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TIME-FREQUENCY ANALYSIS ASSOCIATED WITH
THE LAGUERRE WAVELET TRANSFORM

HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

Abstract. We define the localization operators associated with Laguerre
wavelet transforms. Next, we prove the boundedness and compactness of
these operators, which depend on a symbol and two admissible wavelets on
Lpα(K), 1 ≤ p ≤ ∞.

1. Introduction

Let Hd be the (2d + 1)-dimensional Heisenberg group with the multiplication
law

(z, t)(z′, t′) = (z + z′, t+ t′ − Im(zz′)).
Then T = ∂

∂t and

Zj = ∂

∂zj
− iz̄j

∂

∂t
, Zj = ∂

∂z̄j
+ iz̄j

∂

∂t
, j = 1, . . . , d,

forms a basis of the left invariant vector fields of hcd, the complexification of the
Lie algebra hd of Hd, where

∂

∂zj
= ∂

∂xj
− i ∂

∂yj
,

∂

∂z̄j
= ∂

∂xj
+ i

∂

∂yj
.

Set
Xj = ∂

∂xj
− iyj

∂

∂t
, Yj = ∂

∂yj
+ ixj

∂

∂t
, j = 1, . . . , d.

Thus X1, . . . , Xd, Y1, . . . , Yd, T is a basis of hd. A function f on Hd is said to be
radial if it is invariant under the action of the unitary group U(d). Let

Lprad(Hd) :=
{
f ∈ Lp(Hd) : f(uz, t) = f(z, t) for all u ∈ U(d)

}
.

The theory of harmonic analysis on Lprad(Hd) was exploited by many authors (see
[23, 27, 32]). When one considers the problems of radial functions on the Heisenberg
group Hd, the underlying manifold can be regarded as the Laguerre hypergroup
K := [0,∞)×R. Stempak [33] introduced a generalized translation operator on K
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and established the theory of harmonic analysis on L2(K, dνα), where the weighted
Lebesgue measure να on K is given by

dνα(x, t) := x2α+1 dxdt

πΓ(α+ 1) , α ≥ 0.

In this paper we are interested in the Laguerre hypergroup K. We recall that
(K, ∗α) is a commutative hypergroup [29], on which the involution and the Haar
measure are respectively given by the homeomorphism (x, t) → (x, t)− = (x,−t)
and the Radon positive measure dνα(x, t). The unit element of (K, ∗α) is given by
e = (0, 0).

The dual of a hypergroup is the space of all bounded continuous and multiplica-
tive functions χ such that χ̄ = χ. The dual of the Laguerre hypergroup K̂ can
be topologically identified with the so-called Heisenberg fan [14], i.e., the subset
embedded in R2 given by⋃

j∈N

{
(λ, µ) ∈ R2 : µ = |λ|(2j + α+ 1), λ 6= 0

}
∪
{

(0, µ) ∈ R2 : µ ≥ 0
}
.

Moreover, the subset {(0, µ) ∈ R2 : µ ≥ 0} has zero Plancherel measure, and
therefore it will be usually disregarded. Following [29], in this paper we identify
the dual of the Laguerre hypergroup by K̂ := R× N.

Figure 1. Heisenberg fan

Very recently, the Fourier analysis on K has been extensively studied with respect
to several problems already studied for the Fourier transform; for instance, Radon
transform [29], Hardy’s inequality [1], functional spaces [2, 19], Littlewood–Paley
g-functions [20], uncertainty principles [3], Titchmarsh’s theorems [28], wavelet
multipliers [24], Laguerre–Wigner transform [25], and so on.

In the classical setting, the notion of wavelets was first introduced by Morlet, a
French petroleum engineer at Elf Aquitaine, in connection with his study of seismic
traces. The mathematical foundations were given by Grossmann and Morlet in [18].
The harmonic analyst Meyer and many other mathematicians became aware of this
theory and recognized many classical results inside it (see [6, 21, 26]). Classical
wavelets have wide applications, ranging from signal analysis in geophysics and
acoustics to quantum theory and pure mathematics (see [8, 16] and the references
therein).
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Next, the theory of wavelets and the continuous wavelet transform has been
extended to hypergroups, in particular to the Laguerre hypergroups (see [29, 34]).

One of the aims of wavelet theory is the study of localization operators for the
continuous wavelet transform.

Time-frequency localization operators are a mathematical tool to define a restric-
tion of functions to a region in the time-frequency plane that is compatible with
the uncertainty principle and to extract time-frequency features. In this sense,
these operators have been introduced and studied by Daubechies [9, 10, 11] and
Ramanathan and Topiwala [30], and they are now extensively investigated as an
important mathematical tool in signal analysis and other applications [17, 12, 13,
35, 7].

As the harmonic analysis on the Laguerre hypergroup has known remarkable
development, it is natural to ask whether there exists the equivalent of the theory of
localization operators for the continuous wavelet transform related to this harmonic
analysis.

Using the properties of the generalized Fourier transform on the Laguerre hy-
pergroup K, our main aim in this paper is to expose and study the two-wavelet
localization operator on the Laguerre hypergroup.

The reason for the extension from one wavelet to two wavelets comes from the
extra degree of flexibility in signal analysis and imaging when the localization
operators are used as time-varying filters. It turns out that localization operators
with two admissible wavelets have a richer mathematical structure than the one-
wavelet analogues.

The remainder of this paper is arranged as follows. Section 2 contains some ba-
sic facts about the Laguerre hypergroup, its dual, and the Schatten–von Neumann
classes. In Section 3 we introduce and study the two-wavelet localization operators
in the setting of the Laguerre hypergroup. More precisely, the Schatten–von Neu-
mann properties of these two localization wavelet operators are established, and
for trace class Laguerre two-wavelet localization operators, the traces and the trace
class norm inequalities are presented. Section 4 is devoted to proving that under
suitable conditions on the symbols and two admissible wavelets, the Lp bounded-
ness and compactness of these two-wavelet localization operators hold.

2. Preliminaries

In this section we set some notation and we recall some basic results in harmonic
analysis related to Laguerre hypergroups and Schatten–von Neumann classes. The
main references are [29, 35].

2.1. Harmonic analysis on the Laguerre hypergroup.
Notation:

• K := [0,∞) × R equipped with the weighted Lebesgue measure να on K
given by

dνα(x, t) := x2α+1 dxdt

πΓ(α+ 1) , α ≥ 0.
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• For p ∈ [1,∞], p′ denotes the conjugate exponent of p.
• Lpα(K), 1 ≤ p ≤ ∞, is the space of measurable functions on K satisfying

‖f‖Lpα(K) =
(∫

K
|f(x, t)|p dνα(x, t)

)1/p
<∞, 1 ≤ p <∞,

‖f‖L∞α (K) = ess sup
(x,t)∈K

|f(x, t)| <∞.

• C∗(K) is the space of continuous functions on R2, even with respect to the
first variable.

• C∗,c(K) is the subspace of C∗(K) formed by functions with compact sup-
port.

• L(α)
m is the Laguerre function defined on [0,∞) by

L(α)
m (x) = e−

x
2L(α)

m (x)/L(α)
m (0),

L
(α)
m being the Laguerre polynomial of degree m and order α.

• K̂ := R× N equipped with the weighted Lebesgue measure γα on K̂ given
by ∫

K̂
g(λ,m) dγα(λ,m) =

∞∑
m=0

L(α)
m (0)

∫
R
g(λ,m)|λ|α+1 dλ.

