ln(e+ |f(z)|2) in the denominator. We
will prove the inequality

ln(e+ |f(z)|2) + ln(e+ |z|) ≤ ln(e+ y−1) + ln(e+ |z|), (6.1)

which is sufficient to conclude.
A simple computation proves that ln(e+ |f |2) is a subharmonic function. This

implies the subharmonicity of any convex function of ln(e+|f |2). Since the function
t 7→ et/2

t+K is convex on (0,∞) for K > 1, we deduce that

|f(z)|
ln(e+ |f(z)|2) + ln(e+ |z|) . y

−2
∫
D

|f(ζ)|
ln(e+ |f(ζ)|2) + ln(e+ |z|) dV (ζ),

where D is the disc of center z and radius y/2. But ln(e+ |z|) ' ln(e+ |ζ|) on D.
So

|f(z)|
ln(e+ |f(z)|2) + ln(e+ |z|) . y

−2.

Inequality (6.1) is obvious when |f(z)| < 4. For t > 4, the inequality t

ln(e+ t2) .

y−2 implies that ln t . ln(y−2), from which we conclude for Inequality (6.1). Fi-
nally, ‖f‖Aω−1 . 1 as required. �

Next, we want to prove that the two spaces A1
ω−1(C+) and Alog(C+) have the

same atoms. Namely, we have the following lemma, which says that an atom f of
A1
ω−1(C+), which is such that ‖f‖A1

ω−1
' 1, is also such that ‖f‖Alog ' 1. It is

sufficient to give the upper bound because of the inclusion.

Lemma 4. Let f be the atom given by

f(z) = (=m(w))αω(w)
(z − w)2+α
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Then, there exists a constant C > 0 independent on w such that∫
C+

|f(z)|
ln(e+ |f(z)|) + ln(e+ |z|) dV (z) ≤ C.

Proof. The proof is, once again, based on Lemma 1 and Remark 2. Assuming that
ω(w) ' ln(e+ |w|), we use the fact that∫

C+

(=m(w))α ln(e+ |w|)
(z − w)2+α ln(e+ |z|) dV (z) . 1.

Assuming that ω(w) ' ln+(v−1) and v < 1/2, then ln(e+ |f(z)|) & 1 + ln+(1/y) +
ln+(|z − w|−2) as long as both terms are strictly positive. We write C+ = ∪Ej as
in Lemma 1 and find that ln(e + |f(z)|) & ln+(v−1) − k when z is in Ek, as long
as k ≤ v−1/2. We conclude as before by cutting the sum into two parts. �

As a consequence, we get the following corollary.

Corollary 3. The space A1
ω−1(C+) is the smallest Banach space containing the

Bergman-Musielak space Alog(C+). The two spaces have same dual Blog(C+).

Proof. As Alog(C+) is continuously embedded in A1
ω−1(C+), it is sufficient to prove

that the dual of Alog(C+) coincides with the one of A1
ω−1(C+). As A1(C+) is

included in Alog(C+), an element of its dual is represented by a function b ∈ B(C+)
and satisfies the inequality, for some uniform constant C,

|〈b, f〉| ≤ C‖f‖Alog .

We have to prove that b is in Blog(C+). We take an atom

f : z 7→ ω(w)(=m(w))
(z − w)3

in Alog and use the previous lemma. It follows that, for some uniform constant C,
the following quantity is bounded

|〈b, f〉| = ω(w)(=m(w))
∣∣∣∣〈b, 1

(z − w)3 〉
∣∣∣∣ ≤ C.

But here, we recognize (=m(w))ω(w)|b′(w)|. It ends the proof. �

6.2. John–Nirenberg inequality and products. From the inequality in
Lemma 2, we also obtain a kind of John–Nirenberg inequality:

Lemma 5. There exist constants λ,C ′ such that Bloch functions satisfy the in-
equality ∫

C+

exp(λ‖f‖+B
−1|f(z)|)

(1 + |z|)3 dV (z) ≤ C ′. (6.2)

Proof. By (4.2), we have

exp(λ‖f‖+B
−1|f(z)|) ≤ eCλ

(
e=m(z) + 1
=m(z)

)Cλ
(|z|+ e)Cλ.

We find that the integral is finite when λ is such that Cλ < 1. �
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6.3. Pointwise products. One of our interests lies in in products of functions
that are respectively in the Bergman space A1(C+) and in the Bloch space. When
proceeding as in [5],we deduce from Lemma 5 that one has the following embedding:

Proposition 13. The pointwise product of a function in the Bergman space A1(C+)
and a function in the Bloch space belongs to the space Alog(C+).

Proof. The result is a direct consequence of Lemma 2.1 of [5]. We recall it for an
easier reading. Let M ≥ 1. The following inequality holds for s, t > 0,

st

M + ln(e+ st) ≤ e(t−M) + s. (6.3)

Assume that f ∈ A1(C+) and g ∈ B(C+), and both have norm bounded by 1. We
want to prove that fg satisfies the inequality∫

C+

|f(z)||g(z)|
ln(e+ |f(z)||g(z)|) + ln(e+ |z|) dV (z) ≤ C.

We use (6.3) with t = λ|g(z)|, s = |f(z)|/λ and M = 3 ln(e + |z|). Here λ is the
constant in (6.2). �
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