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STRONGLY APERIODIC SFTS ON HYPERBOLIC GROUPS:
WHERE TO FIND THEM AND WHY WE LOVE THEM

YO’AV RIECK

Abstract. D. B. Cohen, C. Goodman-Strauss, and the author [Ergodic The-
ory Dynam. Systems 42 (2022), no. 9, 2740–2783] proved that a hyperbolic
group admits an SA SFT if and only if it has at most one end. This paper has
two distinct parts: the first is a conversation explaining what an SA SFT is
and how it may be of use, while in the second part I attempt to explain both
old and new ideas that go into that proof. References to specific claims in the
work cited above are given, with the hope that any interested reader may be
able to find the details there more accesible after reading this exposition.

This paper is about a structure called strongly aperiodic subshift of finite type,
abbreviated as SA SFT, that exists on some groups and not on others (all groups
considered are infinite and finitely generated). The paper has two parts: in Part 1
we discuss the reasons for constructing SA SFTs and explain what they are. In
Part 2 we explain the basic ideas behind the construction which led to the theorem
of D. B. Cohen, C. Goodman-Strauss, and the author [10]:

Theorem 0.1. A hyperbolic group admits an SA SFT if and only if it has at most
one end.

This paper is written for topologists and geometric group theorists, and we
are not assuming any familiarity with SA SFTs. We do assume familiarity with
hyperbolic groups, which were introduced by Gromov in an extremely influential
paper [18]. Gromov outlined there the study of SFTs on hyperbolic groups, and
a detailed investigation was carried out by Coornaert and Papadopoulos [11, 12].
Our interest is promoting the SFT to an SA SFT.

Remark 0.2. Much of this paper reviews old and well-known results. In order to
facilitate the reading of [10], we included many references to that work. This is not
an indication that all the claims are original.
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Part 1. Why do we do what we do?

1. The geography of a group

Fix, for the entirety of Part 1, an infinite, finitely generated group G, together
with a finite generating set S = S−1.

As usual, we view the group as its Cayley graph Γ, which we define here for
completeness. The vertices of Γ are the elements of G, and the edges out of a
vertex g have the form (g, ga) for all a ∈ S. The edges of Γ are labeled and directed
— the edge (g,ga) is labeled a and points from g to ga. Since S = S−1, there
is an edge pointing in the opposite direction, namely, (ga, gaa−1). Connectivity
of Γ follows from the fact that S generates G. Assigning length 1 to each edge
induces a metric on Γ. Left multiplication defines an action of G on Γ by a graph
isomorphism that preserves the labels, directions, and distances. This action is
transitive on the vertices.

Since G acts on the vertices of Γ transitively, we cannot use Γ to distinguish
elements, that is, for any g1, g2 ∈ G and any R > 0, the balls B(R, g1) and B(R, g2)
are identical.

How are we to know where we are?
One way is to name each and every group element. For example, if the group

is the integers Z, each integer has a name and we may use it. This will not do.
When labeling group elements we may only use finitely many labels (imagine a
small device attached to each group element that records the label) and the group
G is, by assumption, infinite.

Here’s another suggestion: label the identity 0 and all other elements 1. This
poses a different problem: once the labeling of the group is completed we want to
be able to guarantee that it is “correct”, and this must be done locally. If we allow
arbitrarily large balls to be labeled 1, what is to stop us from labeling the entire
group 1?

This pinpoints our goal: to construct a finite set of labels and a collection of
local rules that will allow us to distinguish elements of G. Specifically, we would
like to (and here we give an intuitive description of an SA SFT):

(1) Choose a finite set A.
(2) Construct local rules for labeling.
(3) Guarantee that in any labeling that obeys the local rules, and for any

g1 ̸= g2 ∈ G, there is R > 0, so that the labelings on B(R, g1) and B(R, g2)
are distinct (R depends on g1 and g2 and this is unavoidable).

(4) Prove that there exists a labeling obeying the rules, so condition (3) is not
vacuous.
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Remark 1.1. A few remarks are in order:
(i) A finite set carries no information other than its cardinality. (In reality,

in order to work with A, each label will carry useful information; a similar
comment can be made about the states of a Turing machine.)

(ii) The local rules are the key here. Local rules form an atlas, or a finite
collection of charts, where each chart is a labeling of a ball of radius R,
for some fixed R.1 We say that the labeling satisfies the local rules if the
labeling about each point g agrees with one of the charts (translated to be
centered at g).

(iii) From this point on we focus on labeling the vertices, but the fixed labeling
of the edges plays a key role: since the edges are labeled and directed,
once we center a chart at g the exact position of each vertex of the ball is
determined (we cannot “rotate” the ball).