• Lpα(K̂), p ∈ [1,∞], is the space of measurable functions g : K̂ → C such
that ‖g‖Lpα(K̂) <∞, where

‖g‖Lpα(K̂) =
(∫

K̂
|g(λ,m)|p dγα(λ,m)

) 1
p

<∞, 1 ≤ p <∞,

‖g‖L∞α (K̂) = ess sup
(λ,m)∈K̂

|g(λ,m)| <∞.

It is well known (see [29]) that for all (λ,m) ∈ K̂, the system
D1u(x, t) = iλu(x, t), (x, t) ∈ K,

D2u(x, t) = −4|λ|
(
m+ α+ 1

2

)
u(x, t), (x, t) ∈ K,

u(0, 0) = 1, ∂u

∂x
(0, t) = 0, ∀ t ∈ R,

where D1 and D2 are singular partial differential operators given by
D1 = ∂

∂t

D2 = ∂2

∂x2 + 2α+ 1
x

∂

∂x
+ x2 ∂

2

∂t2
, (x, t) ∈ (0,∞)× R,

with α a nonnegative number, admits a unique solution ϕλ,m given by

ϕλ,m(x, t) = eiλtL(α)
m (|λ|x2).

For α = d − 1, with d a positive integer, the operator D2 is the radial part of the
sublaplacian on the Heisenberg group Hd.
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The harmonic analysis on the Laguerre hypergroup K is generated by the sin-
gular operator

Lα := ∂2

∂x2 + 2α+ 1
x

∂

∂x
+ x2 ∂

2

∂t2

and the norm
N(x, t) = (x4 + t2) 1

4 , (x, t) ∈ K,
while its dual K̂ is generated by the differential difference operator

Λ = Λ2
1 −

(
2Λ2 + 2 ∂

∂λ

)2
,

where the operators Λ1,Λ2 are given, for a suitable function g on K̂, by

Λ1g(λ,m) = 1
|λ|
(
m∆+∆−g(λ,m) + (α+ 1)∆+g(λ,m)

)
Λ2g(λ,m) = − 1

2λ
(
(α+m+ 1)∆+g(λ,m) +m∆−g(λ,m)

)
,

and the function

N (λ,m) = |λ|
(
m+ α+ 1

2

)
, (λ,m) ∈ K̂,

where the difference operators ∆+,∆− are given, for a suitable function g on K̂,
by

4+g(λ,m) = g(λ,m+ 1)− g(λ,m),

4−g(λ,m) =
{
g(λ,m)− g(λ,m− 1), if m ≥ 1;
g(λ, 0), if m = 0.

These operators satisfy some basic properties which can be found in [29, 2]; namely,
one has

Lαϕλ,m(x, t) = −N (λ,m)ϕλ,m(x, t),
Λϕλ,m(x, t) = N4(x, t)ϕλ,m(x, t).

Definition 2.1. Let f ∈ C∗,c(K). For all (x, t) and (y, s) in K, we put

τ
(α)
(x,t)f(y, s) =


1

2π

∫ 2π

0
f(
√
x2 + y2 + 2xy cos θ, s+ t+ xy sin θ) dθ, if α = 0;

α

π

∫ 2π

0

∫ 1

0
f(〈〈x, y〉〉r,θ, s+ t+ xyr sin θ)r(1− r2)α−1 drdθ, if α > 0,

(2.1)
where 〈〈x, y〉〉r,θ :=

√
x2 + y2 + 2xyr cos θ. The operators τ (α)

(x,t), (x, t) ∈ K, are
called generalized translation operators on K.
Proposition 2.2. For all (λ,m) ∈ K̂, the function ϕλ,m satisfies the product
formula

∀(x, t), (y, s) ∈ K, ϕλ,m(x, t)ϕλ,m(y, s) = τ
(α)
(x,t)ϕλ,m(y, s).
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Corollary 2.3. For all (λ,m) ∈ K̂, the function ϕλ,m is infinitely differentiable
on R2, even with respect to the first variable, and satisfies

sup
(x,t)∈K

|ϕλ,m(x, t)| = 1.

Proposition 2.4. Let f be in Lpα(K), p ∈ [1,∞]. Then for all (x, t) ∈ K, the
function τ

(α)
(x,t)f belongs to Lpα(K) and satisfies

‖τ (α)
(x,t)f‖Lpα(K) ≤ ‖f‖Lpα(K).

Definition 2.5. The generalized convolution product of f, g ∈ L1
α(K) is defined by

f ∗α g(x, t) =
∫
K
τα(x,t)(f̌)(s, y)g(s, y) dνα(s, y), for all (x, t) ∈ K, (2.2)

with f̌(s, y) = f(s,−y).

Proposition 2.6. Let 1 ≤ p, q, r ≤ ∞ be such that 1
p + 1

q−
1
r = 1. If f is a function

in Lpα(K) and g an element of Lqα(K), then f ∗α g belongs to Lrα(K) and we have
‖f ∗α g‖Lrα(K) ≤ ‖f‖Lpα(K) ‖g‖Lqα(K) .

Notation:
• S∗(K) is the space of functions f : R2 → C, even with respect to the first

variable, C∞ on R2, and rapidly decreasing together with their derivatives,
i.e., for all k, p, q ∈ N we have

Nk,p,q(f) = sup
(x,t)∈K

{
(1 + x2 + t2)k

∣∣∣ ∂p+q
∂xp∂tq

f(x, t)
∣∣∣} <∞.

Equipped with the topology defined by the semi-norms Nk,p,q, S∗(K) is a
Fréchet space.

• S(K̂) is the space of functions g : K̂→ C such that
(i) For all m, p, q, r, s ∈ N, the function

λ 7→ λp
(
|λ|(m+ α+ 1

2 )
)q

Λr1
(

Λ2 + ∂

∂λ

)s
g(λ,m)

is bounded and continuous on R, C∞ on R∗ such that the left and the right
derivatives at zero exist.

(ii) For all k, p, q ∈ N we have

νk,p,q(g) = sup
(λ,m)∈R∗×N

{(
1 + λ2(1 +m2)

)k∣∣∣Λp1(Λ2 + ∂

∂λ

)q
g(λ,m)

∣∣∣} <∞.
Equipped with the topology defined by the semi-norms νk,p,q, S(K̂) is a
Fréchet space.

Definition 2.7. The generalized Fourier transform Fα is defined on L1
α(K) by

Fα(f)(λ,m) =
∫
K
ϕ−λ,m(x, t)f(x, t) dνα(x, t), for all (λ,m) ∈ K̂.
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Proposition 2.8. Let f be in L1
α(K). Then

(i) For all m ∈ N, the function λ 7→ Fα(f)(λ,m) is continuous on R.
(ii) The function Fα(f) is bounded on K̂ and satisfies

‖Fα(f)‖L∞α (K̂) ≤ ‖f‖L1
α(K).

Theorem 2.9. The generalized Fourier transform Fα is a topological isomorphism
from S∗(K) onto S(K̂).

Theorem 2.10. (i) Plancherel’s formula for Fα: For all f in S∗(K) we have∫
K̂
|Fα(f)(λ,m)|2 dγα(λ,m) =

∫
K
|f(x, t)|2 dνα(x, t).

