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THE LIMIT CASE IN A NONLOCAL p-LAPLACIAN EQUATION
WITH DYNAMICAL BOUNDARY CONDITIONS

EYLEM ÖZTÜRK

Abstract. In this paper we deal with the limit as p → ∞ for the nonlocal
analogous to the p-Laplacian evolution with dynamic boundary conditions.
Our main result demonstrates this limit in both the elliptic and parabolic
cases. We are interested in smooth and singular kernels and show the existence
and uniqueness of a limit solution. We obtain that the limit solution of the
elliptic problem turns out to be also a viscosity solution of a corresponding
problem. We prove that the natural energy functionals associated with this
problem converge, in the sense of Mosco, to a limit functional and therefore
we obtain convergence of solutions to the evolution problems in the parabolic
case. For the limit problem, we provide examples of explicit solutions for some
particular data.

1. Introduction

Our main purpose in this paper is to study a nonlocal diffusion equation obtained
as the limit as p → ∞ to the p-Laplacian with dynamical boundary conditions, that
is, we look for the limit as p → ∞ of the solutions to the following problem (P1):

0 =
∫

Ωr∪Γr

J(x− y)|u(y, t) − u(x, t)|p−2(u(y, t) − u(x, t)) dy, x ∈ Ωr, t > 0;

∂u

∂t
(x, t) =

∫
Ωr

J(x− y)|u(y, t) − u(x, t)|p−2

×(u(y, t) − u(x, t)) dy + f(x, t), x ∈ Γr, t > 0;

u(x, 0) = u0(x), x ∈ Γr,
(1.1)

where Ω̂ is a smooth bounded domain and inside this domain a narrow strip Γr =
{x ∈ Ω̂ : dist(x, ∂Ω̂) ≤ r}, with r ≤ R, Ωr = Ω̂ \ Γr. We consider 1 < p < ∞
and the limit p → ∞. We assume that the non-singular kernel J : Rn → R is
nonnegative, continuous, radially symmetric, decreasing, and compactly supported
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(let supp(J) = BR(0)) with
∫
J(w) dw = 1. We also analyze the case in which the

kernel J can be singular.
First of all, we introduce the linear form of nonlocal equations,

∂u

∂t
(x, t) =

∫
J(x− y)|u(y, t) − u(x, t)|(u(y, t) − u(x, t)) dy.

These types of equations have been widely used in the modeling of diffusion pro-
cesses. More precisely, as stated in [20], if u(x, t) is thought of as a density at
the point x at time t and J(x− y) is thought of as the probability distribution of
jumping from location y to location x, then

∫
J(y−x)u(y, t) dy is the rate at which

individuals are arriving at position x from all other places and −
∫
J(y−x)u(x, t) dy

is the rate at which they are leaving location x to travel to all other sites. Then
these nonlocal equations give that the change in time of the density of individuals
at x at time t is just the balance between arriving to/leaving from x at time t
(see [4, 17, 18, 20]). According to this probabilistic interpretation of the nonlocal
terms, as noted in [9], we can regard (1.1) as a model for the following situation:
particles leave or arrive from x ∈ Ωr to y ∈ Ωr ∪ Γr in very fast time scales giving
rise to an “elliptic” equation inside Ωr (notice that t is only a parameter in the
first equation that appears in (P1)). On the other hand, individuals arrive to or
leave from x ∈ Γr from other sites y ∈ Ωr in the slow time scale. This gives the
second equation in (P1) in which a time derivative appears. The existence and
uniqueness of mild and strong solutions of nonlocal nonlinear diffusion problems
of p-Laplacian type with nonlinear boundary conditions posed in metric random
walk spaces were studied in [23, 27]. For recent works on nonlocal diffusion, see
[3, 7, 8, 14, 16, 17, 20, 21, 28, 29].

Concerning limits as p → ∞, one of the first papers that studies this kind of
problems is [10]. Let up denote the solution to the problem{− ∆pup = f in Ω,

up = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , f ∈ C(Ω) and f > 0. Then, from [10],
we have that up converges uniformly as p → ∞ to the distance to the boundary,
that is, limp→∞ up(x) = u∞(x) = d(x, ∂Ω) for x ∈ Ω.

In [5] and [19], the limiting behavior as p → ∞ of solutions to the quasilinear
parabolic problem

∂v

∂t
(x, t) − ∆pv(x, t) = f(x, t) in (0, T ) × RN ,

v(x, 0) = u0(x) in RN

was studied. In [5], assuming that u0 is a Lipschitz function with compact support
satisfying |∇u0| ≤ 1, it is proved that vp → v∞ and the limit function v∞ satisfies

f(x, t) − ∂v∞

∂t
(x, t) ∈ ∂F∞(v∞(x, t)),
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THE LIMIT CASE IN A NONLOCAL p-LAPLACIAN EQUATION 569

with

F∞(v) =
{

0 if |∇v| ≤ 1,
+∞ in other case.

The limit problem explains the movement of a sandpile (v∞(t, x) describes the
amount of the sand at the point x and time t), the main assumption being that the
sandpile is stable when the slope is less than or equal to one and unstable if not.

In [26], we looked for the nonlinear diffusion equation obtained as the limit as
p → ∞ to the p-Laplacian with dynamical boundary conditions, that is, we looked
for the limit as p → ∞ of the solutions to the following problem:

0 = ∆pu(x, t), x ∈ Ω, t > 0,
∂u

∂t
(x, t) + |∇u|p−2 ∂u

∂η
(x, t) = f(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ ∂Ω.
We proved that the natural energy functionals associated with this problem con-
verge in the sense of Mosco to a limit functional and therefore we obtain convergence
of the solutions to the evolution problems.

In [9], the authors deal both with smooth and singular kernels and show the
existence and uniqueness of solutions and study their asymptotic behavior as t
goes to infinity for (P1) with homogeneous dynamic boundary conditions.

In [1], the authors study on the nonlocal ∞-Laplacian type diffusion equation
obtained as the limit as p → ∞ to the nonlocal analogous to the p-Laplacian
evolution,ut(t, x) =

∫
RN

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy + f(x, t)

u(x, 0) = u0(x), x ∈ RN , t > 0.

