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NEW CLASSES OF STATISTICAL MANIFOLDS
WITH A COMPLEX STRUCTURE

MIRJANA MILIJEVIĆ

Abstract. We define new classes of statistical manifolds with a complex
structure. Motivation for our work is the classification of almost Hermitian
manifolds with respect to the covariant derivative of the almost complex struc-
ture, obtained by Gray and Hervella in 1980. Instead of the Levi-Civita con-
nection, we use a statistical one and obtain eight classes of Kähler manifolds
with the statistical connection. Besides, we give some properties of tensors
constructed from covariant derivative of the almost complex structure with
respect to the statistical connection. From the obtained properties, further
investigation of statistical manifolds is possible.

1. Introduction

In their 1980 paper [3], Gray and Hervella obtained sixteen classes of almost
Hermitian manifolds. Among them, four are basic: they are called nearly Kähler
manifolds, almost Kähler manifolds, Hermitian semi-Kähler manifolds and locally
conformal Kähler manifolds. The other twelve classes are direct products of the
four basic ones and Kähler manifolds. The idea for this type of classification came
from a generalization of Kähler manifolds. Since the defining condition for Kähler
manifolds is the parallelism of a complex structure J with respect to the Levi-Civita
connection ∇g, a generalizing condition is that J is not parallel. In that sense, the
authors in [3] studied the properties of a tensor g((∇g

XJ)Y, Z), and obtained the
classification accordingly. Here, g denotes the Riemannian metric.

We are interested in statistical manifolds, especially in their complex version
called holomorphic statistical manifolds. They were defined by Kurose in 2004,
and we will give their precise definition in the next section. Statistical mani-
folds were defined by Lauritzen in 1987 [5] as Riemannian manifolds (M, g) with
a 3-symmetric tensor T on M . Lauritzen’s definition came as a generalization of
a statistical model with the Fisher metric and the Amari–Chentsov tensor. Since
then, statistical manifolds are studied as purely geometrical objects. They are
considered as Riemannian manifolds (M, g) equipped with torsion-free affine con-
nections ∇ and ∇∗, which are dual with respect to the metric g.
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Kurose explored the relationship between statistical manifolds and affine geome-
try, and generalized the famous work of Shima [8] to statistical manifolds [4]. Many
results appeared concerning curvature tensors of statistical manifolds. Opozda in-
troduced a new type of sectional curvature which can be observed as an object
of differential geometry and of linear algebra at the same time [7]. Furthermore,
exploration of statistical submanifolds was given by Furuhata [2], and by the au-
thor [6].

For more details on statistical manifolds as objects that arise from information
geometry, we refer the reader to [1].

Complex statistical manifolds, i.e., holomorphic statistical manifolds, can be
considered as a generalization of Kähler manifolds. On these manifolds the sta-
tistical connection ∇ is given as a sum of the Levi-Civita connection ∇g and a
(1, 2)-tensor K satisfying certain properties. The complex structure J is not par-
allel with respect to the statistical connection ∇.

The idea of this paper is to find new classes of statistical manifolds with a
complex structure J by classifying tensors of the form g((∇XJ)Y, Z). Following [3],
we obtain four basic classes of statistical manifolds with a complex structure.

Throughout this paper, let M be a C∞ manifold of dimension 2n ≥ 2, ∇ an
affine connection on M , and g a Riemannian metric on M . We denote by Γ(E) the
set of all the C∞ sections of a vector bundle E → M , and by ∇g the Levi-Civita
connection on M . In the second section, we review definitions and some properties
of statistical manifolds. In Section 3, we observe space of tensors with certain
properties in a Euclidean space and give its decomposition. Finally, in Section 4
we define four new classes of statistical manifolds with a complex structure. Our
main result is given in Theorem 4.1

2. Statistical manifolds

Statistical manifolds are new objects in differential geometry, arising from infor-
mation geometry. We give their precise definition here (cf. [2]).

Definition 2.1. (1) A triple (M, ∇, g) is called a statistical manifold if
(i) ∇ is a torsion free connection and
(ii) (∇Xg)(Y, Z) = (∇Y g)(X, Z) for X, Y, Z ∈ Γ(TM).