(iv) An SFT is only required to satisfy the first two conditions above: a finite
set, and local rules for labeling. The other two conditions may not be
satisfied: on the one hand, the rules may allow for a labeling in which some
(even all!) vertices look the same; on the other hand, the rules may not
allow for any labeling at all (this is an empty SFT). Adding conditions (3)
and (4) is the content of “SA”.

2. Relation to tilings

An SFT on a group G is sometimes called a “tiling” of G. This is very reasonable,
as we now explain. Starting from the second point of Remark 1.1, we see that an
SFT is given by an atlas of charts. Say there are n charts and number them 1
through n.

Now the labeling about each g, with labels from A, must coincide with one of the
charts. We record this, using the number of the chart at g (thus obtaining a function
G → {1, . . . , n}). Conversely, any function G → {1, . . . , n} gives a labeling G → A
provided that overlapping charts are compatible. An easy argument shows that if
the labelings about neighboring vertices agree, then the labeling is consistent.

And so here is the tiling: each tile covers exactly one group element g and carries
a label from {1, . . . , n} that corresponds to the chart used for the labeling about g.
Let Tg denote the tile that covers g. We can visualize Tg as a “polygon” that covers
only g, where the boundary of Tg consists of finitely many “edges”, one for each
neighbor of g, where “edges” can be glued together if the corresponding charts are
compatible. Here edge means an “edge” of the “polygon”, not an edge of the Cayley
graph (in fact every “edge” of the glued “polygons” crosses exactly one edge of the
Cayley graph and vice-versa). By construction, Tg depends only on the chart at
g; thus there are exactly n possible tile shapes. For obvious reasons this is called
a nearest neighbor SFT.

1The reader may have seen local rules defined on finite sets that are not necessarily balls, but
there is no loss of generality in assuming that they are all balls and of the same radius.
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We conclude that, for a group G, the concepts of SFT and tiling are the same.
The notions of “aperiodicity” (to be defined in the next section) carry over. We
will focus on SFTs.

One final remark: SFTs on Z2 correspond to tilings of E2 (where by E2 we
mean R2 with the Euclidean metric), but the converse does not hold. There are
tilings of E2 (for example, see [22]) that are not aligned along a lattice and hence
do not induce an SFT on Z2. Similarly, strongly aperiodic tiles for H2 were first
constructed by Goodman-Strauss in [17], but do not provide an SFT on any group
of isometries of H2; the first SFT on a hyperbolic was constructed by Cohen and
Goodman-Strauss twelve years later [9].

3. Formal definitions

After reviewing the concepts the formal definitions should be easy to read. For
a finitely generated group G we provide the following definitions:

(1) The full shift on G with labels in a finite set A is

AG := {ω : G → A} .

In other words, these are all possible labelings of the elements of G by
labels from A.

(2) We endow A with the discrete topology and AG with the product topology.
This turns AG into a compact space that carries a right G-action; the action
of g ∈ G on ω ∈ AG is defined as follows (here, we evaluate ω · g ∈ AG on
h ∈ G):

(ω · g)(h) = ω(gh).
This action is by homeomorphisms.

(3) A subshift is a closed, invariant subset Ω ⊂ AG. The action of G on AG

induces an action of G by homeomorphisms on the compact space Ω. Note
that Ω = ∅ is a subshift. More interesting examples are given by the closure
of the orbit of any ω ∈ AG.

(4) Given a subshift Ω we call ω ∈ Ω a configuration. Thus any configuration
is a function

ω : G → A.

Consistent with the terminology above, we call the value ω(g) the label
at g.

(5) A subshift Ω is called strongly aperiodic (SA) if it is not empty and, for
every ω ∈ Ω, we have that Stab(ω) is trivial (here and below Stab(·)
stands for stabilizer).

(6) A non-empty subshift is called weakly aperiodic if Stab(ω) has infinite index
in G for every ω ∈ Ω. Since we restricted ourselves to infinite groups, strong
aperiodicity implies weak aperiodicity (but at this point of our discussion,
it is not clear if the converse holds). We will focus on strong aperiodicity.

(7) A subshift of finite type (SFT) is a subset of the full shift AG that is defined
by local rules, or an atlas of charts, as described above. It is not defined
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as a subshift satisfying an extra condition, but in fact it is: it is not hard
to see that an SFT is closed and G-invariant, and hence a subshift.

(8) Combining (5) and (7), we define a strongly aperiodic subshift of finite
type (SA SFT) to be an SFT in which the stabilizer is trivial for every
configuration.