They prove existence and uniqueness of a limit solution that satisfies an equation
governed by the subdifferential of a convex energy functional associated to the
indicator function of the set

K = {u ∈ L2(RN ) : |u(x) − u(y)| ≤ 1 when x− y ∈ supp(J)}.
In [2], the authors study the nonlocal p-Laplacian Dirichlet problem

ut(t, x) =
∫

Ω
J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy + f(x, t),

u(x, t) = φ(x), x ∈ ΩJ \ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where ΩJ = Ω + supp(J) and φ is a given function φ : ΩJ \ Ω → R. In this
paper, the authors prove the existence and uniqueness of strong solutions for the
nonlocal p-Laplacian problem with Dirichlet boundary conditions for p > 1 and
they show that this model approaches the local p-Laplacian evolution equation with
Dirichlet boundary conditions. They study the Dirichlet problem for the nonlocal
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total variation flow, proving convergence to the local model when the problem is
rescaled appropriately as well. Lastly they study the case p = ∞, obtaining a
model for sandpiles with Dirichlet boundary conditions.

We have been inspired by the works [2, 1], closely related to the present work,
where the Neumann and Dirichlet boundary value problems and their limits as p
goes to infinity are considered. The difference here is that we are now considering
dynamic boundary conditions with the nonhomogeneous case.

The rest of the paper is organized as follows. In Section 2, we recall some useful
results that will be used in the proofs of theorems, among them some technical
tools from convex analysis. In Section 3, we consider the limit p → ∞ in the
elliptic case with smooth and with singular kernels; also, in the case of singular
kernels, we obtain that the limit solution of the elliptic problem turns out to be
also a viscosity solution of a corresponding problem. In Section 4, we prove that
the natural energy functionals associated with (P1) converge in the sense of Mosco
to a limit functional and therefore we obtain convergence of the solutions to the
evolution problems. In Section 5, for the limit problem we provide examples of
explicit solutions for some particular data.

2. Preliminaries

In this section, we collect some preliminaries and notations that will be used in
the paper. We refer the reader to [4, 6, 12, 24, 25].

First, we recall the definition of Mosco convergence. If X is a metric space, and
{An} is a sequence of subsets of X, we define

lim inf
n→∞

An :=
{
x ∈ X : there exists xn ∈ An, xn → x

}
and

lim sup
n→∞

An :=
{
x ∈ X : there exists xnk

∈ Ank
, xnk

→ x
}
.

If X is a normed space, we denote by s-lim and w-lim the above limits associated,
respectively, to the strong and the weak topology of X.

Definition 2.1. Let H be a Hilbert space. Given Ψn,Ψ : H → (−∞,+∞] convex,
lower-semicontinuous functionals, we say that Ψn converges to Ψ in the sense of
Mosco if

w-lim sup
n→∞

Epi(Ψn) ⊂ Epi(Ψ) ⊂ s-lim inf
n→∞

Epi(Ψn), (2.1)

where Epi(Ψn) and Epi(Ψ) denote the epigraphs of the functionals Ψn and Ψ,
defined by

Epi(Ψn) :=
{

(u, λ) ∈ L2(RN ) × R : λ ≥ Ψn(u)
}

and
Epi(Ψ) :=

{
(u, λ) ∈ L2(RN ) × R : λ ≥ Ψ(u)

}
.
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THE LIMIT CASE IN A NONLOCAL p-LAPLACIAN EQUATION 571

Remark 2.2. We note that (2.1) is equivalent to the requirement that the following
two conditions are simultaneously satisfied:

• for all u ∈ D(Ψ) there exists un ∈ D(Ψn) such that un → u and Ψ(u) ≥
lim supn→∞ Ψn(un);

• for every subsequence {nk}, Ψ(u) ≤ lim infk Ψnk
(uk) whenever uk ⇀ u.

Here D(Ψ) := {u ∈ H : Ψ(u) < ∞} and D(Ψn) := {u ∈ H : Ψn(u) < ∞} denote
the domains of Ψ and Ψn, respectively.

If H is a real Hilbert space with inner product (·, ·) and Ψ : H → (−∞,+∞]
is convex, then the subdifferential of Ψ is defined as the multivalued operator ∂Ψ
given by

v ∈ ∂Ψ(u) ⇐⇒ Ψ(w) − Ψ(u) ≥ (v, w − u) for all w ∈ H.

Recall that the epigraph of Ψ is defined by

Epi(Ψ) =
{

(u, λ) ∈ H × R : λ ≥ Ψ(u)
}
.

Given K a closed convex subset of H, we define the indicator function of K by

IK(u) =
{

0 if u ∈ K,

+∞ if u ̸∈ K.

Then the subdifferential is characterized by

v ∈ ∂IK(u) ⇐⇒ u ∈ K and (v, w − u) ≤ 0 for all w ∈ K.

When the convex functional Ψ : H → (−∞,+∞] is proper, lower-semicontinuous,
and such that min Ψ = 0, it is well known (see [11]) that the abstract Cauchy prob-
lem {

ut + ∂Ψ(u) ∋ f a.e. t ∈ (0, T ),
u(0) = u0,

has a unique solution for any f ∈ L1(0, T ;H) and u0 ∈ D(∂Ψ).
The Mosco convergence is a very useful tool to study the convergence of solutions

of parabolic problems. The following theorem is a consequence of results in [6], [13].

Theorem 2.3. Let Ψn,Ψ : H → (−∞,+∞] be convex and lower semicontinuous
functionals. Then, the following statements are equivalent:

(i) Ψn converges to Ψ in the sense of Mosco.
(ii) (I + λ∂Ψn)−1u → (I + λ∂Ψ)−1u for all λ > 0, u ∈ H.

Moreover, either one of the above conditions, (i) or (ii), implies that
(iii) for every u0 ∈ D(∂Ψ) and u0,n ∈ D(∂Ψn) such that u0,n → u0, and for

every fn, f ∈ L1(0, T ;H) with fn → f , if un(t), u(t) are solutions of the
abstract Cauchy problems{

(un)t + ∂Ψn(un) ∋ fn a.e. t ∈ (0, T )
un(0) = u0,n,
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and {
ut + ∂Ψ(u) ∋ f a.e. t ∈ (0, T )
u(0) = u0,

respectively, then

un → u in C([0, T ] : H).

3. Elliptic case

As a first step, we consider the problem (P1) in the elliptic case, that is, drop
the time dependence and take the limit as p → ∞ in the following problem (P1s):

0 =
∫

Ωr∪Γr

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Ωr,

f(x) =
∫

Ωr

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Γr.

Theorem 3.1. Assume that
∫

Γr
f(x) dx = 0. For p fixed there exists a unique

solution up (that depends on p) of (P1s) such that∫
Γr

up(x) = 0.

