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EXISTENCE AND MULTIPLICITY OF SOLUTIONS
FOR p-KIRCHHOFF-TYPE NEUMANN PROBLEMS

QIN JIANG, SHENG MA, AND DANIEL PAŞCA

Abstract. We establish, based on variational methods, existence theorems
for a p-Kirchhoff-type Neumann problem under the Landesman–Lazer type
condition and under the local coercive condition. In addition, multiple solu-
tions for a p-Kirchhoff-type Neumann problem are established using a known
three-critical-point theorem proposed by H. Brezis and L. Nirenberg.

1. Introduction and main results

We will study the following p-Kirchhoff-type Neumann problem:−
[
M(
∫

Ω |∇u|p dx)
]p−1 ∆pu = f(x, u) in Ω,

∂u
∂n = 0 on ∂Ω,

(1.1)

where Ω is a bounded regular domain in RN , p ≥ 2, N is a positive integer, n is
the outer unit normal to ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian differen-
tial operator, and M : R+ → R is a continuous function satisfying the following
condition:

(M0) There exists a constant m0 > 0 such that M(s) ≥ m0 > 0 for all s ≥ 0,
and f : Ω × R → R is a Carathéodory function such that

sup
|t|≤s

|f(·, t)| ∈ L1(Ω) for all s > 0.

A distinguishing feature of the p-Kirchhoff-type Neumann equation (1.1) is that
the equation contains a nonlocal expression of (

∫
Ω |∇u|p dx), and hence the equation

is no longer a pointwise identity. In the case p = 2, the problem (1.1) reduces to
the following nonlocal Kirchhoff elliptic problem:−M

(∫
Ω |∇u|2 dx

)
∆u = f(x, u) in Ω,

∂u
∂n = 0 on ∂Ω.

(1.2)
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This is related to the stationary analogue of the Kirchhoff problem

utt − M

(∫
Ω

|∇u|2 dx

)
∆u = f(x, u).

Such a model was first proposed by Kirchhoff [21] to describe transversal oscillations
of a stretched string, particularly, taking into account the subsequent change in
string length caused by oscillations. The study of the Kirchhoff-type problems is
one of the hot spots in nonlocal partial differential equations. In the case M(s) =
a+bs, if we replace the Neumann problem with the Dirichlet problem, the problem
(1.2) reduces to the following nonlocal Kirchhoff elliptic problem:−

(
a + b

∫
Ω |∇u|2 dx

)
∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

which received much attention only after Lions [22] proposed an abstract framework
to the problem. Some important and interesting results can be found, for example,
in [3], [4], [10], [11], [12], [13], [16], [24], [27], [34].

To the best of our knowledge, a little information on the existence of solutions
for the Neumann problem of Kirchhoff type can be found in the existing refer-
ences, see [17], [36], [37]. If we set M(s) = a + bs with a > 0, b = 0 in (1.1),
it reduces to the quasilinear elliptic problem with Neumann boundary condition.
The solvability of such problem has been studied by many authors. References [1],
[2], [5], [6], [7], [9], [14], [15], [18], [23], [24], [25], [26], [29], [33] can be recom-
mended to readers. In particular, when p = 2, in [18] and [30]–[31] existence and
multiplicity of solutions were obtained under the Landesman–Lazer type condition
and under a new Landesman–Lazer type condition, respectively. More precisely,
when p ̸= 2, Wu–Tan in [33] obtained existence and multiplicity of solutions un-
der the Landesman–Lazer type condition. Recently, Jiang et al. in [20] made a
generalization of [33].

Resonance Neumann problems for the p-Kirchhoff type have not been studied
up to now. Motivated by the above facts and the references [12], [20], [19], and
[32], in the present paper we will study the existence and multiplicity of solutions
of the problem (1.1) under the Landesman–Lazer type condition and under the
local coercive condition, respectively, by using the variational method. That is, we
generalize the results of [20], [19], and [32] to the case of the p-Kirchhoff type.