(ii) The generalized Fourier transform Fα extends to an isometric isomorphism
from L2

α(K) onto L2
α(K̂).

Corollary 2.11. For all f and g in L2
α(K) we have the following Parseval formula

for the generalized Fourier transform Fα:∫
K
f(x, t)g(x, t) dνα(x, t) =

∫
K̂
Fα(f)(λ,m)Fα(g)(λ,m) dγα(λ,m).

Proposition 2.12. (i) For all f and g in L1
α(K), we have

Fα(f ∗ g) = Fα(f)Fα(g).

(ii) Let f ∈ L1
α(K). Then for all (x, t) ∈ K and (λ,m) ∈ K̂, we have

Fα(τ (α)
(x,t)f)(λ,m) = ϕλ,m(x, t)Fα(f)(λ,m).

2.2. Schatten–von Neumann classes.
Notation:

• lp(N), 1 ≤ p ≤ ∞, is the set of all infinite sequences of real (or complex)
numbers u := (uj)j∈N such that

‖u‖p :=
( ∞∑
j=1
|uj |p

) 1
p

<∞, if 1 ≤ p <∞,

‖u‖∞ := sup
j∈N
|uj | <∞.

For p = 2, we provide the space l2(N) with the scalar product

〈u, v〉2 :=
∞∑
j=1

ujvj .

• B(Lpα(K)), 1 ≤ p ≤ ∞, is the space of bounded operators from Lpα(K) into
itself.

Definition 2.13. (i) The singular values (sn(A))n∈N of a compact operator A in
B(L2

α(K)) are the eigenvalues of the positive self-adjoint operator |A| =
√
A∗A.
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(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators
whose singular values lie in lp(N). The space Sp is equipped with the norm

‖A‖Sp :=
( ∞∑
n=1

(sn(A))p
) 1
p

.

Remark 2.14. We note that the space S2 is the space of Hilbert–Schmidt opera-
tors, and S1 is the space of trace class operators.

Definition 2.15. The trace of an operator A in S1 is defined by

tr(A) =
∞∑
n=1
〈Avn, vn〉L2

α(K), (2.3)

where (vn)n is any orthonormal basis of L2
α(K).

Remark 2.16. If A is positive, then
tr(A) = ‖A‖S1 . (2.4)

Moreover, a compact operator A on the Hilbert space L2
α(K) is Hilbert–Schmidt if

the positive operator A∗A is in the space of trace class S1. Then

‖A‖2HS := ‖A‖2S2
= ‖A∗A‖S1 = tr(A∗A) =

∞∑
n=1
‖Avn‖2L2

α(K)

for any orthonormal basis (vn)n of L2
α(K).

Definition 2.17. We define S∞ := B(L2
α(K)), equipped with the norm

‖A‖S∞ := sup
v∈L2

α(K),
‖v‖L2

α(K)=1

‖Av‖L2
α(K).

2.3. Basic Laguerre wavelet theory. In this subsection we recall some results
introduced in [29].
Notation: We denote by Lpµα(R×K), p ∈ [1,∞], the space of measurable functions
f on R×K such that

‖f‖Lpµα (R×K) :=
(∫

R×K
|f(a, x, t)|p dµα(a, x, t)

) 1
p

<∞, 1 ≤ p <∞,

‖f‖L∞µα (R×K) := ess sup
(a,x,t)∈R×K

|f(a, x, t)| <∞,

where the measure µα is defined by

∀ (a, x, t) ∈ R×K, dµα(a, x, t) = da dνα(x, t)
|a|α+3 .

Definition 2.18. A Laguerre wavelet on K is a measurable function h on K sat-
isfying, for almost all (λ,m) ∈ K̂\{(0, 0)}, the condition

0 < Ch :=
∫
R
|Fα(h)(aλ,m)|2 da

|a|
<∞.
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Let a ∈ R\{0} and let h be a measurable function. We consider the function ha
defined by

∀ (x, t) ∈ K, ha(x, t) := 1
|a|α+2h

(
x√
|a|
,
t

a

)
.

Proposition 2.19. (i) Let h ∈ Lpα(K), p ∈ [1,∞]. The function ha belongs to
Lpα(K) and we have

‖ha‖Lpα(K) = |a|(α+2)( 1
p−1)‖h‖Lpα(K).

(ii) Let a ∈ R\{0} and let h be in L1
α(K) ∪ L2

α(K). We have

Fα(ha)(λ,m) = Fα(h)(aλ, am), (λ,m) ∈ K̂.

Let a ∈ R\{0} and let h be in Lpα(K), p ∈ [1,∞]. We consider the family ha,x,t,
(x, t) ∈ K, of Laguerre wavelets on K in Lpα(K) defined by

∀ (s, y) ∈ K, ha,x,t(s, y) := |a|α2 +1τ
(α)
(x,t)ha(s, y), (2.5)

where τα(x,t), (x, t) ∈ K, are the generalized translation operators given by (2.1).

Remarks 2.20. (i) Let h be in L2
α(K). We have

∀ (a, x, t) ∈ R×K, ‖ha,x,t‖L2
α(K) ≤ ‖h‖L2

α(K). (2.6)

(ii) Let h ∈ Lpα(K), p ∈ [1,∞]. One has

∀ (a, x, t) ∈ R×K, ‖ha,x,t‖Lpα(K) ≤ |a|(α+2)( 1
p−

1
2 )‖h‖Lpα(K). (2.7)

Definition 2.21. Let h be a Laguerre wavelet on K in L2
α(K). The Laguerre

continuous wavelet transform Φαh on K is defined for regular functions f on K by

∀ (a, x, t) ∈ R×K, Φαh(f)(a, x, t) =
∫
K
f(s, y)ha,x,t(s, y) dνα(s, y) = 〈f, ha,x,t〉L2

α(K).

(2.8)

This transform can also be written in the form
Φαh(f)(a, x, t) = |a|α2 +1f̆ ∗α ha(x, t),

where f̌(x, t) = f(x,−t) and ∗α is the generalized convolution product given by
(2.2).

Theorem 2.22 (Plancherel’s formula for Φαh). Let h be a Laguerre wavelet on K
in L2

α(K). For all f in L2
α(K) we have∫

K
|f(x, t)|2 dνα(x, t) = 1

Ch

∫
R×K
|Φαh(f)(a, x, t)|2 dµα(a, x, t). (2.9)

Corollary 2.23 (Parseval’s relation). Let h be a Laguerre wavelet on K in L2
α(K)

and f1, f2 in L2
α(K). Then, we have∫

K
f1(x, t)f2(x, t) dνα(x, t) = 1

Ch

∫
R×K

Φαh(f1)(a, x, t)Φαh(f2)(a, x, t) dµα(a, x, t).

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



40 HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

Remarks 2.24. (i) If h ∈ Lpα(K) and f ∈ Lp
′

α (K), p ∈ [1,∞], we define the
Laguerre continuous wavelet transform Φαh(f) by relation (2.8).