For the proof of this theorem, we use variational arguments. Let us define the
functional Jp(u) as follows:

Jp(u) = 1
2p

∫∫
H

J(x− y)|u(y) − u(x)|p dy dx−
∫

Γr

fu,

with
H = (Ωr ∪ Γr) × (Ωr ∪ Γr) \ Γr × Γr.

We will prove some properties of Jp(u) in the following lemmas.

Lemma 3.2. There is a unique solution up to the problem

min
u∈Bp

Jp(u)

in the set

Bp =
{
u ∈ Lp(Ω̂) :

∫
Γr

u(x) = 0
}
.

Proof. To find the existence of such a minimum we need a Poincaré-type inequality:
there is a constant c such that∫∫

H

J(x− y)|u(y) − u(x)|p dy dx ≥ c

∫
Γr

|u|p (3.1)
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THE LIMIT CASE IN A NONLOCAL p-LAPLACIAN EQUATION 573

for every u ∈ Bp. This inequality is proved in [9, Theorem 2.5]. By using the above
inequality, along with Hölder’s and Young’s inequalities, we obtain the following:

Jp(u) = 1
2p

∫∫
H

J(x− y)|u(y) − u(x)|p dy dx−
∫

Γr

fu

≥ c

2p

∫
Γr

|u|p − c(ε)∥f∥p
′

Lp′ (Γr) − ε∥u∥pLp(Γr).

Taking ε ≤ c
2p , we get

Jp(u) ≥ −c(ε)∥f∥p
′

Lp′ (Γr).

This means that we can obtain the existence of the infimum of Jp(u) in Bp. Then
there exists {un} ∈ Bp such that

Jp(un) → inf
Bp

Jp(u) > −∞.

Hence we have that {Jp(un)} is bounded. Then

1
2p

∫∫
H

J(x− y)|un(y) − un(x)|p dy dx−
∫

Γr

fun ≤ C.

Taking into account (3.1) and using Hölder’s inequality we have
c

2p

∫
Γr

|un|p ≤ C +
∫

Γr

fun dx ≤ C + ∥f∥Lp′ (Γr)∥un∥Lp(Γr).

Using Young’s inequality we get

c

2p

∫
Γr

|un|p ≤ C + c(ε)
∥f∥p

′

Lp′ (Γr)

p′ + ε
∥un∥pLp(Γr)

p
.

Then ( c
2 − ε

p

) 1
p

∥un∥Lp(Γr) ≤
[
C + c(ε)

p′ ∥f∥p
′

Lp′ (Γr)

] 1
p

.

Hence we obtain that un is bounded in Lp(Γr) independently of p. Hence for some
subsequence unj

⊂ un and up ∈ Lp(Γr) we have

unj
⇀ up in Lp(Γr).

On the other hand, by weak convergence,

1
2p

∫∫
H

J(x− y)|up(y) − up(x)|p dy dx

≤ 1
2p lim inf

nj→∞

∫∫
H

J(x− y)|unj (y) − unj (x)|p dy dx

and
−
∫

Γr

unjf → −
∫

Γr

upf.
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Combining the previous two limits we obtain

1
2p

∫∫
H

J(x− y)|up(y) − up(x)|p dy dx−
∫

Γr

upf

≤ lim inf
nj→∞

1
2p

∫∫
H

J(x− y)|unj
(y) − unj

(x)|p dy dx−
∫

Γr

unj
f.

Hence we can write

Jp(up) ≤ lim inf
nj→∞

Jp(unj
) = inf

Bp

Jp(u),

which implies up is a minimizer of Jp(u) in Bp. The uniqueness follows by the
strict convexity of the functional Jp. Let us assume that we have two minimizers
u1 ̸= u2 ∈ Bp, w := u1+u2

2 ∈ Bp and

Jp(w) < 1
2(Jp(u1) + Jp(u2)) = inf

Bp

Jp(u).

This implies that Jp(w) < infBp
Jp(u), which contradicts that up is the minimizer

of Jp(u) in Bp. □

Now we are ready to prove our existence and uniqueness result.

Proof of Theorem 3.1. As an immediate consequence of our previous results, the
unique minimizer up ∈ Bp is the unique solution of (P1s). □

Now we want to obtain an estimate on up.

Lemma 3.3. Let up be the minimizer of Jp(u) in Bp. Then there exists a con-
stant C independent of p such that

∥up∥Lp(Γr) ≤ C

for p large enough.

Proof. Let us take u0 ∈ L∞(Ω̂) such that |u0(x) − u0(y)| ≤ 1 for almost every
x, y ∈ H. We have

Jp(u0) = 1
2p

∫∫
H

J(x− y)|u0(y) − u0(x)|p dy dx−
∫

Γr

fu0

≤ 1
2p

∫∫
H

J(x− y) dy dx−
∫

Γr

fu0 = C(u0).

Since up is the minimizer of Jp(u), we have
1
2p

∫∫
H

J(x− y)|up(y) − up(x)|p dy dx ≤ C(u0) +
∫

Γr

fup.

Taking into account (3.1) and using Hölder’s inequality we have
c

2p

∫
Γr

|up|p ≤ C(u0) +
∫

Γr

fup dx ≤ C(u0) + ∥f∥Lp′ (Γr)∥up∥Lp(Γr).
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Using Young’s inequality we get( c
2 − ε

p

) 1
p

∥up∥Lp(Γr) ≤
[
C(u0) + c(ε)

p′ ∥f∥p
′

Lp′ (Γr)

] 1
p

.

Hence we obtain that up is bounded in Lp(Γr) independently of p:
∥up∥Lp(Γr) ≤ C

for p large enough. □

We obtain the following trivial consequence of Lemma 3.3.
Remark 3.4. We have that for the unique minimizer up there exists some con-
stant C independent of p such that

1
2p

∫∫
H

J(x− y)|up(y) − up(x)|p dy dx ≤ C.

As a consequence of Lemma 3.3 we can extract a subsequence {upj } ⊂ up and
upj ⇀ u∞ weakly in Lp(Γr).
Lemma 3.5. Let u∞ be a limit of up (along a subsequence if necessary); then there
exists a constant C(q) such that

lim
q→∞

C(q) = 1

and (∫∫
H

J(x− y)|u∞(y) − u∞(x)|q dx dy
)1/q

≤ C(q).

Proof. We have(∫∫
H

J(x− y)|upj
(y) − upj

(x)|q dx dy
)1/q

=
(∫∫

H

(J(x− y))1− q
pj
[
(J(x− y))

q
pj |upj

(y) − upj
(x)|q

]) 1
q

.