Our main results are summarized as follows:

Theorem 1.1. Suppose (M0) and the following conditions hold:

(H1) Whenever {un} ⊂ W 1,p(Ω) is such that ∥un∥ → ∞ and |ūn||Ω|
1
p

∥un∥ → 1 as
n → ∞, we have

lim sup
n→∞

∫
Ω

f(x, un) ūn

|ūn|
dx > 0.

(H2) Uniformly for almost all x ∈ Ω we have lim sup|t|→∞
F (x,t)

|t|p <
λ̄mp−1

0
p with

F (x, t) =
∫ t

0 f(x, s) ds.
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Then the problem (1.1) has at least one solution in W 1,p(Ω) for p ∈ (N, +∞). Here
W 1,p(Ω) is endowed with the norm

∥u∥ =
(∫

Ω
|u|p dx +

∫
Ω

|∇u|p dx

) 1
p

,

and may be split in the following way:

W 1,p(Ω) = W̃ 1,p(Ω) ⊕ R,

W̃ 1,p(Ω) = {u ∈ W 1,p(Ω) : ū = 0}, ū = |Ω|−1
∫

Ω
u(x) dx, ũ = u − ū,

and λ̄ is a positive constant such that∫
Ω

|∇u|p dx ≥ λ̄

∫
Ω

|u|p dx for all 0 ̸= u ∈ W̃ 1,p(Ω). (1.3)

Throughout the paper, λ̄ is supposed to be the biggest constant satisfying the
Poincaré–Wirtinger inequality (1.3). Details of the proof of the inequality (1.3)
may be seen in [33, Proposition 1].

Theorem 1.2. Suppose (M0) and the following conditions hold:

(H3) Whenever {un} ⊂ W 1,p(Ω) is such that ∥un∥ → ∞ and |ūn||Ω|
1
p

∥un∥ → 1 as
n → ∞, we have

lim
n→∞

∫
Ω

F (x, un) dx = −∞.

(H4) Uniformly for almost all x ∈ Ω we have lim sup|t|→∞
F (x,t)

|t|p < 0.

Then the problem (1.1) has at least one solution in W 1,p(Ω).

Theorem 1.3. Suppose (M0), (H3), (H4), and the following condition hold:
(H5) There exists a constant δ > 0 such that

0 ≤ F (x, t) ≤ λ̄mp−1
0
p

|t|p for all |t| ≤ δ and almost all x ∈ Ω.

Then the problem (1.1) has at least two nontrivial solutions in W 1,p(Ω) for p ∈
(N, +∞).

Theorem 1.4. Suppose (M0) and the following conditions hold:
(H6) There exist a constant C1 > 0 and a real function γ ∈ L1(Ω) such that

|f(x, t)| ≤ C1|t|p
∗−1 + γ(x)

for all t ∈ R and almost all x ∈ Ω, where p∗ = pN
N−p for p < N .

(H7) There exists a subset Ω0 of Ω with |Ω0| > 0 such that

F (x, t) → −∞ as |t| → ∞ uniformly for almost all x ∈ Ω0.
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(H8) There exists κ ∈ L1(Ω) such that

F (x, t) ≤ κ(x)

for all t ∈ R and almost all x ∈ Ω.
Then the problem (1.1) has at least one solution in W 1,p(Ω) for p ∈ [2, N).

Remark 1.5. Both (H1) and (H3) are called the Landesman–Lazer type con-
ditions. Theorems 2–4 in [20] correspond respectively to Theorems 1.1–1.3 in our
paper, for the special case M(s) = a+bs with a > 0, b = 0, and m0 = a. Moreover,
there are functions F (x, t) satisfying our Theorem 1.1. For example,

F (x, t) = a|t|p, a <
λ̄mp−1

0
p

.

Of course, there are functions F (x, t) satisfying our Theorem 1.3 but not satisfying
those in other references. For example,

F (x, t) = λ̄mp−1
0
p

|t|p − b|t|p+1, b <
λ̄mp−1

0
p

.