4. Origins

The origins of the theory, in the very early 1960s, are closely linked to axioma-
tization and computational theory (as we shall see shortly). H. Wang [26] asked if
the Domino Problem is decidable for tilings of E2:

The Domino Problem. Is there an algorithm that decides if a given finite set of
tiles in E2 can be used to tile the plane?

Obviously, one can replace E2 with other spaces of interest, for example, H2,
En, and Hn. (We will not discuss higher dimensions.)

Wang proposed an “algorithm”: try! If the tiles do not tile E2, an attempt to
tile arbitrarily large balls would eventually fail (and one will certainly detect this).
On the other hand, if they do tile, one “should” find a tiled domain. Of course, in
the latter the tiling would be a lift of a tiling of the torus. But does this actually
work? Perhaps there is a set of tiles that tiles the plane but not the torus? This
seemed rather unlikely.

Wang himself found such tiles, but they are seeded, which means that they
contain a special tile (the seed) that must be used. With this, Wang constructed
tiles that emulate an arbitrary Turing machine and tile the plane if and only if the
given machine never halts; undecidability of the Domino Problem for seeded tiles
follows from undecidability of the Halting Problem. Figure 1 indicates a Turing
machine and seeded tiles that emulate it. Note that without the seed (in the second
row, second column) copies of the blank tiles (in the first row) can always be used
to tile E2 (even the torus), and thus without the seed these tiles give nothing of
interest.

A few years later, R. Berger showed how to emulate an arbitrary Turing machine
with an unseeded set of tiles (see Figure 2, which shows a much-simplified set of
tiles due to R. Robinson). These tiles can be used to show two things:

(1) The Domino Problem in E2 is undecidable.
(2) There exists a set of strongly aperiodic tiles for E2. This is indicated in

Figure 2. As suggested by that figure, the tiles assemble to form disjoint
squares of arbitrarily large scale. Hence any element of the stabilizer will
need to move these squares off themselves or not move them at all, showing
that the stabilizer is trivial.

Later, J. Kari [20] gave a different and very simple construction that also implies
undecidability of the Domino Problem in E2.
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Figure 1. Wang emulates the run of a Turing machine as a tiling problem.

Figure 2. Unseeded tiles.
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5. Other geometries

Existence of SA SFTs has subtle connections to the geometry of the group. For
example, Cohen [8] showed that for finitely presented groups, existence is a quasi-
isometry invariant.2 I find this quite surprising because a quasi-isometry is very
coarse and can destroy any local information, and SFTs are defined using local
rules only.

Here is a sample of results. Some show existence of an SA SFT, and some
show that the Domino Problem is undecidable (implying the existence of a weakly
aperiodic set of tiles, but not implying the existence of an SA SFT). More results
can be found in [10]. The 2018 survey [1] contains many results about the Domino
Problem. All groups considered in this section are assumed to have decidable word
problem and to be finitely presented (although some of the results require only
finite generation).

In 1997 Mozes [21] constructed strongly aperiodic tilings on any simple Lie
group Γ of rank greater than one. The tiles themselves are Voronoi cells of a
uniform lattice G ≤ Γ.3 The Voronoi cells are then decorated with combinatorial
information, given by the pattern of intersection they form with the Voronoi cells
of a second, incompatible, uniform lattice. Mozes showed that incompatibility of
the lattices breaks all symmetry and yields a strongly aperiodic tiling of Γ; for our
purposes, it also gives an SA SFT on G. (This situation is similar to the tiling
shown in Figure 3, although these tiles come from a different construction in H2.)

We remark that uniform lattices in rank-one simple Lie groups are hyperbolic
and therefore admit an SA SFT by Theorem 0.1. Thus a uniform lattice in any
simple Lie group admits an SA SFT.

In [17] Goodman-Strauss constructed the first set of strongly aperiodic tiles in
H2. A simpler construction is shown in Figure 3 where the grid “rectangles” are
all isometric pentagons, each with five edges of length 1, four vertices of angle π/2,
and one vertex of angle π, in the middle of the bottom edge. These overlay an
incompatible shaded grid that has two types of tiles, hexagons and pentagons. We
note, however, that these tiles do not correspond to a lattice and therefore do not
provide an example of an SA SFT.

In a recent preprint [6], Barbieri, Sablik, and Salo showed that the product of
two non-amenable groups with decidable word problem admits an SA SFT.

In 2019 Barbieri [5] showed that the product of three infinite groups, each with
decidable word problem, admits an SA SFT.