Now, for 1 ≤ q < ∞, we observe that for pj > q, from Hölder’s inequality with
pj

pj−q and pj

q we obtain(∫∫
H

J(x− y)|upj
(y) − upj

(x)|q dx dy
)1/q

≤
(∫∫

H

J(x− y) dy dx
) pj −q

pj q
(∫∫

H

J(x− y)|upj
(y) − upj

(x)|pj

) 1
pj

≤
(∫∫

H

J(x− y) dy dx
) pj −q

pj q

(2pjC)
1

pj .

Let pj → ∞ to obtain(∫∫
H

J(x− y)|u∞(y) − u∞(x)|q dx dy
)1/q

≤
(∫∫

H

J(x− y) dy dx
) 1

q

.
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By taking C(q) :=
(∫∫

H
J(x− y) dy dx

) 1
q and letting q → ∞ we obtain desired

result. □

We also have(∫∫
H

J(x− y)|upj
(y) − upj

(x)|q dx dy
)1/q

≤ C(p, q),(∫∫
H

J(x− y)|u∞(y) − u∞(x)|q dx dy
)1/q

≤ lim inf
pj→∞

(∫∫
H

J(x− y)|upj
(y) − upj

(x)|q dx dy
)1/q

≤ lim inf
pj→∞

C(p, q) ≤ 1.

Now letting q → ∞, we get
|u∞(y) − u∞(x)| ≤ 1 for a.e. x, y ∈ H, x− y ∈ supp(J).

Hence we conclude that
upj

⇀ u∞ weakly in Lq(Γr) and u∞ ∈ B∞,

with
B∞ :=

{
u : |u(x) − u(y)| ≤ 1 for a.e. x, y ∈ H, x− y ∈ supp(J)

}
.

Lemma 3.6. Let u∞ be a limit of up (along a subsequence if necessary); then u∞
is a solution to

sup
u∈B∞

∫
Γr

fu, (3.2)

with
B∞ =

{
u : |u(x) − u(y)| ≤ 1 for a.e. x, y ∈ H, x− y ∈ supp(J)

}
.

Proof. Since up is the minimizer of Jp and B∞ ⊂ Bp, we have, for all v ∈ B∞,
1
2p

∫∫
H

J(x− y)|up(y) − up(x)|p dx dy −
∫

Γr

fup

≤ 1
2p

∫∫
H

J(x− y)|v(y) − v(x)|p dx dy −
∫

Γr

fv

≤ 1
2p

∫∫
H

J(x− y) dx dy −
∫

Γr

fv;

then,

−
∫

Γr

fup ≤ 1
2p

∫∫
H

J(x− y) dx dy −
∫

Γr

fv.

The idea now is to pass to the limit as p goes to infinity in the previous inequality.
On the left-hand side, we can neglect the first integral, while∫

Γr

fup(x) dx →
∫

Γr

fu∞(x) dx as p → ∞.
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For the right-hand side, we know that the first integral goes to zero and then (3.2)
holds. □

3.1. Singular case. We also include here the case in which the kernel J can be
singular. For 0 < s < 1,

(P2)


0 =

∫
Ωr∪Γr

1
|x− y|n+ps |u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Ωr;

f(x) =
∫

Ωr

1
|x− y|n+ps |u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Γr.

To deal with this problem, we consider the space
Xs,p = {u ∈ Lp(Ωr ∪ Γr) : ∥u∥s,p < +∞},

where

∥u∥s,p :=
(

∥u∥pLp(Γr) +
∫∫

H

1
|x− y|n+ps |u(y) − u(x)|p dy dx

) 1
p

.

In the next lemma, as in Lemma 3.2, we will find a unique minimizer of Jp(u) with
singular kernel.

Lemma 3.7. There is a unique solution up to the problem
min
u∈Bs

p

Jsp(u)

in the set
Bsp :=

{
u ∈ Xs,p :

∫
Γr

u(x) = 0
}
,

where
Jsp(u) := 1

2p

∫∫
H

1
|x− y|n+ps |u(y) − u(x)|p dy dx−

∫
Γr

fu dx.

Proof. If we replace J(x− y) by the singular kernel and use similar techniques as
in the proof of Lemma 3.2, then we can obtain the desired result easily. □

Corollary 3.8. Let up be the minimizer of Jsp(u) in Bsp. As a consequence of
Lemma 3.7, there exists a constant K > 0 independent of p such that ∥up∥s,p ≤ K.
Then, by compact embedding (see [22]), we can extract a subsequence {upj } ⊂ up
such that upj → u∞ in Lq(Γr) for p > q.

Lemma 3.9. Let up be the minimizer of Jsp(u) in Bsp. There exists a constant
C(p) such that (∫∫

H

1
|x− y|n

|up(y) − up(x)|p

|x− y|sp
dx dy

)1/p
≤ C(p)

and
lim
p→∞

C(p) = C∞,

where C∞ = max{1, (diam(Ω))δ} for small δ > 0.
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Proof. Let us take a fixed v(x) ∈ C∞(Ω) such that
∫

Γr
v = 0 and v(x)−v(y)

|x−y|s+δ ≤ 1 for
sufficiently small δ and for a.e. x, y ∈ H. Since up is the minimizer of Jsp in Bsp and
v ∈ Bsp, we have

1
2p

∫∫
H

1
|x− y|n+sp |up(y) − up(x)|p dx dy

≤
∫

Γr

fup + 1
2p

∫∫
H

1
|x− y|n+sp |v(y) − v(x)|p dx dy −

∫
Γr

fv

=
∫

Γr

fup −
∫

Γr

fv + 1
2p

∫∫
H

1
|x− y|n−δp

[ |v(y) − v(x)|
|x− y|s+δ

]p
dx dy.

For sufficiently large p, we have

1
2p

∫∫
H

1
|x− y|n+sp |up(y) − up(x)|p dx dy

≤
∫

Γr

fup −
∫

Γr

fv + 1
2p |H|(diam(Ω))δp−n

≤ c(ε)∥f∥p
′

Lp′ (Γr) + ε∥up∥pLp(Γr) −
∫

Γr

fv + 1
2p |H|(diam(Ω))δp−n

≤ c(ε)∥f∥p
′

Lp′ (Γr) + ε

c

∫∫
H

1
|x− y|n+sp |up(y) − up(x)|p dx dy

+
∫

Γr

|fv| + 1
2p |H|(diam(Ω))δp−n.