(ii) Let h be a Laguerre wavelet in L2
α(K). Then from (2.8), Cauchy–Schwarz

inequality, and (2.5), for all f in L2
α(K) we have

‖Φαh(f)‖L∞µα (R×K) ≤ ‖f‖L2
α(K)‖h‖L2

α(K). (2.10)

(iii) Let h ∈ Lpα(K), p ∈ [1,∞]. Then from relations (2.8) and (2.7) and Hölder’s
inequality, for all f in Lp

′

α (K) we have

∀ (a, x, t) ∈ R×K, |Φαh(f)(a, x, t)| ≤ |a|(α+2)( 1
2−

1
p )‖f‖

Lp
′
α (K)‖h‖Lpα(K). (2.11)

3. Laguerre two-wavelet localization operators

In this section we will derive a host of sufficient conditions for the boundedness
and Schatten class of the Laguerre two-wavelet localization operators in terms of
properties of the symbol σ and the windows h and k.

3.1. Preliminaries.

Definition 3.1. Let h, k be measurable functions on K, and σ a measurable func-
tion on R×K. We define Lh,k(σ), the Laguerre two-wavelet localization operator
on Lpα(K), 1 ≤ p ≤ ∞, by

Lh,k(σ)(f)(s, y) :=
∫
R×K

σ(a, x, t)Φαh(f)(a, x, t) ka,x,t(s, y) dµα(a, x, t), (s, y) ∈ K.

(3.1)

According to the different choices of the symbols σ and the different continuities
required, we need to impose different conditions on h and k, and then we obtain
an operator on Lpα(K).

It is often more convenient to interpret the definition of Lh,k(σ) in a weak sense,
that is, for f in Lpα(K), p ∈ [1,∞], and g in Lp

′

α (K),

〈Lh,k(σ)(f), g〉L2
α(K) =

∫
R×K

σ(a, x, t)Φαh(f)(a, x, t)Φαk (g)(a, x, t) dµα(a, x, t).

(3.2)

In what follows, such operator Lh,k(σ) will be named localization operator, for the
sake of simplicity.

Proposition 3.2. Let p ∈ [1,∞). Formally, we assume that we have

Lh,k(σ) : Lpα(K)→ Lpα(K).

Then its adjoint is the linear operator Lk,h(σ) : Lp′α (K)→ Lp
′

α (K).
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Proof. For all f in Lpα(K) and g in Lp
′

α (K) it immediately follows from (3.2) that

〈Lh,k(σ)(f), g〉L2
α(K) =

∫
R×K

σ(a, x, t)Φαh(f)(a, x, t)Φαk (g)(a, x, t) dµα(a, x, t)

=
∫
R×K

σ(a, x, t)Φαk (g)(a, x, t)Φαh(f)(a, x, t) dµα(a, x, t)

= 〈Lk,h(σ)(g), f〉L2
α(K) = 〈f,Lk,h(σ)(g)〉L2

α(K).

Thus we get
L∗h,k(σ) = Lk,h(σ). (3.3)

�

In the rest of this section, h and k will be two Laguerre wavelets on K such that
‖h‖L2

α(K) = ‖k‖L2
α(K) = 1.

3.2. Boundedness for Lh,k(σ) on S∞. The main result of this subsection is the
proof that the linear operators

Lh,k(σ) : L2
α(K)→ L2

α(K)
are bounded for all symbols σ ∈ Lpµα(R × K), 1 ≤ p ≤ ∞. We first consider this
problem for σ in L1

µα(R × K) and next in L∞µα(R × K), and we then conclude by
using interpolation theory.

Proposition 3.3. Let σ be in L1
µα(R×K). Then the localization operator Lh,k(σ)

is in S∞ and we have
‖Lh,k(σ)‖S∞ ≤ ‖σ‖L1

µα
(R×K). (3.4)

Proof. For all functions f and g in L2
α(K), we have from relations (3.2) and (2.10),

|〈Lh,k(σ)(f), g〉L2
α(K)| ≤

∫
R×K
|σ(a, x, t)| |Φαh(f)(a, x, t)| |Φαk (g)(a, x, t)| dµα(a, x, t)

≤ ‖Φαh(f)‖L∞µα (R×K)‖Φαk (g)‖L∞µα (R×K)‖σ‖L1
µα

(R×K)

≤ ‖f‖L2
α(K)‖g‖L2

α(K)‖σ‖L1
µα

(R×K).

Thus,
‖Lh,k(σ)‖S∞ ≤ ‖σ‖L1

µα
(R×K). �

Proposition 3.4. Let σ be in L∞µα(R×K). Then the localization operator Lh,k(σ)
is in S∞ and we have

‖Lh,k(σ)‖S∞ ≤
√
ChCk‖σ‖L∞µα (R×K).

Proof. For all functions f and g in L2
α(K), we have from Hölder’s inequality

|〈Lh,k(σ)(f), g〉L2
α(K)| ≤

∫
R×K
|σ(a, x, t)| |Φαh(f)(a, x, t)| |Φαk (g)(a, x, t)| dµα(a, x, t)

≤ ‖σ‖L∞µα (R×K)‖Φαh(f)‖L2
µα

(R×K)‖Φαk (g)‖L2
µα

(R×K).

Using Plancherel’s formula for Φαh and Φαk , given by relation (2.9), we get

|〈Lh,k(σ)(f), g〉L2
α(K)| ≤

√
ChCk‖f‖L2

α(K)‖g‖L2
α(K)‖σ‖L∞µα (R×K).
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Thus,
‖Lh,k(σ)‖S∞ ≤

√
ChCk‖σ‖L∞µα (R×K). �

We can now associate a localization operator Lh,k(σ) : L2
α(K)→ L2

α(K) to every
symbol σ in Lpµα(R×K), 1 ≤ p ≤ ∞, and prove that Lh,k(σ) is in S∞. The precise
result is the following theorem.

Theorem 3.5. Let σ be in Lpµα(R × K), 1 ≤ p ≤ ∞. Then there exists a unique
bounded linear operator Lh,k(σ) : L2

α(K)→ L2
α(K) such that

‖Lh,k(σ)‖S∞ ≤ (ChCk)
p−1
2p ‖σ‖Lpµα (R×K).

Proof. Let f be in L2
α(K). We consider the operator
T : L1

µα(R×K) ∩ L∞µα(R×K)→ L2
α(K)

given by
T (σ) := Lh,k(σ)(f).

Then, by Proposition 3.3 and Proposition 3.4,
‖T (σ)‖L2

α(K) ≤ ‖f‖L2
α(K)‖σ‖L1

µα
(R×K) (3.5)

and
‖T (σ)‖L2

α(K) ≤
√
ChCk‖f‖L2

α(K)‖σ‖L∞µα (R×K). (3.6)
Therefore, by (3.5), (3.6), and the Riesz–Thorin interpolation theorem (see [31,
Theorem 2] and [35, Theorem 2.11]), T may be uniquely extended to a linear
operator on Lpµα(R×K), 1 ≤ p ≤ ∞, and we have

‖Lh,k(σ)(f)‖L2
α(K) = ‖T (σ)‖L2

α(K) ≤ (ChCk)
p−1
2p ‖f‖L2

α(K)‖σ‖Lpµα (R×K). (3.7)

Since (3.7) is true for arbitrary functions f in L2
α(K), we obtain the desired result.

�

3.3. Schatten–von Neumann properties for Lh,k(σ). The main result of this
subsection is the proof that the localization operator

Lh,k(σ) : L2
α(K)→ L2

α(K)
is in the Schatten class Sp.

Proposition 3.6. Let σ be in L1
µα(R×K). Then the localization operator Lh,k(σ)

is in S2 and we have
‖Lh,k(σ)‖S2 ≤ ‖σ‖L1

µα
(R×K).