In [3] Aubrun and Kari constructed SFTs on BS(1, n) groups, which were shown
to be SA by Esnay and Moutot in [16]. Furthermore, in a recent paper Aubrun
and Kari [4] showed that the Domino Problem is undecidable for all BS(m, n).

The reader may have noticed that not even one of the groups discussed above is
hyperbolic. This changed in 2017 when Cohen and Goodman-Strauss showed that

2For the definition of quasi-isometry, see, for example, [7].
3The Voronoi cell corresponding to g ∈ G consists of all the x ∈ Γ satisfying d(x, g) ≤ d(x, g′)

for all g′ ∈ G.
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Figure 3. Two patterns of “rectangles” are shown, each rectangle
having some predecessor above and some successors below. In the
pattern drawn with dark lines, the number of rectangles doubles
from row to row. In the gray pattern, light rectangles (which are
all congruent) have one light and one dark rectangle as successors,
and dark rectangles (which are all congruent) have one light and
two dark successors.

surface groups admit an SA SFT [9]. Since then Aubrun, Barbieri, and Moutot [2]
showed that the Domino Problem for surface groups is undecidable.

6. Two necessary conditions

From this point on we are only considering finitely presented groups. There are
two known necessary conditions for existence of an SA SFT on a group G:

(1) G must have a decidable word problem.
(2) G must have at most one end.

This leads us to ask:

Question 6.1. Does every finitely presented, one-ended group with decidable word
problem admit an SA SFT?

The first condition, proved by E. Jeandel [19], fits well with the philosophy that
an SA SFT gives us a way to “address” group elements. After all, being able
to construct arbitrarily large balls of the Cayley graph is equivalent to having a
decidable word problem.

Here are a few details regarding the second condition.
It was shown by Cohen [8] that no group with more than one end admits an SA

SFT. We demonstrate this for Z, which is a well-known and easy case. Suppose we
are given a non-empty SFT on Z with label set A and local rules that are defined
on sets of (say) n adjacent integers. Note that an interval of length n can be labeled
in finitely many ways. It follows that there are two disjoint intervals of length n
with identical labeling; say that one starts at a and the other starts at b > a. It is
now an easy exercise to show that the labeling of the integers from a to b − 1 can
be repeated to produce a periodic configuration.
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Let us return for a moment to Wang’s tiles. Recall that these tiles had a seed
that we were required to use. The following example demonstrates the dramatic
effect of seeding:

• A := {C, L, R}. The meaning of the labels: C is the “center” of Z; L and
R mean “left/right of C”, respectively.

• Local rules (allowable configurations, defined on adjacent pairs):
– C-R
– L-C
– R-R
– L-L.

• The seed is C.
A moment’s reflection shows that any allowable configuration has the form

· · · -L- · · · -L-C-R- · · · -R- · · · .

Of course, the stabilizer of such a configuration is trivial, since any non-trivial
translation will move C to a point labeled L or R. So the seeded SFT is SA. This
is in contrast to unseeded SFTs, where we saw that Z admits no SA SFT. Indeed,
if we remove the seeding requirement we have two periodic configurations:

· · · -R- · · · -R- · · · and · · · -L- · · · -L- · · · .

This concludes the first part, in which we attempted to do three things: explain
what an SA SFT is, motivate our interest in them, and survey some of the many
results. The reader should be aware that in recent years there has been a flurry of
activity and this discussion is far from complete.

Part 2. How do we do what we do?

In the second part of this paper we discuss the construction of an SA SFT on
a 1-ended hyperbolic group G which we fix once and for all. We also fix a finite
generating set S = S−1. We start with the construction of an SFT that is not
required to be strongly aperiodic, and has been known for a long time (ΩS below).
We then enhance it to attain the desired SA SFT.

A finitely presented group G (with a fixed finite generating set S = S−1) is
called hyperbolic if there is some δ > 0 so that every triangle in the Cayley graph of
G is δ-slim, that is, any point on one edge is within δ from the union of the other
two edges. We fix δ > 0 for the remainder of this paper.

Hyperbolicity, due to Gromov [18], turns out to be both very natural (satisfied
by many groups that appear in application) and very useful. As a simple exam-
ple, hyperbolicity implies a very efficient solution to the word problem known as
Dehn’s algorithm; surprisingly, this turns out to be equivalent to hyperbolicity. As
a far more sophisticated example we mention that the isomorphism problem for
hyperbolic groups is decidable (Sela [23] for torsion free hyperbolic groups, later
extended to all hyperbolic groups by Dahmani and Guirardel [14]). These are, of
course, just examples of what one can do with hyperbolic groups; very many other
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beautiful results are known and at this point the theory of hyperbolic groups seems
very well understood.