This gives us(
1
2p − ε

c

) 1
p
(∫∫

H

1
|x− y|n

|up(y) − up(x)|p

|x− y|sp
dx dy

)1/p

≤
(
c(ε)∥f∥p

′

Lp′ (Γr) +
∫

Γr

|fv| + 1
2p |H|(diam(Ω))δp−n

) 1
p

.

Here (
c(ε)∥f∥p

′

Lp′ (Γr) +
∫

Γr

|fv| + 1
2p |H|(diam(Ω))δp−n

) 1
p

→ C∞

and (
1
2p − ε

c

) 1
p

→ 1

as p → ∞. Hence we obtain(∫∫
H

1
|x− y|n

|up(y) − up(x)|p

|x− y|sp
dx dy

)1/p
≤ C(p) and lim

p→∞
C(p) = C∞,
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where

C(p) =

(
c(ε)∥f∥p

′

Lp′ (Γr) +
∫

Γr
|fv| + 1

2p |H|(diam(Ω))δp−n
) 1

p

(
1

2p − ε
c

) 1
p

. □

Lemma 3.10. Let up be the minimizer of Jsp(u) in Bsp. There exists a constant
C(p, q) such that

lim
p,q→∞

C(p, q) = C∞

and (∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)q
dx dy

) 1
q

≤ C(p, q).

Proof. We have(∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)q
dx dy

) 1
q

=
(∫∫

H

(diam(Ω))
nq
p −n 1

(diam(Ω))
nq
p

(
|up(y) − up(x)|

|x− y|s

)q
dx dy

) 1
q

.

Now, for 1 ≤ q < ∞, we observe that for p > q, from Hölder’s inequality we obtain(∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)q
dx dy

) 1
q

≤

(∫∫
H

(
(diam(Ω))

nq
p −n) p

p−q dx dy

) p−q
pq

×

(∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)p
dx dy

) 1
p

≤

(∫∫
H

1
(diam(Ω))n dx dy

) p−q
pq

×

(∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)p
dx dy

) 1
p

≤

(∫∫
H

1
(diam(Ω))n dx dy

) p−q
pq
(∫∫

H

1
|x− y|n

|up(y) − up(x)|p

|x− y|sp
dx dy

)1/p

≤

(∫∫
H

1
(diam(Ω))n dx dy

) p−q
pq

C(p).
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Hence we obtain(∫∫
H

1
(diam(Ω))n

(
|up(y) − up(x)|

|x− y|s

)q
dx dy

) 1
q

≤ C(p, q),

where

C(p, q) =
(∫∫

H

1
(diam(Ω))n dx dy

) p−q
pq

C(p) and lim
p,q→∞

C(p, q) = C∞. □

Therefore, as a consequence of Lemma 3.10, we have(∫∫
H

1
(diam(Ω))n

(
|u∞(y) − u∞(x)|

|x− y|s

)q
dx dy

)1/q

≤ lim inf
pj→∞

(∫∫
H

1
(diam(Ω))n

( |upj
(y) − upj

(x)|
|x− y|s

)q
dx dy

)1/q

≤ lim inf
pj→∞

C(pj , q) ≤
(∫∫

H

1
(diam(Ω))n dx dy

) 1
q

C∞.

Now letting q → ∞, we get
|u∞(y) − u∞(x)| ≤ max{1, (diam(Ω))δ}|x− y|s for a.e. x, y ∈ H, x ̸= y.

Then we have
upj

→ u∞ in Lq(Γr) and u∞ ∈ Bs∞,

with
Bs∞ :=

{
u : |u(y)−u(x)|

|x−y|s ≤ max{1, (diam(Ω))δ} a.e. x, y ∈ H such that x ̸= y
}
.

Now our aim is to obtain an equation satisfied by the limit u∞ in the usual
viscosity sense.

Theorem 3.11. Assume that f ∈ C(Ω̂). Then u∞ is the solution of the problem

sup
x ̸=y

u∞(y) − u∞(x)
|y − x|s

+ inf
x̸=y

u∞(y) − u∞(x)
|y − x|s

= 0, x ∈ Ωr;

sup
x ̸=y

u∞(y) − u∞(x)
|x− y|s

− max
{

sup
x ̸=y

−u∞(y) + u∞(x)
|x− y|s

, 1
}

= 0, f(x) > 0, x ∈ Γr;

max
{

sup
x ̸=y

u∞(y) − u∞(x)
|x− y|s

, 1
}

− sup
x ̸=y

−u∞(y) + u∞(x)
|x− y|s

= 0, f(x) < 0, x ∈ Γr

(3.3)
in the usual viscosity sense.

Proof. Let us start by showing that u∞ is a viscosity subsolution of (3.3). Let
x0 ∈ Ωr and let φ be a C2(Ω̂) function such that φ−u∞ has a minimum at x0 and
u(x0) = φ(x0). We want to prove that

sup
x0 ̸=y

φ(y) − φ(x0)
|y − x0|s

+ inf
x0 ̸=y

φ(y) − φ(x0)
|y − x0|s

≥ 0.
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Thanks to the uniform convergence of up to u∞ (see [15, Proposition 6.1]), there
exists a sequence of points xp → x0 such that φ − up has a minimum at xp ∈ Ωr;
then for all y ∈ Ωr ∪ Γr we have

φ(y) − up(y) ≥ φ(xp) − up(xp) ⇒ φ(y) − φ(xp) ≥ up(y) − up(xp).

Therefore,

|φ(y) − φ(xp)|p−2(φ(y) − φ(xp)) ≥ |up(y) − up(xp)|p−2(up(y) − up(xp))

and
1

|xp − y|n+ps |φ(y) − φ(xp)|p−2(φ(y) − φ(xp))

≥ 1
|xp − y|n+ps |up(y) − up(xp)|p−2(up(y) − up(xp)).

Integrating on Ωr ∪ Γr,∫
Ωr∪Γr

1
|xp − y|n+ps |φ(y) − φ(xp)|p−2(φ(y) − φ(xp)) dy

≥
∫

Ωr∪Γr

1
|xp − y|n+ps |up(y) − up(xp)|p−2(up(y) − up(xp)) dy.︸ ︷︷ ︸

=0

Then, we have∫
Ωr∪Γr∩{φ(y)<φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy

≤
∫

Ωr∪Γr∩{φ(y)>φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy;

therefore we get(∫
Ωr∪Γr∩{φ(y)<ϕ(xp)}

1
|xp − y|n+ps |φ(y) − ϕ(xp)|p−1 dy

)1/(p−1)

≤

(∫
Ωr∪Γr∩{φ(y)>φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy

)1/(p−1)

,

and taking p → ∞ we conclude that

sup
φ(y)>φ(x0)

φ(y) − φ(x0)
|y − x0|s

≥ sup
φ(y)<φ(x0)

−φ(y) + φ(x0)
|y − x0|s

.