Remark 1.6. Theorem 1.4 generalizes the results in [19] and [32]. Obviously, the
corresponding results of [19] and [32] are the special case M(s) = a+bs with a > 0,
b = 0, p = 2, and m0 = a in Theorem 1.4. There are functions F (x, t) satisfying
our Theorem 1.4 but not satisfying those in other references. In fact, take

f(x, t) = −p(x − x0) |t|p−2t

1 + |t|p
+ p∗|t|p

∗−2t cos |t|p
∗
,

where x0 ∈ Ω̄. An easy computation shows that the function

F (x, t) = −(x − x0) ln(1 + |t|p) + sin |t|p
∗

satisfies (H6)–(H8).

2. Proofs of the main results

We say that a function u ∈ W 1,p(Ω) is a weak solution of the problem (1.1) if[
M

(∫
Ω

|∇u|p dx

)]p−1 ∫
Ω

|∇u|p−2∇u · ∇v dx −
∫

Ω
f(x, u)v dx = 0

for all v ∈ W 1,p(Ω). Thus, the corresponding energy functional of the problem
(1.1) is defined by

φ(u) = 1
p

M̂

(∫
Ω

|∇u|p dx

)
−
∫

Ω
F (x, u) dx,

where M̂(t) =
∫ t

0 [M(s)]p−1 ds. Obviously, M̂(t) is nondecreasing continuous for
t ≥ 0 by (M0). We all know that the weak solutions to the problem (1.1) are the
critical points of the energy functional φ.

Now, some lemmas are stated for the readers’ convenience.
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Lemma 2.1 (The least action principle [28]). Let X be a reflexive Banach space.
If a functional φ ∈ C1(X,R) is weakly lower semicontinuous and coercive, that is,

φ(u) → +∞ as ∥u∥ → ∞

for u ∈ X, then there exists x̃ ∈ E such that infx∈X φ(x) = φ(x̃) and x̃ is also a
critical point of φ, i.e., φ′(x̃) = 0.

Lemma 2.2 (Saddle point theorem [28]). Let X = X1 ⊕X2, where X is a Banach
space and X2 ̸= {0} and dim X2 < ∞ is finite. Suppose φ ∈ C(X,R) satisfies the
(PS) condition and

(i) there is a constant r and a bounded neighborhood U of 0 in X2 such that
φ|∂U ≤ r, and

(ii) there exists a constant α > r such that φ|X1 ≥ α.
Then φ possesses a critical value c ≥ α.

Lemma 2.3 ([8]). Let X be a Banach space with a direct sum decomposition
X = X1 ⊕ X2 with dim X2 < ∞ and let φ be a C1 function on X with φ(0) = 0,
satisfying the (PS) condition. Assume that, for some δ0 > 0,

φ(v) ≥ 0 for v ∈ X1 with ∥v∥ ≤ δ0,

φ(v) ≤ 0 for v ∈ X2 with ∥v∥ ≤ δ0.

Assume also that φ is bounded from below and infX φ < 0. Then φ has at least two
nonzero critical points.

Lemma 2.4. Suppose that F satisfies assumptions (H6) and (H7). Then there
exist a real function α ∈ L1(Ω) and G ∈ C(R,R) which is subadditive, that is,

G(s + t) ≤ G(s) + G(t) for all s, t ∈ R,

and coercive, that is,
G(t) → +∞ as |t| → ∞,

and satisfies
G(t) ≤ |t| + 4 for all t ∈ R,

such that
F (x, t) ≤ −G(t) + α(x)

for all t ∈ R and a.e. t ∈ Ω0.