An excellent reference is [7]. Another very useful reference is [15], in particular
for the shortlex FSA, which will be used extensively below.

7. Shortlex shellings

In this section we explain how to construct a certain SFT, called the shortlex
SFT and denoted by ΩS , on a hyperbolic group G; these SFTs will serve as the
backbone for our main construction. The group G need not be one-ended, and the
resulting SFT is not necessarily strongly aperiodic (in fact, if G is infinite, this SFT
is necessarily not strongly aperiodic). The ideas presented here are similar to ones
that date back to Gromov’s paper [18]; see Coornaert and Papadopoulos [11, 12]
for a detailed treatment.

A key to our construction is Cannon’s Shortlex FSA (finite state automaton)4.
Fixing an arbitrary order on S induces a lexicographic order on the finite words
(S ∪ S−1)∗. A path in the Cayley graph is called shortlex if and only if it is a
geodesic, and is first in the lexicographic order among all geodesics with the given
endpoints. It is clear that for each element g ∈ G there is a unique shortlex
geodesic from the identity e to g (and this is true for any finitely generated group).
It is far less obvious how to calculate shortlex representatives. In fact, shortlex
representatives in a group G can be calculated if and only if G has a decidable
word problem, see [15].

A hyperbolic group G admits an FSA, described in [15], that accepts a word if
and only if it is a shortlex representative. Denoting the states for the FSA as

{s1, . . . , sn} ,

we can now label each group element with the three labels(
P (g), dist(e, g), si(g)

)
,

defined as follows:
(1) P (g) is the generator that points towards e on the shortlex geodesic to g;

in other words, the product gP (g) is the last group element on the shortlex
geodesic before arriving at g. P (e) is not defined. P is called the parent
function.

(2) dist(e, g) is the distance from e to g.
(3) si(g) is the state of the FSA at g (so i(g) ∈ {1, . . . , n}).

Of course, dist(e, g) cannot be used as a label for an SFT since it takes on infinitely
many values. We replace it with the function that describes the difference of the
distance to the origin between g and its neighbors, that is, for each a ∈ S, we define

ð(g)(a) := dist(e, g) − dist(e, ga).

4For those unfamiliar with it, an FSA is a Turing machine without a tape; the “memory” is
contained in finitely many states.
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Since g and ga are neighbors, this function can only take the values ±1 or 0. Thus
ð is a function

ð : G → {−1, 0, 1}S .

This completes the labeling on g for each group element. This labeling is not a
configuration in any SFT but rather a blueprint for constructing ΩS , as we now
explain.

We now define a full shift of G with labels
(ð(g), si(g), P (g)) ∈ {−1, 0, 1}S × {s1, . . . , sn} × S. (7.1)

Let ΩS be the subshift consisting of all configurations satisfying the following con-
dition:

The labeling of any ball, of any radius, coincides
with labeling above on some ball not containing e.

It is not clear that:
(1) This is an SFT. The requirement above says “balls of any radius”, and we

must ensure that this can be enforced by considering balls of a fixed radius.
This is one of the many places in which hyperbolicity is used.

(2) This SFT is not empty.
The second point is actually not too hard. Since we can label balls of arbitrary
radius, a diagonalization argument shows that there is a labeling of all of G, that
is, the SFT is not empty.

Remark 7.1. It is known that ΩS is necessarily not SA. More needs to be done.

Remark 7.2. We give an example of a parent function P defined on F2, the free
group on generators a and b. The Cayley graph of F2, a regular 4-tree, is shown in
Figure 4. At each vertex there are two gray edges (corresponding to a and a−1) and
two black edges (corresponding to b and b−1). Each edge is marked with an arrow
that points from g to P (g). As the figure suggests, P (g) can be any neighbor of g;
the only rule is that at any g we see exactly one triangle pointing “out” (towards
P (g)) and three pointing “in” (from P −1(g)). Picking any g ∈ F2 and following the
arrows we arrive at a point on ∂∞F2, and this point is independent of the choice
of g.

8. Relation to the boundary and weak aperiodicity

We are assuming that the reader is familiar with ∂∞G, the boundary at infinity
of G.

Given any configuration ω ∈ ΩS and any g ∈ G, we construct the path
g, Pg, P 2g, . . .

It follows from the definition of P that this path is a geodesic ray and hence defines
a point at infinity. Hyperbolicity implies that this point is independent of g, and
we denote it by ξ (of course, ξ(ω) depends on ω). The association ω 7→ ξ defines a
function

ΩS → ∂∞G.
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Figure 4. The function P .