(2) ∇∗ is called the dual connection of ∇ with respect to g if
Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇∗

XZ), X, Y, Z ∈ Γ(TM).

From the definition, we can write the difference of the Levi-Civita connection
∇g and the statistical connection ∇ as

K(X, Y ) := ∇ − ∇g,

where the (1, 2)-tensor K satisfies the conditions
K(X, Y ) = K(Y, X) (2.1)

and
g(K(X, Y ), Z) = g(Y, K(X, Z)), X, Y, Z ∈ Γ(TM). (2.2)
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By C we will denote a (0, 3)-tensor defined by
C(X, Y, Z) := g(K(X, Y ), Z).

For the dual connection ∇∗, we have that
∇∗

XY = ∇g
XY − K(X, Y ).

Furthermore, the following relations hold:
∇Xg(Y, Z) = −2C(X, Y, Z) = −∇∗

Xg(Y, Z),
K(X, Y ) = 1

2 (∇XY − ∇∗
XY ),

∇g
XY = 1

2 (∇XY + ∇∗
XY ),

X, Y, Z ∈ Γ(TM).
Associated to K is the tensor [K, K] : TM2 → L(TM ; TM) defined by

[K, K](X, Y )Z := [KX , KY ](Z).
We define a (0, 4)-tensor [K, K] : TM4 → RM by

[K, K](X, Y, Z, W ) := g([K, K](X, Y )W, Z)
= g(K(X, Z), K(Y, W )) − g(K(X, W ), K(Y, Z)).

Also, let K ′ := JK and [K, K ′](X, Y, Z, W ) := g([KX , K ′
Y ](Z), W ).

A complex version of statistical manifolds is defined as follows (see [4]).

Definition 2.2. Let (M, J, g) be a Kähler manifold and ∇ an affine connection
on M . (M, ∇, g, J) is called a holomorphic statistical manifold if

(1) (M, ∇, g) is a statistical manifold and
(2) ω = g(∗, J∗) is a ∇-parallel two-form on M .

On a holomorphic statistical manifold (M, J, g, ∇), where ∇ = ∇g + K, we have
a related holomorphic statistical structure,

∇′
XY = ∇g

XY + K ′.

Now let (M, J, g) be a Hermitian manifold, that is, a complex structure J and a
Riemannian metric g satisfy g(JX, JY ) = g(X, Y ). For a statistical connection ∇,
we will consider the tensors

I(X, Y ) := (∇XJ)Y, I∗ := (∇∗
XJ)Y

and
T (X, Y, Z) := g(I(X, Y ), Z). (2.3)

For the tensors I and I∗, the following relation holds (see [6]):
I∗(X, Y ) = −I(X, Y ). (2.4)

By Θ we will denote the corresponding Lee form of T with respect to g; Θ is
defined by

Θ(Z) = gijT (Ei, Ej , Z).
The tensors I and T are connected with the tensors K and C by the following
relations:

I(X, Y ) = K(X, JY ) − JK(X, Y ),
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T (X, Y, Z) = C(X, JY, Z) + C(X, Y, JZ), (2.5)
C(X, Y, Z) = 1

2 {T (JY, X, Z) − T (X, Z, JY ) − T (Z, X, JY )}. (2.6)

Example 2.3. For a one-form u, we define a totally symmetric tensor Ku : TM2 →
TM by

Ku(X, Y ) = u(X)Y + u(Y )X + g(X, Y )U,

where U is the dual vector field of u, that is, g(U, Z) = u(Z). Obviously, a connec-
tion defined by

∇u
XY := ∇g

XY + Ku(X, Y )
is a statistical one. It follows that

Iu(X, Y ) := Ku(X, JY ) − JKu(X, Y ) = u(JY )X + g(X, JY )U
− u(Y )JX − g(X, Y )JU.

The tensor T u(X, Y, Z) := g(Iu(X, Y ), Z) satisfies the following properties:
T u(X, Y, ZY ) = T u(X, Z, Y ) = −T u(X, JY, JZ).