Proof. The proof of Lemma 2.4 is essentially the same one as the introductory part
of the proof of Theorem 1 in [32]. □

Proof of Theorem 1.1. It suffices to show that all conditions of Lemma 2.2 with
X1 = W̃ 1,p(Ω), X2 = R are fulfilled. Firstly, we show that there exist constants
M1 > 0 and µ > 0 such that ∫

Ω
f(x, t)t dx ≥ µ|t| (2.1)
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for t ∈ R with |t| ≥ M1. If not, there exists a sequence {tn} ⊂ R with |t| → ∞
such that ∫

Ω
f(x, tn) tn

|tn|
dx <

1
n

for any n ≥ 1, which contradicts (H1).
It follows that

φ(u) = −
∫

Ω
F (x, u) dx

= −
∫

Ω
[F (x, u) − F (x, 0)] dx −

∫
Ω

F (x, 0) dx

= −
∫

Ω

[∫ 1

0
f(x, us)u ds

]
dx −

∫
Ω

F (x, 0) dx

= −
∫

Ω

[∫ M1
|u|

0
f(x, us)u ds +

∫ 1

M1
|u|

f(x, us)u ds

]
dx −

∫
Ω

F (x, 0) dx

for all u ∈ X2 = R with |u| ≥ M1. Furthermore, from (2.1), we deduce that∣∣∣∣∣
∫

Ω

∫ M1
|u|

0
f(x, us)u ds dx

∣∣∣∣∣ ≤
∫

Ω

∫ M1
|u|

0
|f(x, us)||u| ds dx

≤
∫

Ω

∫ M1
|u|

0
g1(x)|u| ds dx = M1

∫
Ω

g1(x) dx

and∫
Ω

∫ 1

M1
|u|

f(x, us)u ds dx =
∫ 1

M1
|u|

1
s

[∫
Ω

f(x, us)su dx

]
ds

≥
∫ 1

M1
|u|

1
s

(µ|su|) ds = µ|u|
(

1 − M1 − 1
|u|

)
= µ|u| + µM1,

where g1(x) = sup|su|<M1 f(x, us) ∈ L1(Ω). Then we deduce

φ(u) ≤ M1

∫
Ω

g1(x) dx − µ|u| − µM1 −
∫

Ω
F (x, 0) dx.

Thus, φ is anti-coercive on R, namely, φ(u) → −∞ as |u| → +∞ for u ∈ R. That
is, the condition (i) of Lemma 2.2 holds true.

Secondly, it follows from (H2) that there are constants ε0 ∈
(

0,
λ̄mp−1

0
p

)
and

M2 > 0 such that

F (x, t) <

(
λ̄mp−1

0
p

− ε0

)
|t|p

for all t ∈ R with |t| > M2. Set g2(x) = sup|t|≤M2 F (x, t). Then we obtain

F (x, t) <

(
λ̄mp−1

0
p

− ε0

)
|t|p + g2(x) (2.2)
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for all t ∈ R and a.e. x ∈ Ω. In accordance with (M0), (2.2), and (1.3), we have

φ(u) = 1
p

M̂

(∫
Ω

|∇u|p dx

)
−
∫

Ω
F (x, u) dx

>
mp−1

0
p

∫
Ω

|∇u|p dx −

(
λ̄mp−1

0
p

− ε0

)∫
Ω

|u|p dx −
∫

Ω
g2(x) dx

≥ mp−1
0
p

∫
Ω

|∇u|p dx −

(
λ̄mp−1

0
p

− ε0

)
1
λ̄

∫
Ω

|∇u|p dx −
∫

Ω
g2(x) dx

= ε0

λ

∫
Ω

|∇u|p dx −
∫

Ω
g2(x) dx = ε0

λ̄
∥u∥p −

∫
Ω

g2(x) dx

(2.3)

for all u ∈ W̃ 1,p(Ω). The inequality (2.3) means that φ(u) → +∞ as ∥u∥ → +∞
for u ∈ W̃ 1,p(Ω). So the condition (ii) of Lemma 2.2 is fulfilled too.

Finally, we draw the conclusion that φ satisfies the (PS) condition. Assume that
there is a sequence {un} of W 1,p(Ω) such that

{φ(un)} is bounded and φ′(un) → 0 as n → ∞.