Hence,

sup
x0 ̸=y

φ(y) − φ(x0)
|y − x0|s

+ inf
x0 ̸=y

φ(y) − φ(x0)
|y − x0|s

≥ 0.

Now, for the second equation, let us consider x0 ∈ Γr and let φ be a C2(Ω̂)
function such that φ− u∞ has a minimum at x0 and u∞(x0) = φ(x0).
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Thanks to the uniform convergence of up to u∞, there exists a sequence of points
xp → x0 such that φ− up has a minimum at xp ∈ Γr; then for all y ∈ Ωr we have∫

Ωr

1
|xp − y|n+ps |φ(y) − φ(xp)|p−2(φ(y) − φ(xp)) dy

≥
∫

Ωr

1
|xp − y|n+ps |up(y) − up(xp)|p−2(up(y) − up(xp)) dy = f(xp).

Then, we have∫
Ωr∩{φ(y)>φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy

≥
∫

Ωr∩{φ(y)<φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy + f(xp),

and therefore we get(∫
Ωr∩{φ(y)>φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy

)1/(p−1)

≥

(∫
Ωr∩{φ(y)<φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1 dy + f(xp)

)1/(p−1)

.

Recall that given two sequences of nonnegative real numbers ap, bp ⊂ R, where
a

1
p
p → a and b

1
p
p → b, we have (ap + bp)

1
p−1 → max{a, b}.

In the case f(xp) > 0, if we take p → ∞ and use the above property we conclude
that

sup
x0 ̸=y

φ(y) − φ(x0)
|x0 − y|s

≥ max
{

sup
x0 ̸=y

−φ(y) + φ(x0)
|x0 − y|s

, 1
}
.

Observe also that, in the case f(xp) < 0,(∫
Ωr∩{φ(y)>φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1dy − f(xp)

)1/(p−1)

≥

(∫
Ωr∩{φ(y)<φ(xp)}

1
|xp − y|n+ps |φ(y) − φ(xp)|p−1dy

)1/(p−1)

,

and taking p → ∞, we obtain

max
{

sup
x0 ̸=y

φ(y) − φ(x0)
|x0 − y|s

, 1
}

≥ sup
x0 ̸=y

−φ(y) + φ(x0)
|x0 − y|s

.

We conclude that u∞ is a viscosity subsolution to
supx̸=y

u∞(y)−u∞(x)
|x−y|s − max

{
supx̸=y

−u∞(y)+u∞(x)
|x−y|s , 1

}
= 0, f(x) > 0,

max
{

supx ̸=y
u∞(y)−u∞(x)

|x−y|s , 1
}

− supx̸=y
−u∞(y)+u∞(x)

|x−y|s = 0, f(x) < 0

for x ∈ Γr.
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In order to prove that u is also a supersolution, let x0 ∈ Ωr and let ψ be a C2(Ω̂)
function such that ψ − u∞ has a maximum at x0 and u∞(x0) = ψ(x0).

As in the previous case, we can infer from the uniform convergence of up → u∞
that there exists a sequence of points xp → x0 such that ψ − up has a maximum
at xp, with up(xp) = ψ(xp). By using similar arguments, we have

sup
ψ(y)>ψ(x0)

ψ(y) − ψ(x0)
|y − x0|s

+ inf
ψ(y)<ψ(x0)

ψ(y) − ψ(x0)
|y − x0|s

≤ 0.

Let x0 ∈ Γr and ψ be a C2(Ω̂) function such that ψ − u∞ has a maximum at x0
and u∞(x0) = ψ(x0). Thanks to the uniform convergence of up to u∞, there exists
a sequence of points xp → x0 such that ψ − up has a maximum at xp ∈ Γr; then
for all y ∈ Ωr we have

sup
x0 ̸=y

ψ(y) − ψ(x0)
|x0 − y|s

≤ max
{

sup
x0 ̸=y

−ψ(y) + ψ(x0)
|x0 − y|s

, 1
}
, f(x0) > 0;

max
{

sup
x0 ̸=y

ψ(y) − ψ(x0)
|x0 − y|s

, 1
}

≤ sup
x0 ̸=y

−ψ(y) + ψ(x0)
|x0 − y|s

, f(x0) < 0.

We conclude that u∞ is a viscosity solution to (3.3). □

4. Parabolic case

Recall from the Introduction that the nonlocal p-Laplacian evolution problem
(P1):

0 =
∫

Ωr∪Γr

J(x− y)|u(y, t) − u(x, t)|p−2(u(y, t) − u(x, t)) dy, x ∈ Ωr, t > 0;

∂u

∂t
(x, t) =

∫
Ωr

J(x− y)|u(y, t) − u(x, t)|p−2

×(u(y, t) − u(x, t))dy + f(x, t), x ∈ Γr, t > 0;

u(x, 0) = u0(x), x ∈ Γr.

Our aim in this section concerns the limit as p → ∞ in (P1). Firstly, let us show
the existence and uniqueness of solutions to the problem (P1) by using abstract
semigroup theory. Let us define the functional Ep(u) associated with (P1):

Ep(u) :=


1
2p

∫∫
H

J(x− y)|u(y, t) − u(x, t)|p dy dx if u ∈ Ap,

+∞ if u /∈ Ap,

where

Ap :=
{
u ∈ Lp(H) :

∫∫
H

J(x− y)|u(y, t) − u(x, t)|p dy dx < +∞
}
.
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Then the nonlocal problem can be written as the abstract Cauchy problem associ-
ated to the subdifferential of Ep, that is:

(P1-s)

f(·, t) − ∂u

∂t
(·, t) = ∂Ep(u(·, t)), a.e. t ∈ (0, T );

u(x, 0) = u0(x), x ∈ Γr.

With a formal computation, taking limits, we arrive at the functional

E∞(u) =
{

0 if u ∈ A∞,

+∞ if u /∈ A∞,

where

A∞ := {u : |u(x) − u(y)| ≤ 1 for a.e. x, y ∈ H, |x− y| ∈ supp(J)}.

Then the nonlocal limit problem can be written as

(P∞)

f(·, t) − ∂u

∂t
(·, t) ∈ ∂E∞(u(·, t)), a.e. t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Γr.

We have the following existence result.