Lemma 2.4. A Kähler manifold (M, J, g) with an affine connection ∇ is holo-
morphic statistical if the difference tensor K satisfies the conditions (2.1), (2.2),
and

K(X, JY ) = −JK(X, Y ).

The curvature tensor on statistical manifolds is defined in a standard way:
R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.

The corresponding (0, 4)-tensor is given by
R(X, Y, Z, W ) = g(R(X, Y )Z, W ).

3. Some properties of tensors on statistical manifolds
with a complex structure

Lemma 3.1. Given a Kähler manifold (M, J, g) and a totally symmetric tensor
K defining a statistical connection, we have the following properties:

(1) T (X, Y, Z) = T (X, Z, Y ).
(2) T (X, Y, Z) = T (Y, X, Z) if and only if K defines a holomorphic statistical

structure.
(3) T (X, JY, JZ) = −T (X, Y, Z), or equivalently T (X, JY, Z) = T (X, Y, JZ).
(4) T (X, Y, Z) = 2C(X, Y, JZ) if and only if K defines a holomorphic statistical

structure.
(5) JK defines a statistical connection if and only if K defines a holomorphic

statistical connection.

Let G denote a (0, 3)-tensor defined by
G(X, Y, Z) := T (Y, X, Z) − T (X, Y, Z).

Corollary 3.2. For the tensor G defined on a Kähler manifold (M, J, g) with a
totally symmetric tensor K, the following properties hold:

(1) G = 0 if and only if M is a holomorphic statistical manifold.
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(2) G(X, Y, Z) = −G(Y, X, Z).

Motivated by the properties of the tensor T u defined in Section 2, we will observe
general tensors having the same properties.

On a Euclidean vector space (V, g) of dimension 2m with a complex structure J ,
we consider the space of tensors

V := {s ∈ ⊗3V ∗ : s(X, Y, Z) = s(X, Z, Y ) = −s(X, JY, JZ)}.

We define a linear operator L : V → V by
Ls(X, Y, Z) = s(Y, Z, X) − s(JX, JY, Z).

It is elementary to prove that L takes values on V. Since LLs = 2Ls, we conclude
that the eigenvalues of L are 0 and 2. That is,

s(X, Y, Z) = −s(JX, JY, Z)
or

s(X, Y, Z) = s(JX, JY, Z).
Similarly, we will classify the subspace V2 = {s ∈ V : s(X, Y, Z) = −s(JX, JY, Z)}
using a map L2 : V2 → V2,

L2s(X, Y, Z) = s(Y, Z, X) + s(Z, X, Y ).
From L2L2 = L2s + 2s, we conclude that the eigenvalues of L2 are −1 and 2.
Therefore, V2 splits as V2 = W1 ⊕ W2, where

W1 = {s ∈ V2 : s(X, Y, Z) + s(Y, Z, X) + s(Z, X, Y ) = 0}
and

W2 = {s ∈ V2 : 2s(X, Y, JZ) = s(Y, Z, JX) + s(Z, X, JY )}.

Remark 3.3. T u(X, Y, Z) = T u(JX, JY, Z).

Finally, on a Euclidean vector space (V, g) of dimension 2m with a complex
structure J , we can state the following.

Proposition 3.4. The space of tensors
V := {s ∈ ⊗3V ∗ : s(X, Y, Z) = s(X, Z, Y ) = −s(X, JY, JZ)}

can be decomposed as
V = V1 ⊕ V2,

where
V1 = {s ∈ V : s(X, Y, Z) = s(JX, JY, Z)}

and
V2 = {s ∈ V : s(X, Y, Z) = −s(JX, JY, Z)}.

Proposition 3.5. The space of tensors
V2 = {s ∈ V : s(X, Y, Z) = −s(JX, JY, Z)}

can be decomposed as
V2 = W1 ⊕ W2,
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where
W1 = {s ∈ V2 : s(X, Y, Z) + s(Y, Z, X) + s(Z, X, Y ) = 0}

and
W2 = {s ∈ V2 : 2s(X, Y, JZ) = s(Y, Z, JX) + s(Z, X, JY )}.