We claim that {un} is bounded in W 1,p(Ω). Otherwise, we assume that any sub-
sequence of {un} (still denoted by {un}) satisfies

∥un∥ → +∞ as n → +∞. (2.4)

Let vn = β un

∥un∥ with β =
(
1/(1 + λ̄)

) 1
p . Obviously, ∥vn∥ = β and {vn} is bounded

in W 1,p(Ω). Thus there exist a point v ∈ W 1,p(Ω) and a subsequence of {vn}, say
{vn}, satisfying

vn ⇀ v weakly in W 1,p(Ω) and vn → v strongly in Lp(Ω).

Then, in light of (2.2), we derive

φ(un)
∥un∥p

= 1
p

M̂
(∫

Ω |∇un|p dx
)

∥un∥p
− 1

∥un∥p

∫
Ω

F (x, un) dx

>
mp−1

0
pβp

∫
Ω

|∇vn|p dx −

(
λ̄mp−1

0
p

− ε0

)
1

βp

∫
Ω

|vn|p dx −
∫

Ω g2(x) dx

∥un∥p

>
mp−1

0
pβp

∫
Ω

|∇vn|p dx − λ̄mp−1
0

pβp

∫
Ω

|vn|p dx −
∫

Ω g2(x) dx

∥un∥p

= mp−1
0

pβp
− mp−1

0
pβp

∫
Ω

|vn|p dx − λ̄mp−1
0

pβp

∫
Ω

|vn|p dx −
∫

Ω g2(x) dx

∥un∥p
.

(2.5)

Then, according to (2.4), (2.5), and the boundedness of {φ(un)}, we have∫
Ω

|v|p dx ≥ 1
1 + λ̄

= βp. (2.6)
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On the one hand, due to the weakly lower semicontinuity of the norm, we obtain

∥v∥ ≤ lim inf
n→+∞

∥vn∥ = β.

Then we have ∫
Ω

|∇v|p dx +
∫

Ω
|v|p dx = ∥v∥p ≤ βp. (2.7)

In accordance with (2.6) and (2.7), we have∫
Ω

|∇v|p dx = 0 and
∫

Ω
|v|p dx = 1

1 + λ̄
= βp. (2.8)

This means that |∇v(x)| = 0, namely, |v(x)| ≡ constant for all x ∈ Ω. Therefore,
it follows from (2.8) that |v|p = βp

|Ω| . So we obtain

|ūn|p

∥un∥p
=
∣∣∣∣ 1
|Ω|

∫
Ω

un

∥un∥
dx

∣∣∣∣p =
∣∣∣∣ 1
|Ω|β

∫
Ω

vn(x) dx

∣∣∣∣p
→
∣∣∣∣ 1
|Ω|β

∫
Ω

v(x) dx

∣∣∣∣p =
(

1
|Ω|β

∫
Ω

|v(x)| dx

)p

= 1
|Ω|

as n → +∞.

This means that |ūn||Ω|
1
p

∥un∥ → 1 as n → +∞. In light of (2.4) and (H1), we deduce

lim sup
n→∞

∫
Ω

f(x, un) ūn

|ūn|
dx > 0. (2.9)

On the other hand, since φ′(un) → 0 as n → +∞, we obtain∫
Ω

f(x, un) ūn

|ūn|
dx = −

〈
φ′(un), ūn

|ūn|

〉
→ 0 as n → +∞,

which contradicts (2.9). This indicates that the sequence {un} is bounded in
W 1,p(Ω).

Next, we claim that {un} has a convergent subsequence in W 1,p(Ω). Indeed, by
the reflexivity of W 1,p(Ω), there exist u ∈ W 1,p(Ω) and a subsequence of {un}, still
denoted by {un}, such that

un ⇀ u weakly in W 1,p(Ω),
un → u strongly in Lp(Ω),
un(x) → u(x) a.e. in Ω as n → ∞,

and hence
∥un − u∥∞ → 0, ⟨φ′(un), un − u⟩ → 0 as n → ∞,

since W 1,p(Ω) can be compactly embedded in C0,m for all m ∈
(
0, 1 − N

p

)
for

p > N . Consequently, there exists ρ > 0 such that

∥un∥∞ ≤ ρ for all n ∈ N.
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Set the sequence

Pn := ⟨φ′(un), un − u⟩ +
∫

Ω
f(x, un)(un − u) dx

=
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇un|p−2∇un · ∇(un − u) dx.