It is clear that this function is compatible with the actions of G on ΩS and on ∂∞G.
This means that the action of G on ∂∞G is a factor of an SFT, which motivated
Gromov to study them.

We would like to exploit the function ΩS → ∂∞G differently: we will use it
to show that ΩS is weakly aperiodic. The map ΩS → ∂∞G shows that, for any
ω ∈ ΩS , we have

Stab(ω) < Stab(ξ(ω)).
It is known that Stab(ξ) is virtually cyclic for any ξ ∈ ∂∞G.5 We conclude that
Stab(ω) is virtually cyclic (for any ω ∈ ΩS). By assumption, G is one-ended, and

5To see that Stab(ξ) is virtually cyclic use the following: (1) every non-torsion element of G
fixes exactly two points on the boundary; (2) if two elements share one fixed point, they share
both fixed points; and (3) the elements that fix the same two points form a virtually cyclic group
(this allows for a finite group, as finite groups are virtually trivial). See [18, Sections 8.1 and 8.2]
and [7, proof of Proposition III.Γ.3.20 (p. 467)].
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hence G is not virtually cyclic. This shows that Stab(ω) has infinite index; in other
words, ΩS is weakly aperiodic.

9. Horospheres

Fix a configuration ω ∈ ΩS . We may “integrate” ð (notation as in (7.1) above)
to get a function h : G → Z (defined up to an additive constant). The level sets of
h are called horospheres.

Any g ∈ Stab(ω) preserves ð and hence g preserves h up to an additive constant,
that is, there exists an integer C so that, for any x ∈ G, we have

h(g · x) = h(x) + C.

If g is a torsion element then C = 0. Conversely, if g has infinite order then C ̸= 0
([10, Lemma 9.1]). This simple observation will prove quite useful.

Since a hyperbolic group has finitely many conjugacy classes of torsion, getting
rid of the torsion in the stabilizers is very easy ([10, Proposition 3.3]). Thus we
may assume that g has infinite order and C ̸= 0.

10. The divergence graph

Fix ω ∈ ΩS . As we discussed in Section 8, for every g ∈ G, the sequence

g, Pg, P 2g, . . .

converges to ξ(ω) ∈ ∂∞G. For convenience we describe P as moving “down”
towards ξ.

We now move “up” from g ∈ G:

g, P −1g, P −2g, . . .

This defines sets that move away from g; unlike the downwards path that limits
on ξ, the limit of the sets P −ng is more complex. It does depend on g, and will
often be an uncountable subset of ∂∞G. The union of these sets is called the future
cone of g, namely,

P −∗g =
∞⋃

n=0
P −ng.

Remark 10.1 (Growth rate). The hyperbolic group G has a well-defined growth
rate, which we will denote by λ > 0. Given a configuration ω ∈ ΩS , the future
cone of each g ∈ G is completely determined by the state of the FSA at g, denoted
by si(g) in (7.1) above (this was analyzed in detail in [13]). In particular, si(g)
determines the growth rate of the future cone, and we call it the growth rate of
the state. In what follows we only consider states whose future cone has growth
rate λ (for a precise discussion see [10, Definition 6.3]). We denote the set of all
elements of G satisfying this condition by G+. Note that each g ∈ G+ accumulates
to an uncountable subset of ∂∞G. By [10, Proposition 6.5] any 2δ-ball, in any
configuration ω ∈ ΩS , contains a point of G+.
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Back to our discussion, fix a configuration ω ∈ ΩS .
Let h be as in Section 9. For i ∈ Z, set Hi := h−1(i) and H+

i := G+ ∩ Hi. On
H+

i we define the divergence graph as follows:
v The vertices of the divergence graph are the vertices of H+

i .
e Two vertices g1, g2 ∈ H+

i are connected by an edge if and only if their
futures remain a bounded distance apart. In other words, for some C > 0,
and for each integer n ≥ 1, there are v1 ∈ P −ng1 and v2 ∈ P −ng2 with
dist(v1, v2) < C.

The following holds (see see [10, Lemma 7.4] and its proof):
• The union of the limit sets of the future cones of all of H+

i is ∂∞G − {ξ}.
• g1, g2 ∈ H+

i are connected by a divergence graph edge if and only if the
limit sets of their future cones intersect.

• We may therefore describe the divergence graph as a discrete approximation
of ∂∞G.

• Most importantly, the divergence graph is connected. This reflects the
fact that ∂∞G − ξ is connected (the Cut Point Conjecture, proved by
Swarup [25]).