Theorem 3.6. The space of tensors
V := {s ∈ ⊗3V ∗ : s(X, Y, Z) = s(X, Z, Y ) = −s(X, JY, JZ)}

can be decomposed as
V = V1 ⊕ W1 ⊕ W2.

4. Classification of statistical manifolds with a complex structure

At this point we give our main result. Since the tensor T defined on a statistical
manifold with a complex structure J belongs to V, we can formulate a classification
theorem accordingly.

Theorem 4.1. Given a Kähler manifold (M, J, g) and a totally symmetric ten-
sor K defining a statistical connection we have the following possible properties of
a tensor T (X, Y, Z):

(T0) T (X, Y, Z) = 2C(X, Y, JZ),
(T1) T (X, Y, Z) = 1

2n {g(X, Z)Θ(JY ) + g(X, JY )Θ(Z) − g(JX, Z)Θ(Y ) +
g(X, Y )Θ(JZ)},

(T2) T (X, Y, Z) − T (JX, JY, Z) = Θ(Z) = 0,
(T3) T (X, Y, Z) + T (Y, Z, X) + T (Z, X, Y ) = 0,
(T4) 2T (X, Y, JZ) = T (Y, Z, JX) + T (Z, X, JY ).

Moreover, we can decompose the space of tensors T defined by (2.3), T , in the
following way:

T = T0 ⊕ T1 ⊕ T2 ⊕ T3 ⊕ T4,

where T1, T2, T3 and T4 are subspaces of T whose elements are tensors satisfying
(T1), (T2), (T3) and (T4), respectively, and T0 is a class of holomorphic statistical
manifolds.

Naturally, we will say that a Kähler manifold M with a statistical connection
belongs to classes T1, T2, T3 and T4 if the tensor T on M satisfies properties (T1),
(T2), (T3) and (T4), respectively. Here we give another characterization of Kähler
manifolds in terms of the Kähler form ω. From

Zg(X, JY ) = Zω(X, Y )
we get

g(X, (∇∗
ZJ)Y ) + g(X, J∇∗

ZY ) = ∇Zω(X, Y ) + g(X, J∇ZY ).
Now we replace (T1) into the previous equation. Using (2.4), the resulting equation
is

g(X, Z)Θ(JY ) + g(Z, JY )Θ(X) − g(JZ, X)Θ(Y ) + g(Z, Y )Θ(JX)
= ∇Zω(X, Y ) + 2ω(X, K(Z, Y )). (4.1)
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If we replace X and Y in (4.1), and add the obtained equation with (4.1), we get

g(X, Z)Θ(JY ) + g(Z, JX)Θ(Y ) + g(Z, JY )Θ(X) + g(Z, Y )Θ(JX)
= ω(X, K(Z, Y )) + ω(Y, K(Z, X)). (4.2)

From (4.1) and (4.2), we conclude the following result.

Theorem 4.2. On a Kähler manifold (M, J, g) that belongs to a class T1, the
Kähler form ω satisfies

∇Zω(X, Y ) = G(X, Y, Z), X, Y, Z ∈ Γ(TM).

Proposition 4.3. Let (M, J, g) be a Kähler manifold on which the Kähler form ω
satisfies

∇Zω(X, Y ) = G(X, Y, Z), X, Y, Z ∈ Γ(TM).
Then,

G(JX, JY, Z) = G(X, Y, Z).

Proof. From Zg(X, JY ) = Zω(X, Y ), we get

C(Z, Y, JX) = 1
2 {T (Y, Z, X) + T (Z, Y, X) − T (X, Z, Y )}.

On the other hand, from (2.6),

C(Z, Y, JX) = 1
2 {T (JY, Z, JX) − T (Z, JX, JY ) − T (JX, Z, JY )}.

From the last two equations and the properties of tensors G and T , we get the
conclusion. □

Lemma 4.4. Given a Kähler manifold (M, J, g) and a totally symmetric tensor
K defining a statistical connection, the following equations are equivalent:

(1) T (JX, JY, Z) = −T (X, Y, Z),
(2) T (JX, Y, Z) = T (X, JY, Z),
(3) C(X, JY, JZ) = C(X, Y, Z) + C(JX, JY, Z) + C(JX, Y, JZ).