Proof. Let {φj , j = 1, 2, . . . } be an orthonormal basis for L2
α(K). Then by (3.2),

Fubini’s theorem, Parseval’s identity, and the relations (2.8) and (3.3), we have
∞∑
j=1
‖Lh,k(σ)(φj)‖2L2

α(K) =
∞∑
j=1
〈Lh,k(σ)(φj),Lh,k(σ)(φj)〉L2

α(K)

=
∫
R×K

σ(a, x, t)〈L∗h,k(σ) ka,x,t, ha,x,t〉L2
α(K) dµα(a, x, t).
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Thus, from (3.3), (3.4), and (2.6) we get
∞∑
j=1
‖Lh,k(σ)(φj)‖2L2

α(K) ≤
∫
R×K
|σ(a, x, t)| ‖L∗h,k(σ)‖S∞ dµα(a, x, t)

≤ ‖σ‖2L1
µα

(R×K) <∞.
(3.8)

So, by (3.8) and Wong’s result [35, Prop. 2.8], Lh,k(σ) : L2
α(K)→ L2

α(K) is in the
Hilbert–Schmidt class S2 and hence compact. �

Proposition 3.7. Let σ be a symbol in Lpµα(R × K), 1 ≤ p < ∞. Then the
localization operator Lh,k(σ) is compact.

Proof. Let σ be in Lpµα(R×K) and let (σn)n∈N be a sequence of functions in

L1
µα(R×K) ∩ L∞µα(R×K)

such that σn → σ in Lpµα(R×K) as n→∞. Then by Theorem 3.5,

‖Lh,k(σn)− Lh,k(σ)‖S∞ ≤ (ChCk)
p−1
2p ‖σn − σ‖Lpµα (R×K).

Hence Lh,k(σn) → Lh,k(σ) in S∞ as n → ∞. On the other hand, as by Proposi-
tion 3.6 Lh,k(σn) is in S2 and hence compact, it follows that Lh,k(σ) is compact. �

Theorem 3.8. Let σ be in L1
µα(R×K). Then Lh,k(σ) : L2

α(K)→ L2
α(K) is in S1

and we have
2

Ch + Ck
‖σ̃‖L1

µα
(R×K) ≤ ‖Lh,k(σ)‖S1 ≤ ‖σ‖L1

µα
(R×K), (3.9)

where σ̃ is given by

∀ (a, x, t) ∈ R×K, σ̃(a, x, t) = 〈Lh,k(σ)ha,x,t, ka,x,t〉L2
α(K).

Proof. Since σ is in L1
µα(R×K), by Proposition 3.6 Lh,k(σ) is in S2; then from the

canonical form for compact operators given in [35, Theorem 2.2], there exists an
orthonormal basis {φj , j = 1, 2, . . . } for the orthogonal complement of the kernel
of the operator Lh,k(σ), consisting of eigenvectors of |Lh,k(σ)| and an orthonormal
set {uj , j = 1, 2, . . . } in L2

α(K) such that

Lh,k(σ)(f) =
∞∑
j=1

sj〈f, φj〉L2
α(K)uj , (3.10)

where sj , j = 1, 2, . . . , are the positive singular values of Lh,k(σ) corresponding
to φj . Then, we get

‖Lh,k(σ)‖S1 =
∞∑
j=1

sj =
∞∑
j=1
〈Lh,k(σ)(φj), uj〉L2

α(K).
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Thus, by Fubini’s theorem, Cauchy–Schwarz’s inequality, Bessel’s inequality, and
relations (2.8) and (2.6), we get

‖Lh,k(σ)‖S1 =
∞∑
j=1
〈Lh,k(σ)(φj), uj〉L2

α(K)

=
∞∑
j=1

∫
R×K

σ(a, x, t)Φαh(φj)(a, x, t)Φαk (uj)(a, x, t) dµα(a, x, t)

≤
∫
R×K
|σ(a, x, t)|

( ∞∑
j=1
|Φαh(φj)(a, x, t)|2

) 1
2

×

( ∞∑
j=1
|Φαk (uj)(a, x, t)|2

) 1
2

dµα(a, x, t)

≤
∫
R×K
|σ(a, x, t)| ‖ha,x,t‖L2

α(K) ‖ka,x,t‖L2
α(K) dµα(a, x, t)

≤ ‖σ‖L1
µα

(R×K).

Thus
‖Lh,k(σ)‖S1 ≤ ‖σ‖L1

µα
(R×K).

We now prove that Lh,k(σ) satisfies the first inequality of (3.9). It is easy to see
that σ̃ belongs to L1

α(K), and using formula (3.10) we get

|σ̃(a, x, t)| =
∣∣〈Lh,k(σ)(ha,x,t), ka,x,t〉L2

α(K)
∣∣

=
∣∣∣ ∞∑
j=1

sj〈ha,x,t, φj〉L2
α(K)〈uj , ka,x,t〉L2

α(K)

∣∣∣
≤ 1

2

∞∑
j=1

sj

(∣∣〈ha,x,t, φj〉L2
α(K)

∣∣2 +
∣∣〈ka,x,t, uj〉L2

α(K)
∣∣2).

Then from Fubini’s theorem, we obtain∫
R×K
|σ̃(a, x, t)| dµα(a, x, t) ≤ 1

2

∞∑
j=1

sj

(∫
R×K
|〈ha,x,t, φj〉L2

α(K)|2 dµα(a, x, t)

+
∫
R×K
|〈ka,x,t, uj〉L2

α(K)|2 dµα(a, x, t)
)
.

Thus using Plancherel’s formula for Φαh , Φαk we get∫
R×K
|σ̃(a, x, t)| dµα(a, x, t) ≤ Ch + Ck

2

∞∑
j=1

sj = Ch + Ck
2 ‖Lh,k(σ)‖S1 .

The proof is complete. �
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Corollary 3.9. For σ in L1
µα(R×K), we have the following trace formula:

tr(Lh,k(σ)) =
∫
R×K

σ(a, x, t)〈ka,x,t, ha,x,t〉L2
α(K) dµα(a, x, t).

Proof. Let {φj , j = 1, 2, . . . } be an orthonormal basis for L2
α(K). From Theo-

rem 3.8, the localization operator Lh,k(σ) belongs to S1; then by the definition of
trace given by relation (2.3), Fubini’s theorem, and Parseval’s identity, we have

tr(Lh,k(σ)) =
∞∑
j=1
〈Lh,k(σ)(φj), φj〉L2

α(K)

=
∞∑
j=1

∫
R×K

σ(a, x, t)〈φj , ha,x,t〉L2
α(K)〈φj , ka,x,t〉L2

α(K) dµα(a, x, t)

=
∫
R×K

σ(a, x, t)
∞∑
j=1
〈φj , ha,x,t〉L2

α(K)〈φj , ka,x,t〉L2
α(K) dµα(a, x, t)

=
∫
R×K

σ(a, x, t)〈ka,x,t, ha,x,t〉L2
α(K) dµα(a, x, t),

and the proof is complete. �

In the following we give the main result of this subsection.
Corollary 3.10. Let σ be in Lpµα(R × K), 1 ≤ p ≤ ∞. Then, the localization
operator

Lh,k(σ) : L2
α(K)→ L2

α(K)
is in Sp and we have

‖Lh,k(σ)‖Sp ≤ (ChCk)
p−1
2p ‖σ‖Lpµα (R×K).