By the weak convergence, we have

−
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇u|p−2∇u∇un dx

+
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇u|p dx = on(1).

Then we have

Pn + on(1) =
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇un|p−2∇un · ∇(un − u) dx

−
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇u|p−2∇u∇un dx

+
[
M

(∫
Ω

|∇un|p dx

)]p−1 ∫
Ω

|∇u|p dx

=
[
M

(∫
Ω

|∇un|p dx

)]p−1∫
Ω

〈
|∇un|p−2∇un − |∇u|p−2∇u, ∇un − ∇u

〉
.

From (M0) and the following standard inequality in RN ,〈
|x|p−2x − |y|p−2y, x − y

〉
≥ Cp|x − y|p for p ≥ 2,

we obtain

on(1) + Pn ≥ mp−1
0 Cp

∫
Ω

|∇un − ∇u|p dx.

Moreover, we know

Pn = ⟨φ′(un), un − u⟩ +
∫

Ω
f(x, un)(un − u) dx

≤ ⟨φ′(un), un − u⟩ + ∥un − u∥∞

∫
Ω

sup
|t|≤ρ

f(x, t) dx

→ 0 as n → ∞.

Thus the above inequalities mean that∫
Ω

|∇un − ∇u|p dx → 0 as n → ∞.

Consequently, we easily know that

∥un − u∥p =
∫

Ω
|∇(un − u)|p dx +

∫
Ω

|un − u|p dx → 0 as n → ∞,
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which means that
un → u in W 1,p(Ω) as n → ∞.

Hence φ satisfies the (PS) condition. Consequently, via Lemma 2.2, we conclude
that the problem (1.1) has at least one solution. □

Proof of Theorem 1.2. We use Lemma 2.1 for this proof.
Firstly, we can prove that φ(u) → +∞ as ∥u∥ → +∞ for u ∈ W 1,p(Ω), using

proof by contradiction. If not, there are a sequence {un} in W 1,p(Ω) and a constant
M3 such that

∥u∥ → +∞ as n → +∞ and φ(un) ≤ M3. (2.10)
Set vn = un

∥un∥ . Then ∥vn∥ = 1 and {vn} is bounded in W 1,p(Ω). Hence, there are
a point v0 ∈ W 1,p(Ω) and a subsequence of {vn}, say {vn}, such that

vn ⇀ v0 weakly in W 1,p(Ω) and vn → v0 strongly in Lp(Ω).
According to (H4), for any ε > 0 there is a constant M4 > 0 such that

F (x, t) <
ε

p
|t|p

for all t ∈ R with |t| > M4. Put g3 = sup|t|≤M4 F (x, t). Then we get

F (x, t) <
ε

p
|t|p + g3 (2.11)

for all t ∈ R and a.e. x ∈ Ω. Then we have, by (2.11),
M3

∥un∥p
≥ φ(un)

∥un∥p

= 1
p

M̂
(∫

Ω |∇un|p dx
)

∥un∥p
− 1

∥un∥p

∫
Ω

F (x, un) dx

>
mp−1

0
p

∫
Ω

|∇vn|p dx − ε

p

∫
Ω

|vn|p dx −
∫

Ω g3 dx

∥un∥p

= mp−1
0
p

− mp−1
0
p

∫
Ω

|vn|p dx − ε

p

∫
Ω

|vn|p dx −
∫

Ω g3 dx

∥un∥p
.

(2.12)

Thus by (2.10) and (2.12), we have

0 ≥ mp−1
0
p

− mp−1
0
p

∫
Ω

|v0|p dx − ε

p

∫
Ω

|v0|p dx.