Lemma 4.5. Given a Kähler manifold (M, J, g) and a totally symmetric tensor
K defining a statistical connection, the following equations are equivalent:

(1) T (JX, JY, Z) = T (X, Y, Z),
(2) T (JX, Y, Z) = −T (X, JY, Z),
(3) C(X, Y, Z) = C(X, JY, JZ) + C(JX, JY, Z) + C(JX, Y, JZ).

Definition 4.6. A statistical connection ∇ = ∇0 + K on a Kähler manifold
(M, J, g) is called a statistical almost holomorphic connection if

C(X, Y, Z) = C(X, JY, JZ) + C(JX, JY, Z) + C(JX, Y, JZ)

holds for all X, Y, Z ∈ Γ(TM).

Let N denote the Nijenhuis tensor defined using the statistical connection ∇ in
the following way:

N(X, Y ) = (∇XJ)JY − (∇Y J)JX + (∇JXJ)Y − (∇JY J)X.
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Moreover, let

N ′(X, Y ) = (∇XJ)JY + (∇Y J)JX + (∇JXJ)Y + (∇JY J)X.

We express the tensors N and N ′ in terms of T in the following way:

g(N(X, Y ), Z) = T (X, JY, Z) − T (Y, JX, Z) + T (JX, Y, Z) − T (JY, X, Z), (4.3)

g(N ′(X, Y ), Z) = T (X, JY, Z) + T (Y, JX, Z) + T (JX, Y, Z) + T (JY, X, Z). (4.4)

From (4.3) and (4.4), we obtain

T (X, JY, Z) + T (JX, Y, Z) = 1
2 {g(N(X, Y ), Z) + g(N ′(X, Y ), Z)}.

From (4.3) and (2.5), we obtain

g(N(X, Y ), Z) = 0.

Hence,
T (X, JY, Z) + T (JX, Y, Z) = T (Y, JX, Z) + T (JY, X, Z). (4.5)

Lemma 4.7. If the tensor T on a Kähler manifold (M, J, g) satisfies the condi-
tion T (JX, JY, Z) = −T (X, Y, Z), then (M, J, ∇, g) is a holomorphic statistical
manifold.

Proof. If follows from (4.5), Lemma 4.4, and Lemma 3.1 (2). □

Proposition 4.8. A Kähler manifold (M, J, g) with a statistical connection ∇ =
∇0 + K is an almost holomorphic statistical manifold if and only if N ′ ≡ 0 on M .

Proof. From (2.5) and (4.4), we conclude the equivalence. □

Finally, we give some characterization of a derivative of tensor T .

Theorem 4.9. On a Kähler manifold (M, J, g) with a statistical connection ∇, a
tensor ∇T satisfies the following identities:

(1) (∇XT )(Y, Z, W ) − (∇Y T )(X, Z, W ) = R(X, Y, JZ, W ) − R(X, Y, Z, JW )
+ [K, I](X, Y, Z, W ),

(2) (∇XT )(Y, JZ, W ) − (∇XT )(Y, Z, JW ) = g((∇Y J)Z, (∇XJ)W )
− g((∇XJ)Z, (∇Y J)W ),

(3) (∇XT )(Y, Z, W ) = (∇XT )(Y, W, Z).

Proof. The assertion (1) follows from the identity for J ,

(∇X(∇Y J))Z − (∇Y (∇XJ))Z − (∇[X,Y ]J)Z = R(X, Y )JZ − JR(X, Y )Z,

the definition of derivative of T , and the properties of a statistical connection ∇.
Assertions (2) and (3) follow from the properties of T . □
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Proposition 4.10. Let M be a manifold from the class T3. The following proper-
ties hold:

(1) (∇XJ)JY + (∇JY J)X = (∇Y J)JX + (∇JXJ)Y ,
(2) T (JX, Y, Z) + T (JY, Z, X) + T (JZ, X, Y ) = 0,
(3) (∇W T )(X, Y, Z) + (∇W T )(Y, Z, X) + (∇W T )(Z, X, Y ) = 0.
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