Proof. The result follows from Proposition 3.4, Theorem 3.8, and by interpolation
(see [35, Theorem 2.10 and Theorem 2.11]). �

Remark 3.11. If h = k and σ is a real valued and nonnegative function in
L1
µα(R×K), then Lh,k(σ) : L2

α(K) → L2
α(K) is a positive operator. So, by (2.4)

and Corollary 3.9,

‖Lh,k(σ)‖S1 =
∫
R×K

σ(a, x, t)‖ha,x,t‖2L2
α(K) dµα(a, x, t).

Now we state a result concerning the trace of products of localization operators.
Corollary 3.12. Let σ1 and σ2 be any real-valued and non-negative functions in
L1
µα(R × K). We assume that h = k and that h is a function in L2

α(K) such that
‖h‖L2

α(K) = 1. Then, the localization operators Lh,k(σ1), Lh,k(σ2) are positive trace
class operators and, for any natural number n,∥∥(Lh,k(σ1)Lh,k(σ2)

)n∥∥
S1

= tr
(
Lh,k(σ1)Lh,k(σ2)

)n
≤
(

tr
(
Lh,k(σ1)

))n( tr
(
Lh,k(σ2)

))n
=
∥∥Lh,k(σ1)

∥∥n
S1

∥∥Lh,k(σ2)
∥∥n
S1
.
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Proof. By Theorem 1 in Liu’s paper [22] we know that if A and B are in the trace
class S1 and are positive operators, then

∀n ∈ N, tr(AB)n ≤
(

tr(A)
)n( tr(B)

)n
.

So, if we take A = Lh,k(σ1), B = Lh,k(σ2), and we invoke the previous remark, the
desired result is obtained and the proof is complete. �

4. Lpα boundedness and compactness of Lh,k(σ)

In this section we will derive a host of sufficient conditions for the boundedness
and compactness of the localization operators Lh,k(σ) on Lpα(K), 1 ≤ p ≤ ∞, in
terms of properties of the symbol σ and the windows h and k.

4.1. Boundedness of Lh,k(σ) for symbols in Lpα(K). For 1 ≤ p ≤ ∞, let
σ ∈ L1

µα(R×K), k ∈ Lpα(K), and h ∈ Lp′α (K). We are going to show that Lh,k(σ)
is a bounded operator on Lpα(K). Let us start with the following propositions.

Proposition 4.1. Let σ be in L1
µα(R×K), h ∈ L∞α (K), and k ∈ L1

α(K). Then the
localization operator Lh,k(σ) : L1

α(K) → L1
α(K) is a bounded linear operator and

we have
‖Lh,k(σ)‖B(L1

α(K)) ≤ ‖h‖L∞α (K)‖k‖L1
α(K)‖σ‖L1

µα
(R×K).

Proof. For every function f in L1
α(K), from Fubini’s theorem and the relations

(3.1), (2.11), and (2.7), we have

‖Lh,k(σ)(f)‖L1
α(K) ≤

∫
K

∫
R×K
|σ(a, x, t)| |Φαh(f)(a, x, t)| |ka,x,t(s, y)| dµα(a, x, t) dνα(s, y)

≤ ‖f‖L1
α(K)‖h‖L∞α (K)‖k‖L1

α(K)‖σ‖L1
µα

(R×K).

Thus,
‖Lh,k(σ)‖B(L1

α(K)) ≤ ‖h‖L∞α (K)‖k‖L1
α(K)‖σ‖L1

µα
(R×K). �

Proposition 4.2. Let σ be in L1
µα(R×K), h ∈ L1

α(K), and k ∈ L∞α (K). Then the
localization operator Lh,k(σ) : L∞α (K) → L∞α (K) is a bounded linear operator and
we have

‖Lh,k(σ)‖B(L∞α (K)) ≤ ‖h‖L1
α(K)‖k‖L∞α (K)‖σ‖L1

µα
(R×K).

Proof. Let f be in L∞α (K). As above, from Fubini’s theorem and the relations
(3.1), (2.11), and (2.7), we have

|Lh,k(σ)(f)(s, y)| ≤
∫
R×K
|σ(a, x, t)| |Φαh(f)(a, x, t)| |ka,x,t(s, y)| dµα(a, x, t)

≤ ‖f‖L∞α (K)‖h‖L1
α(K)‖k‖L∞α (K)‖σ‖L1

µα
(R×K), ∀ (s, y) ∈ K.

Thus,
‖Lh,k(σ)‖B(L∞α (K)) ≤ ‖h‖L1

α(K)‖k‖L∞α (K)‖σ‖L1
µα

(R×K). �

Remark 4.3. We note that Proposition 4.2 is also a corollary of Proposition 4.1,
since the adjoint of Lk,h(σ) : L1

α(K)→ L1
α(K) is Lh,k(σ) : L∞α (K)→ L∞α (K).

Using an interpolation of Propositions 4.1 and 4.2, we get the following result.
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Theorem 4.4. Let h and k be functions in L1
α(K) ∩ L∞α (K). Then for all σ in

L1
µα(R×K), there exists a unique bounded linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K), 1 ≤ p ≤ ∞,
such that

‖Lh,k(σ)‖B(Lpα(K)) ≤ ‖h‖
1
p′

L1
α(K)‖k‖

1
p

L1
α(K)‖h‖

1
p

L∞α (K)‖k‖
1
p′

L∞α (K)‖σ‖L1
µα

(R×K).

With a Schur technique, we can obtain an Lpα-boundedness result as in the
previous theorem, but the estimate for the norm ‖Lh,k(σ)‖B(Lpα(K)) is cruder.

Theorem 4.5. Let σ be in L1
µα(R×K), h and k in L1

α(K) ∩ L∞α (K). Then there
exists a unique bounded linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K), 1 ≤ p ≤ ∞,
such that
‖Lh,k(σ)‖B(Lpα(K)) ≤ max(‖h‖L1

α(K)‖k‖L∞α (K), ‖h‖L∞α (K)‖k‖L1
α(K))‖σ‖L1

µα
(R×K).

Proof. Let N be the function defined on K×K by

N (s, y; t, z) =
∫
R×K

σ(a, x, t)ha,x,t(t, z)ka,x,t(s, y) dµα(a, x, t). (4.1)

We have
Lh,k(σ)(f)(s, y) =

∫
K
N (s, y; t, z)f(t, z) dνα(t, z).

By simple calculations, it is easy to see that∫
K
|N (s, y; t, z)| dνα(s, y) ≤ ‖h‖L∞α (K)‖k‖L1

α(K)‖σ‖L1
µα

(R×K), (t, z) ∈ K,

and ∫
K
|N (s, y; t, z)| dνα(t, z) ≤ ‖h‖L1

α(K)‖k‖L∞α (K)‖σ‖L1
µα

(R×K), (s, y) ∈ K.

Thus by Schur’s lemma (see [15]), we can conclude that Lh,k(σ) : Lpα(K)→ Lpα(K)
is a bounded linear operator for 1 ≤ p ≤ ∞, and we have
‖Lh,k(σ)‖B(Lpα(K)) ≤ max(‖h‖L1

α(K)‖k‖L∞α (K), ‖h‖L∞α (K)‖k‖L1
α(K))‖σ‖L1

µα
(R×K). �

Remark 4.6. The previous theorem tells us that the unique bounded linear op-
erator on Lpα(K), 1 ≤ p ≤ ∞, obtained by interpolation in Theorem 4.4 is in fact
the integral operator on Lpα(K) with kernel N given by (4.1).