The plan is now as follows. Any infinite order element ϕ ∈ Stab(ω) will translate
the levels of h by C ̸= 0, as explained in Section 9. It is our goal to enhance ΩS

by associating an integer ∆(g) to each g ∈ G+ in a way that cannot be periodic;
the new SFT will no longer have ϕ in its stabilizer.

We enhance the labels of ΩS (compare this with the labels presented in (7.1))

(ð(g), si(g), P (g), ℘(g), ∆(g), m(g)).

The enhanced SFT is called populated shelling, denoted by ΩP . The name comes
from the fact that ℘ defines a “population” of “villagers” on each “village” g ∈ G
(or, if the reader prefers, any village v ∈ G+, since the population of any g ∈ G−G+

is zero anyway).

11. ℘ and m

The number of “villagers” defines the function ℘, with ℘(g) being the population
at g:

℘ : G+ → Z≥1.

This function is required to be bounded, with the population bound N fixed in
advance.

Clearly, we need something that will help us relate ℘ to the geometry of the
group, for otherwise the population values will be arbitrary numbers. This is m,
which stands for matching. More precisely, it is parent-child matching.

Each “villager” in v ∈ H+
i has q∆i children (q∆i will be described in the next

section; for now just take it to be “some number”). We list the children as follows:

(v, j, k),
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where v is the village, 1 ≤ j ≤ ℘(v) is the villager, and 1 ≤ k ≤ q∆i is the child.
The function m “places” this child as a villager in H+

i+1:
m(v, j, k) = (u, l);

here, u ∈ H+
I+1 is a village and 1 ≤ l ≤ ℘(u) is a villager.

The geometry of the group comes to play when we force the child to be placed
not too far from the parent. The precise condition is the following: the child may
take up to 3 steps on the divergence graph of H+

i , and then move one step up.
A succinct description is this: the child of a villager in v ∈ H+

i is a villager in
u ∈ H+

i+1 with
DivDist(v, Pu) ≤ 3.

Naturally, DivDist denotes that divergence graph distance.
Remark 11.1. The reader probably finds the constant 3 rather arbitrary (not
to say mysterious). It comes from an application of a theorem in graph theory
which states that if a graph is connected, then its cube admits a Hamiltonian path
between any two vertices.6 This is then used to construct a “translation-like Z
action” (in the sense of Seward [24]) whose defect is 3, and this is the origin of the
constant.

12. Straying away and coming back home

It would be quite natural to worry that we are too loose with the geometry of
the group here. We populate the group with the goal of considering the population
after arbitrarily many generations, and descendants may stray 3 divergence-graph
steps each generation.

Indeed, after many generations, a descendant of the villager (v, j) may be in a
village which is very far from the future cone P −∗v. It may be worth emphasizing
that we are using two distinct “futures” here: on the one hand, we have the future
cone P −∗v, which is the collection of villages u for which

v = P nu

for some n; on the other hand, there are villagers that are descendants of (v, j),
and may stray away from P −∗v.

Hyperbolic geometry to the rescue. As described above, let (u, l) be a descendant
of (v, j), after, say, n generations. We use the notation v = v0, v1, . . . , vn = u for the
villages so that (u, l) is a descendant of (vn−1, ln−1) (for some ln−1), (vn−1, ln−1)
is a descendant of (vn−2, ln−2) (for some ln−2), and so on. It is not hard to show
that an edge of a divergence graph connects vertices of Cayley distance at most 2δ,
and so the apple doesn’t fall too far from the tree:

CayDist(vi, vi+1) ≤ 6δ + 1.

On the other hand, because vi ∈ H+
i and vj ∈ H+

j , we get that
CayDist(vi, vj) ≥ |i − j|.

6The cube of a graph is obtained by adding an edge between any two vertices of distance at
most 3.
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This produces a quasi-geodesic that can be compared with the geodesic
vn, Pvn, . . . , P nvn.

It is a feature of hyperbolic geometry that quasi-geodesics remain a bounded dis-
tance away from geodesics, which means that, for some fixed R > 0, we have

CayDist(v0, P nvn) ≤ R.

A precise statement is given in [10, Lemma 9.2]. This allows for sufficient control
over the population growth, since it shows that all the descendants of villagers in
S ⊂ H+

i , where S is any finite set, live in the future cone of N (S), where here
N (S) is the 3-neighborhood of S in the divergence graph on H+

i .

13. ∆

We finally describe ∆, focusing on G+; ∆ is extended to G by setting it to be
zero on G − G+. It is ∆ that will ultimately be responsible for aperiodicity.