Theorem 4.1. Suppose p > 1 and let u0 ∈ Lp(Γr). Then, for any T > 0 and
f(t, x) ∈ C([0, T ] × Γr), there exists a unique solution up(x, t) ∈ C([0,∞);Lp(Γr))
to (P1).

For the proof of this theorem, as we have mentioned, we will use the perspective
of nonlinear semigroup theory. To proceed with this task, we first need the following
lemma, where we prove that the operator ∂Ep(u) satisfies adequate conditions to
apply nonlinear semigroup theory to solve (P1).

Lemma 4.2. The operator ∂Ep(u) = Bp(u) is m-accretive in Lp(Γr).

Proof. For the proof of m-accretiveness we should have the following two condi-
tions:

(i) Given u1, u2 ∈ Dom(Bp) and q ∈ P0,∫
Γr

(Bp(u1)(x) −Bp(u2)(x))q(u1(x) − u2(x)) dx ≥ 0,

where

P0 = {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact and 0 /∈ supp(q)}.

(ii) Bp satisfies the range condition

Lp(Γr) ⊂ R(Bp + I).

By [9, Theorem 3.4], (i) and (ii) are proved. □

Proof of Theorem 4.1. By [9, Corollary A.3], Theorem 4.1 is proved. □
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Theorem 4.3. Let T > 0, f(t, x) ∈ C([0, T ] × Γr), up(x, t) be the solution to (P1)
with a fixed initial condition

u0 ∈ A∞
L2(Γr)

.

Then if u∞ is the unique solution of P∞,

up → u∞

as p → ∞ in C([0, T ] : L2(Γr)), that is,

lim
p→∞

sup
t∈[0,T ]

∥up(·, t) − u∞(·, t)∥L2(Γr) = 0.

Proof. Let us show that the functional

Ep(u) = 1
2p

∫∫
H

J(x− y)|u(y, t) − u(x, t)|p dy dx

converges to

E∞(u) =
{

0 if u ∈ A∞,

+∞ if u /∈ A∞

as p → ∞ in the sense of Mosco. For the Mosco convergence of Ep to E∞, first let
us prove that

Epi(E∞) ⊂ s-lim inf
p→∞

Epi(Ep).

Let us take (u, k) ∈ Epi(E∞); then our claim is that there exists (up, kp) such that
up → u in L2(H) and kp → k. Now take

up = u and kp = cp + k, where cp = Ep(u).

Here, if u ∈ A∞ then E∞(u) = 0 and k ≥ 0. Also, if cp → 0 then

kp = cp + k → k and kp ≥ Ep(u).

This gives us (up, kp) ∈ Epi(Ep) and since (up, kp) → (u, k) we obtain (u, k) ∈
s-lim infp→∞ Epi(Ep).

On the other hand, if u /∈ A∞ then E∞(u) = ∞ and (u,+∞) ∈ Epi(E∞). By
taking up = u, kp = +∞, we get that kp = +∞ → +∞, up → u in L2(H) and
(up,+∞) ∈ Epi(Ep), so we obtain (u, k) ∈ s-lim infp→∞ Epi(Ep). Secondly, let us
prove that

w-lim sup
p→∞

Epi(Ep) ⊂ Epi(E∞).

Given (u, k) ∈ w-lim supp→∞ Epi(Ep), there exists a sequence (up, kp) ∈ Epi(Ep)
such that

up ⇀ u in L2(H), kp → k in R.
We can assume that there exists a constant c̃ such that kp ≤ c̃. Otherwise kp → ∞
and since k = +∞ ≥ E∞(u) we get (u,+∞) ∈ Epi(E∞).

On the other hand, we have
1
2p

∫∫
H

J(x− y)|up(y, t) − up(x, t)|p dy dx ≤ c̃
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and (∫∫
H

J(x− y)|up(y, t) − up(x, t)|p dy dx
)1/p

≤ (2pc̃)1/p.

We have also(∫∫
H

J(x− y)|up(y) − up(x)|q dx dy
)1/q

=
(∫∫

H

(J(x− y))1− q
p
[
(J(x− y))

q
p |up(y) − up(x)|q

]) 1
q

.

Now, for 1 ≤ q < ∞, we observe that for p > q, from Hölder’s inequality with p
p−q

and p
q we obtain(∫∫

H

J(x− y)|up(y) − up(x)|q dx dy
)1/q

≤
(∫∫

H

J(x− y) dy dx
) p−q

pq
(∫∫

H

J(x− y)|up(y) − up(x)|p
) 1

p

≤
(∫∫

H

J(x− y) dy dx
) p−q

pq

(2pc̃)1/p.

Let p → ∞ to obtain(∫∫
H

J(x− y)|u(y) − u(x)|q dx dy
)1/q

≤
(∫∫

H

J(x− y) dy dx
) 1

q

.

Now letting q → ∞, we get

|u(y) − u(x)| ≤ 1 for a.e. x, y ∈ H, x− y ∈ supp(J).

Hence we obtain u ∈ A∞; this means that E∞(u) = 0 and k ≥ 0, and so we get
that (u, k) ∈ Epi(E∞). □

5. Explicit solutions

In this section, we give some explicit examples of limit solutions for certain
problems. Firstly we will give an explicit example in the elliptic case:

(P1s)


0 =

∫
Ωr∪Γr

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Ωr;

f(x) =
∫

Ωr

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x))dy, x ∈ Γr.

In order to verify that a function u∞(x) is a limit solution to (P1s) we need to
check that u∞(x) is the solution of

sup
u∈B∞

∫
Γr

fu,
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where

B∞ =
{
u : |u(x) − u(y)| ≤ 1 for a.e. x, y ∈ H, x− y ∈ supp(J) = BR(0)

}
.

Example 5.1. We consider the 1-dimensional case with Ωr = (0, 1), Γr = (−δ, 0)∪
(1, 1 + δ),

f(x) =
{

1, x ∈ (1, 1 + δ),
−1, x ∈ (−δ, 0),

and

u∞(x) =



c, x ∈ (1, 1 + δ),
c− 1, x ∈ (1 − δ, 1),
c− 2, x ∈ (1 − 2δ, 1 − δ),

...
...

c− (k − 1), x ∈ (1 − (k − 1)δ, 1 − (k − 2)δ),
c− k, x ∈ (−δ, 0).

Indeed, if we take k = 1
δ + 1 then we obtain the interval (−δ, 0). On the other

hand,
∫

Γr
u∞(x) dx = 0, then we have∫

Γr

u∞(x) dx = cδ + (c− k)δ = cδ + (c− (1
δ

+ 1))δ = 0,

and hence
c = 1

2 + 1
2δ .