We can give another version of the Lpα-boundedness. We first generalize and
improve Proposition 4.2.

Proposition 4.7. Let σ be in L1
µα(R × K), k ∈ Lpα(K), and h ∈ Lp

′

α (K), for
1 < p ≤ ∞. Then the localization operator Lh,k(σ) : Lpα(K)→ Lpα(K) is a bounded
linear operator, and we have

‖Lh,k(σ)‖B(Lpα(K)) ≤ ‖h‖Lp′α (K)‖k‖Lpα(K)‖σ‖L1
µα

(R×K).
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Proof. For any f ∈ Lpα(K), consider the linear functional

If : Lp
′

α (K)→ C
g 7→ 〈g,Lh,k(σ)(f)〉L2

α(K).

By (3.2), we have

|〈Lh,k(σ)(f), g〉L2
α(K)| ≤

∫
R×K
|σ(a, x, t)| |Φαh(f)(a, x, t)| |Φαk (g)(a, x, t)| dµα(a, x, t).

Using Fubini’s theorem and the relation (2.11), we get

|〈Lh,k(σ)(f), g〉L2
α(K)| ≤ ‖h‖Lp′α (K)‖k‖Lpα(K)‖f‖Lpα(K)‖g‖Lp′α (K)‖σ‖L1

µα
(R×K).

Thus, the operator If is a continuous linear functional on Lp′α (K), and the operator
norm satisfies

‖If‖B(Lp
′
α (K)) ≤ ‖h‖Lp′α (K)‖k‖Lpα(K)‖f‖Lpα(K)‖σ‖L1

µα
(R×K).

As If (g) = 〈g,Lh,k(σ)(f)〉L2
α(K), by the Riesz representation theorem we have

‖Lh,k(σ)(f)‖Lpα(K) = ‖If‖B(Lp
′
α (K)) ≤ ‖h‖Lp′α (K)‖k‖Lpα(K)‖f‖Lpα(K)‖σ‖L1

µα
(R×K),

which establishes the proposition. �

Combining Proposition 4.1 and Proposition 4.7, we have the following theorem.

Theorem 4.8. Let σ be in L1
µα(R×K), k ∈ Lpα(K), h ∈ Lp′α (K), 1 ≤ p ≤ ∞. Then

the localization operator Lh,k(σ) : Lpα(K) → Lpα(K) is a bounded linear operator,
and we have

‖Lh,k(σ)‖B(Lpα(K)) ≤ ‖h‖Lp′α (K)‖k‖Lpα(K)‖σ‖L1
µα

(R×K).

We can now state and prove the main results in this subsection.

Theorem 4.9. Let σ be in Lrµα(R × K), r ∈ [1, 2], and h, k ∈ L1
α(K) ∩ L2

α(K) ∩
L∞α (K). Then there exists a unique bounded linear operator Lh,k(σ) : Lpα(K) →
Lpα(K) for all p ∈ [r, r′], and we have

‖Lh,k(σ)‖B(Lpα(K)) ≤ Ct1C1−t
2 ‖σ‖Lrµα (R×K),

where

C1 =
(
‖h‖L∞α (K)‖k‖L1

α(K)
) 2
r−1
(√

ChCk ‖h‖L2
α(K)‖k‖L2

α(K)

) 1
r′
,

C2 =
(
‖h‖L1

α(K)‖k‖L∞α (K)
) 2
r−1
(√

ChCk ‖h‖L2
α(K)‖k‖L2

α(K)

) 1
r′
,

with
t

r
+ 1− t

r′
= 1
p
.
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Proof. Consider the linear functional

I :
(
L1
µα(R×K) ∩ L2

µα(R×K)
)
×
(
L1
α(K) ∩ L2

α(K)
)
→ L1

α(K) ∩ L2
α(K)

(σ, f) 7→ Lh,k(σ)(f).

By Proposition 4.1 and Theorem 3.5, we have

‖I(σ, f)‖L1
α(K) ≤ ‖h‖L∞α (K)‖k‖L1

α(K)‖f‖L1
α(K)‖σ‖L1

µα
(R×K) (4.2)

and

‖I(σ, f)‖L2
α(K) ≤

(√
ChCk ‖h‖L2

α(K)‖k‖L2
α(K)

) 1
2 ‖f‖L2

α(K)‖σ‖L2
µα

(R×K). (4.3)

Therefore, by (4.2), (4.3), and the multi-linear interpolation theory (see [5, Section
10.1] for reference), we get a unique bounded linear operator

I : Lrµα(R×K)× Lrα(K)→ Lrα(K)

such that
‖I(σ, f)‖Lrα(K) ≤ C1‖f‖Lrα(K)‖σ‖Lrµα (R×K),

where

C1 =
(
‖h‖L∞α (K)‖k‖L1

α(K)
)θ(√

ChCk ‖h‖L2
α(K)‖k‖L2

α(K)

) 1−θ
2

and
θ

1 + 1− θ
2 = 1

r
.

By the definition of I, we have

‖Lh,k(σ)‖B(Lrα(K)) ≤
(
‖h‖L∞α (K)‖k‖L1

α(K)
) 2
r−1

×
(√

ChCk ‖h‖L2
α(K)‖k‖L2

α(K)

) 1
r′ ‖σ‖Lrµα (R×K).

(4.4)

As the adjoint of Lh,k(σ) is Lk,h(σ), Lh,k(σ) is a bounded linear map on Lr
′

α (K̂)
with its operator norm satisfying

‖Lh,k(σ)‖B(Lr′α (K)) = ‖Lk,h(σ)‖B(Lrα(K)) ≤ C2‖σ‖Lrµα (R×K), (4.5)

where

C2 =
(
‖h‖L1

α(K)‖k‖L∞α (K)
) 2
r−1
(√

ChCk ‖h‖L2
α(K)‖k‖L2

α(K)

) 1
r′
.

Using an interpolation of (4.4) and (4.5), we have that, for any p ∈ [r, r′],

‖Lh,k(σ)‖B(Lpα(K)) ≤ Ct1C1−t
2 ‖σ‖Lrµα (R×K),

with
t

r
+ 1− t

r′
= 1
p
. �
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Theorem 4.10. Let σ be in Lrµα(R×K), r ∈ [1,∞], and h, k ∈ L1
α(K) ∩ L∞α (K).

Then there exists a unique bounded linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K)

for all p ∈
[ 2r
r+1 ,

2r
r−1
]
, and we have

‖Lh,k(σ)‖B(Lpα(K)) ≤ C
t
r
3 C

1−t
r

4
(
ChCk

) 1
2r′ ‖σ‖Lrµα (R×K),

where

C3 = ‖k‖L∞α (K)‖h‖L1
α(K),

C4 = ‖k‖L1
α(K)‖h‖L∞α (K),

and
t = r + 1

2 − r

p
.

In order to prove this theorem we need the following lemmas.