Let ε → 0; we see the inequality ∫
Ω

|v0|p dx ≥ 1

holds. Due to the weakly lower semicontinuity of the norm, we get
∥v0∥ ≤ lim inf

n→+∞
∥vn∥ = 1

and then ∫
Ω

|∇v0|p dx +
∫

Ω
|v0|p dx = ∥v0∥p ≤ 1.
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Using an argument analogous to that in the proof of Theorem 1.1, we can draw
the following conclusion:

|v0(x)| ≡ constant for all x ∈ Ω and |ūn||Ω|
1
p

∥un∥
→ 1 as n → +∞.

Due to (2.10) and (H3), we have

lim
n→∞

∫
Ω

F (x, un) dx = −∞.

From this it is easy to get

lim
n→∞

φ(un) ≥ − lim
n→∞

∫
Ω

F (x, un) dx = +∞,

which contradicts (2.10). Therefore φ(u) → +∞ as ∥u∥ → +∞ for u ∈ W 1,p(Ω).
Lastly, we claim that the functional φ is weakly lower semicontinuous. Indeed,

notice that the map u 7→
∫

Ω |∇u|p dx is weakly lower semicontinuous and M̂ is
nondecreasing and continuous, so φ1(u) = M̂

(∫
Ω |∇u|p dx

)
is weakly lower semi-

continuous in W 1,p(Ω). Using the Sobolev embedding theorem and (2.11), we know
the functional φ2(u) =

∫
Ω F (x, u) dx is weakly continuous. Obviously, we get that

φ = φ1 − φ2 is weakly lower semicontinuous. It follows from Lemma 2.1 that φ
has a minimum. Thus the problem (1.1) has at least one solution. □

Proof of Theorem 1.3. We know the space W 1,p(Ω) is directly divided into two
spaces named X1 = W̃ 1,p(Ω) and X2 = R satisfying W 1,p(Ω) = X1 ⊕ X2. Then
the proof of Theorem 1.3 relies on Lemma 2.3. Next, we will describe the detailed
process.

Firstly, it follows from (H5) that F (x, 0) = 0 for a.e. x ∈ Ω; then u(x) = 0 is
a solution of the problem (1.1). φ is a C1 function on W 1,p(Ω) with φ(0) = 0.
Moreover, by the proof of Theorem 1.2, we know that φ is coercive and bounded
from below. Therefore {un} is bounded. Similar to the proof of Theorem 1.1,
we get that {un} has a convergent subsequence in W 1,p(Ω). This means that φ
satisfies the (PS) condition. Then, it follows from (H5) that

φ(u) = −
∫

Ω
F (x, u) dx ≤ 0 (2.13)

for all u ∈ R with |u| ≤ δ.
Furthermore, for all u ∈ W̃ 1,p(Ω) with ∥u∥∞ ≤ δ, by (H5) we obtain

φ(u) =
M̂
(∫

Ω |∇u|p dx
)

p
−
∫

Ω
F (x, u) dx

≥ mp−1
0
p

∫
Ω

|∇u|p dx − λ̄mp−1
0
p

∫
Ω

|u|p dx ≥ 0.

Since W 1,p(Ω) can be compactly embedded in C0,m for all m ∈
(
0, 1 − N

p

)
for
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p > N , there is a constant C > 0 such that

∥u∥∞ ≤ C||u∥, u ∈ W 1,p(Ω).

Put δ0 = min
{

δ
C , δ|Ω|

1
p
}

. Hence we easily obtain the following two inequalities:

(i) φ(u) ≤ 0 for every u ∈ R with ∥u∥ ≤ δ0,
(ii) φ(u) ≥ 0 for u ∈ W̃ 1,p(Ω) with ∥u∥ ≤ δ0.

In the case of infW 1,p(Ω) φ < 0, it follows from Lemma 2.3 that the problem (1.1)
has at least two distinct solutions in W 1,p(Ω).