From our choice of u∞, clearly |u∞(x) − u∞(y)| ≤ 1 for |x− y| ≤ δ and also u∞ is
the solution of supu∈B∞

∫
Γr
fu.

Now we will give some explicit examples for the parabolic case:

(P∞)

f(·, t) − ∂u

∂t
(·, t) ∈ ∂E∞(u(·, t)) a.e. t ∈ (0, T ),

u(x, 0) = u0(x),

where

E∞(u) =
{

0 if u ∈ A∞,

+∞ if u /∈ A∞.

In order to verify that a function u(x, t) is a solution to (P∞) we need to check
that ∫

Γr

(
f − ∂u

∂t

)
(v − u) ≤ 0 for all v ∈ D(E∞). (5.1)

Example 5.2. We consider the 1-dimensional case with Ωr = (0, 1), Γr = (−δ, 0)∪
(1, 1 + δ), and take

f(x, t) :=
{

1, x ∈ (1, 1 + δ), t ≥ 0,
0, x ∈ (−δ, 0), t ≥ 0,
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and as initial data
u0(x) = 0.

Now, let us find the solution by looking at its evolution between some critical
times. Let us take u∞(x, t) as follows:

u∞(x, t) =
{
t, x ∈ [1, 1 + δ), t ∈ [0, t1),
0, otherwise.

Clearly from our choice of u∞(x,t), if t1 ≤ 1 and |x − y| ≤ δ then |u∞(x, t) −
u∞(y, t)| ≤ 1, so we get that u∞(x, t) ∈ A∞ and (5.1) holds. Hence, for small
times t1 ≤ 1, the solution to (P∞) is given by u∞(x, t).

For times greater than t1, let us take u∞(x, t) as follows:

u∞(x, t) =


t, x ∈ [1, 1 + δ), t ∈ [t1, t2),
t− 1, x ∈ [1 − δ, 1), t ∈ [t1, t2),
0, otherwise.

If t2 ≤ 2, δ ≤ 1, then |u∞(x, t) − u∞(y, t)| ≤ 1 as |x − y| ≤ δ, so we get that
u∞(x, t) ∈ A∞ and (5.1) holds.

Now, it is easy to generalize and verify the following general formula that de-
scribes the solution for time tj ≤ j for any given integer j. We have

u∞(x, t) =



t, x ∈ x ∈ [1, 1 + δ), t ∈ [tj−1, tj),
t− 1, x ∈ [1 − δ, 1), t ∈ [tj−1, tj),
t− 2, x ∈ [1 − 2δ, 1 − δ), t ∈ [tj−1, tj),

...
...

t− (j − 1), x ∈ [1 − (j − 1)δ, 1 − (j − 2)δ), t ∈ [tj−1, tj),
0, otherwise,

where δ ≤ 1
j−1 for j ≥ 2.

Example 5.3. We consider the 1-dimensional case with Ωr = (0, 1), Γr = (−δ, 0)∪
(1, 1 + δ), and take

f(x, t) :=
{

1, x ∈ (1, 1 + δ), t ≥ 0,
−1, x ∈ (−δ, 0), t ≥ 0,

and as initial data
u0(x) = 0.

As in the previous example, the evolution follows the same scheme differently from
(−δ, 0). Let us take u∞(x, t) as follows:

u∞(x, t) =


t, x ∈ [1, 1 + δ), t ∈ [0, t1),
−t, x ∈ (−δ, 0), t ∈ [0, t1),
0, otherwise.

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



THE LIMIT CASE IN A NONLOCAL p-LAPLACIAN EQUATION 589

Clearly, if t1 ≤ 1 and |x − y| ≤ δ then |u∞(x, t) − u∞(y, t)| ≤ 1, so we get that
u∞(x, t) ∈ A∞ and (5.1) holds. Hence, for small times t1 ≤ 1, the solution to (P∞)
is given by u∞(x, t).

For times greater than t1, let us take u∞(x, t) as follows:

u∞(x, t) =


t, x ∈ [1, 1 + δ), t ∈ [t1, t2),
t− 1, x ∈ [1 − δ, 1), t ∈ [t1, t2),
−(t− 1), x ∈ (−δ, 0), t ∈ [t1, t2),
0, otherwise.

If t2 ≤ 2, 0 < δ < 1, then |u∞(x, t) − u∞(y, t)| ≤ 1 as |x − y| ≤ δ, so we get that
u∞(x, t) ∈ A∞ and (5.1) holds.

Now, let us generalize and verify the following general formula that describes
the solution for time tj ≤ j for any given integer j. We have

u∞(x, t) =



t, x ∈ [1, 1 + δ), t ∈ [tj−1, tj),
t− 1, x ∈ [1 − δ, 1), t ∈ [tj−1, tj),
t− 2, x ∈ [1 − 2δ, 1 − δ), t ∈ [tj−1, tj),

...
...

t− (j − 1), x ∈ [1 − (j − 1)δ, 1 − (j − 2)δ), t ∈ [tj−1, tj),
0, x ∈ (0, 1 − (j − 1)δ), t ∈ [tj−1, tj),
−(t− (j − 1)), x ∈ (−δ, 0), t ∈ [tj−1, tj),
0, otherwise,

where δ < 1
j−1 .

Example 5.4. For two or more dimensions we can obtain similar examples. Con-
sider a bounded domain Ωr := B1(0) ⊂ RN and Γr := B1+δ(0) \B1(0), where

B1(0) =
{
x ∈ RN : ∥x∥ < 1

}
and B1+δ(0) =

{
x ∈ RN : ∥x∥ < 1 + δ

}
,

and take
f(x, t) = 1 for all x ∈ Γr and all t ≥ 0

and as initial data
u0(x) = 0.

Now, we can generalize and verify the following general formula that describes the
solution for time tj ≤ j for any given integer j. We have

u∞(x, t) =



t, x ∈ B1+δ(0) \B1(0), t ∈ [tj−1, tj),
t− 1, x ∈ B1(0) \B1−δ(0), t ∈ [tj−1, tj),
t− 2, x ∈ B1−δ(0) \B1−2δ(0), t ∈ [tj−1, tj),

...
...

t− (j − 1), x ∈ B1−(j−2)δ(0) \B1−(j−1)δ(0), t ∈ [tj−1, tj),
0, otherwise,
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where δ < 1
j−1 . It is clear that u∞(x, t) ∈ A∞ and (5.1) holds.
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