Lemma 4.11. Let σ be in Lrµα(R × K), r ∈ [1,∞], h ∈ L2
α(K) ∩ L∞α (K), and

k ∈ L1
α(K) ∩ L2

α(K). Then there exists a unique bounded linear operator

Lh,k(σ) : L
2r
r+1
α (K)→ L

2r
r+1
α (K),

and we have

‖Lh,k(σ)‖
B(L

2r
r+1
α (K))

≤
(
ChCk

) 1
2r′ (‖h‖L∞α (K)‖k‖L1

α(K))
1
r ‖σ‖Lrµα (R×K). (4.6)

Proof. Consider the linear functional

I : L1
µα(R×K) ∩ L∞µα(R×K)→ B(L1

α(K)) ∩B(L2
α(K))

σ 7→ Lh,k(σ).

Then by Proposition 4.1 and Theorem 3.5,

‖I‖B(L1
µα

(R×K),B(L1
α(K))) ≤ ‖h‖L∞α (K)‖k‖L1

α(K) (4.7)

and
‖I‖B(L∞µα (R×K),B(L2

α(K))) ≤
√
ChCk, (4.8)

where ‖·‖B(Lpµα (R×K),B(Lqα(K))) denotes the norm in the Banach space of the bounded
linear operators from Lpµα(R×K) into B(Lqα(K)), 1 ≤ p, q ≤ ∞. Using an interpo-
lation of (4.7) and (4.8) we get the result. �

Lemma 4.12. Let σ be in Lrµα(R × K), r ∈ [1,∞], k ∈ L2
α(K) ∩ L∞α (K), and

h ∈ L1
α(K) ∩ L2

α(K). Then there exists a unique bounded linear operator

Lh,k(σ) : L
2r
r−1
α (K)→ L

2r
r−1
α (K),

and we have

‖Lh,k(σ)‖
B(L

2r
r−1
α (K))

≤
(
ChCk

) 1
2r′ (‖h‖L1

α(K)‖k‖L∞α (K))
1
r ‖σ‖Lrµα (R×K). (4.9)
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Proof. As the adjoint of

Lh,k(σ) : L
2r
r−1
α (K)→ L

2r
r−1
α (K)

is the bounded linear operator

Lk,h(σ) : L
2r
r+1
α (K)→ L

2r
r+1
α (K),

the result follows from duality and the previous lemma. �

Proof of Theorem 4.10. Using an interpolation of (4.6) and (4.9), we have that, for
any p ∈

[ 2r
r+1 ,

2r
r−1
]
,

‖Lh,k(σ)‖B(Lpα(K)) ≤ C
t
r
3 C

1−t
r

4
(
ChCk

) 1
2r′ ,

with
t = r + 1

2 − r

p
. �

Proposition 4.13. Let p, r ∈ [1,∞] be such that p ∈ [ 2r
r+1 , 2]. Let σ ∈ Lrµα(R×K),

h ∈ L2
α(K)∩L∞α (K), and k ∈ L1

α(K)∩L∞α (K). Then there exists a unique bounded
linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K),
and we have

‖Lh,k(σ)‖B(Lpα(K))
(
ChCk

) 1
2r′ Ct5C

1−t
6 ‖σ‖Lrµα (R×K),

where
C5 = (‖h‖L2

α(K)‖k‖L2
α(K))

1
q , C6 = ‖h‖L∞α (K)‖k‖L1

α(K),

and

t = (r − 1)q
(q − 1)r , with q = (2p− 2)r

p− (2− p)r .

Proof. The proof follows from Theorem 4.8 and Theorem 3.5 with p = 1, q instead
of p, and interpolation theory. �

4.2. Compactness of Lh,k(σ) for symbols in Lpα(K).

Proposition 4.14. Under the same hypothesis of Theorem 4.4, the localization
operator

Lh,k(σ) : L1
α(K)→ L1

α(K)
is compact.

Proof. Let (fn)n∈N ∈ L1
α(K) be such that fn ⇀ 0 weakly in L1

α(K) as n→∞. It is
enough to prove that

lim
n→∞

‖Lh,k(σ)(fn)‖L1
α(K) = 0.
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We have

‖Lh,k(σ)(fn)‖L1
α(K)

≤
∫
K

∫
R×K
|σ(a, x, t)| |〈fn, ha,x,t〉L2

α(K)| |ka,x,t(s, y)| dµα(a, x, t) dνα(s, y).

(4.10)

Now using the fact that fn ⇀ 0 weakly in L1
α(K), we deduce that

∀ a ∈ R\{0}, ∀ (x, t), (s, y) ∈ K,
lim
n→∞

|σ(a, x, t)| |〈fn, ha,x,t〉L2
α(K)| |ka,x,t(s, y)| = 0. (4.11)

On the other hand, since fn ⇀ 0 weakly in L1
α(K) as n→∞, there exists a positive

constant C such that ‖fn‖L1
α(K) ≤ C.

Hence by simple calculations we get, for all a ∈ R\{0} and for all (x, t), (s, y) ∈ K,

|σ(a, x, t)| |〈fn, ha,x,t〉L2
α(K)| |ka,x,t(s, y)| ≤ C|σ(a, x, t)| ‖h‖L∞α (K) |τα(x,t)ka(s, y)|.

(4.12)
Moreover, by Fubini’s theorem and relation (2.7), we have∫

K

∫
R×K
|σ(a, x, t)| |〈fn, ha,x,t〉L2

α(K)| |ka,x,t(s, y)| dµα(a, x, t) dνα(s, y)

≤ C‖h‖L∞α (K)

∫
R×K
|σ(a, x, t)|

∫
K
|τα(x,t)ka(s, y)| dνα(s, y) dµα(a, x, t)

≤ C‖h‖L∞α (K)

∫
R×K
|σ(a, x, t)|

∫
K
|ka(s, y)| dνα(s, y) dµα(a, x, t)

≤ C‖h‖L∞α (K)‖k‖L1
α(K)‖σ‖L1

µα
(R×K) <∞.

(4.13)

Thus from the relations (4.10), (4.11), (4.12), (4.13), and the Lebesgue dominated
convergence theorem we deduce that

lim
n→∞

‖Lh,k(σ)(fn)‖L1
α(K) = 0,

and the proof is complete. �

In the following we give two results for compactness of localization operators.

Theorem 4.15. Under the hypothesis of Theorem 4.4, the bounded linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K)

is compact for 1 ≤ p ≤ ∞.

Proof. From the previous proposition, we only need to show that the conclusion
holds for p =∞. In fact, the operator

Lh,k(σ) : L∞α (K)→ L∞α (K)

is the adjoint of the operator

Lk,h(σ) : L1
α(K)→ L1

α(K),

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



TIME-FREQUENCY ANALYSIS AND LAGUERRE WAVELET TRANSFORM 53

which is compact by the previous proposition. Thus by the duality property,

Lh,k(σ) : L∞α (K)→ L∞α (K)

is compact. Finally, by an interpolation of the compactness on L1
α(K) and on

L∞α (K), such as the one given on pages 202–203 of the book [4] by Bennett and
Sharpley, the proof is complete. �

The following result is an analogue of Theorem 4.9 for compact operators.

Theorem 4.16. Under the hypotheses of Theorem 4.9, the bounded linear operator

Lh,k(σ) : Lpα(K)→ Lpα(K)

is compact for all p ∈ [r, r′].

Proof. The result is an immediate consequence of an interpolation of Corollary 3.10
and Proposition 4.14. See again [4, pp. 202–203] for the interpolation used. �
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