In the case of infW 1,p(Ω) φ ≥ 0, it follows from (2.13) that

φ(u) = inf
W 1,p(Ω)

φ = 0 for all u ∈ R with ∥u∥ ≤ δ0,

which implies that all u ∈ R with |u| ≤ δ0 are solutions of the problem (1.1).
That is, the problem (1.1) has infinitely many solutions in W 1,p(Ω). Consequently,
Theorem 1.3 is proved. □

Proof of Theorem 1.4. According to Lemma 2.1, we need to prove that the func-
tional φ is coercive, namely, φ(u) → +∞ as ∥u∥ → +∞ for u ∈ W 1,p(Ω).

It follows from Lemma 2.4, (H8), (1.3), and Hölder’s inequality that∫
Ω

F (x, u) dx =
∫

Ω0

F (x, u) dx +
∫

Ω\Ω0

F (x, u) dx

≤ −
∫

Ω0

G(u) dx +
∫

Ω0

α(x) dx +
∫

Ω\Ω0

κ(x) dx

≤ −
∫

Ω0

G(ū) dx +
∫

Ω0

G(−ũ) dx +
∫

Ω0

α(x) dx +
∫

Ω\Ω0

κ(x) dx

≤ −|Ω0|G(ū) +
∫

Ω0

G(−ũ) dx +
∫

Ω
|α(x)| dx +

∫
Ω

|κ(x)| dx

≤ −|Ω0|G(ū) +
∫

Ω0

(|ũ| + 4) dx + M5

≤ −|Ω0|G(ū) + |Ω0|1/q

(∫
Ω0

|ũ|p dx

)1/p

+ 4|Ω0| + M5

≤ |Ω0|(4 − G(ū)) + |Ω0|1/q(1/λ̄)1/p

(∫
Ω

|∇ũ|p dx

)1/p

+ M5

= |Ω0|(4 − G(ū)) + M6

(∫
Ω

|∇ũ|p dx

)1/p

+ M5

(2.14)
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for all u ∈ W 1,p(Ω), where M5 =
∫

Ω |α(x)| dx +
∫

Ω |κ(x)| dx, M6 = |Ω0|1/q(1/λ̄)1/p.
By (M0) and (2.14), we have

φ(u) =
M̂
(∫

Ω |∇u|p dx
)

p
−
∫

Ω
F (x, u) dx

≥ mp−1
0
p

∫
Ω

|∇u|p dx + |Ω0|(G(ū) − 4) − M6

(∫
Ω

|∇ũ|p dx

)1/p

− M5

= mp−1
0
p

∫
Ω

|∇ũ|p dx + (G(ū) − 4)|Ω0| − M6∥ũ∥ − M5

= mp−1
0
p

∥ũ∥p + (G(ū) − 4)|Ω0| − M6∥ũ∥ − M5

for all u ∈ W 1,p(Ω), which implies that φ is coercive by Lemma 2.4 and the fact
that

∥ũ∥p + ∥ū∥p = ∥u∥p.

Lastly, we claim the functional φ is weakly lower semicontinuous. Indeed, we know
φ1(u) = M̂

(∫
Ω |∇u|p dx

)
is weakly lower semicontinuous. Moreover, if un ⇀ u

weakly in W 1,p(Ω) as n → ∞, without loss of generality we may assume that

un → u strongly in Lp(Ω) and un(x) → u(x) a.e. in Ω

as n → ∞. Since F (x, un(x)) → F (x, u(x)) as n → ∞ for a.e. x ∈ Ω, we have

lim sup
n→∞

∫
Ω

F (x, un) dx ≤
∫

Ω
F (x, u) dx

by (H8) and the Lebesgue–Fatou lemma [35]. This means that the functional
φ2(u) =

∫
Ω F (x, u) dx is weakly upper semicontinuous. Hence φ = φ1 − φ2 is

weakly lower semicontinuous. By the least action principle (see Lemma 2.1), φ has
a minimum. Hence the problem (1.1) has at least one solution. □
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