For each g ∈ G+, the growth rate of the population at g is controlled by ∆(g).
To be precise, every villager at g has exactly q∆(g) children (for q to be decided
momentarily). We use, intentionally, a number q which is not compatible with λ:
q is an integer, which we may take to be either 2 or 3, so that

log(q)
log(λ) ̸∈ Q.

The function
∆ : G+ →

{⌊
logq(λ)

⌋
,
⌈
logq(λ)

⌉}
is required to satisfy the following conditions:

(1) (And this is key) ∆ is constant along levels of h, that is, for each integer i,
∆|H+

i
is constant. We denote this value by ∆i. This defines the sequence

(∆i)i∈Z .

(2) The sequence ∆i approximates λ (in a sense made precise in [10, Corollary
9.3]).

(3) The condition above and the incompatibility of λ and q guarantee that ∆i

is not periodic ([10, Corollary 9.4]).
We saw in Section 9 that any infinite-order elements in the stabilizer of a con-

figuration ω ∈ ΩS must translate the levels {h = i} by a non-zero amount. Once
we enhance ΩS by populating G+, the function ∆ will not be invariant under such
an element. This shows that there is no infinite-order element in the stabilizer of
any configuration in ΩP , as desired.

Remark 13.1 (The role of the (necessary!) assumption of one-endedness of G).
The question of existence of an SA SFT is irrelevant for zero-ended groups (that
is, finite groups), where the answer is always “yes”, as well as two-ended groups
(that is, virtually-Z’s), where the answer is always “no”. So we ignore these groups
in this remark and consider only one-ended and infinitely-ended groups. Our main
result is that an SA SFT exists only for the former. This begs the question: where
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exactly was the “one-endedness” assumption used? The only place is imposing that
∆ be constant along each H+

i . This must be enforced via local rules, as part of the
SFT. What allows us to do this is connectivity of the divergence graph. This is the
one and only place where the assumption is used, as connectivity of the divergence
graph is equivalent to G being one-ended. Swarup’s resolution of the cut-point
conjecture [25] plays a key role here; it states that ∂∞G \ {ξ} is connected (for any
ξ ∈ ∂∞G).

14. One last issue

It is not the goal of this paper to give a complete proof of Theorem 0.1. Our
goal is to explain some of the elements that go into the proof in a way that would
facilitate its reading. However, it is hard to ignore the fact that we have not
addressed the following question:

Does a populated shelling even exist?

This should not be taken lightly as it is quite possible that we defined the empty
subshift here. In fact, if the population bound is too small, this is probably the
case. In [10, Proposition 8.5] it is shown that ΩP described above is indeed an SFT,
and in [10, Proposition 9.5] it is shown that no configuration has an infinite order
element in its stabilizer, but neither result addresses existence of a configuration.

Much of the work in [10] is devoted to Proposition 8.12, showing that (for an
appropriately chosen population bound) ΩP is indeed not empty. This is the most
technical and longest part of the proof, and here is my attempt at explaining the
idea. We proceed in three steps:
Level: The first step is populating each level H+

i . To discuss that we need to dig
a little deeper into the maximal growth states of the FSA.7 In Remark 10.1
we explained that the future of some states must have growth rate λ (the
growth rate of the group itself) and denoted the set of vertices that have
this growth rate by G+. From that point we concentrated on G+ and on
H+

i := G+ ∩ Hi. In fact, more is true; although the transitions of the FSA
need not satisfy the assumptions of the Perron–Frobenius Theorem, it is
possible to associate to them a measure that behaves just like a Perron–
Frobenius eigenvector; see [13] or [10, Section 6]. Now in the first step
we populate each level H+

i so that the population of any finite subset
approximates its total measure (it is not possible to get this to be exact;
the ratio of the measures of distinct states is usually irrational). This
is [10, Lemma 8.7] (for one level). The average ratio of population to
total measure (called the population density) can be chosen freely, within
a reasonable range ([10, Definition 8.6 and Lemma 8.7]).

7There are two distinct notions of growth rate at play: growth rate of the population, controlled
by ∆i, and growth rate of the group elements, which is λ; here we discuss the latter. Having
two incompatible growth rates is a little confusing but it is the very thing the leads to strong
aperiodicity.
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Levels: We apply this to all of G (one level at a time, and still without matching
levels). This is given in [10, Corollary 8.9]. In order to be able to match
parents and children, we ensure that the sequence of densities behaves well
(grows when small, shrinks when big). The precise description is given in
[10, Definition 8.10].

Matching: Having populated the group as described above, we apply the Hall Match-
ing Theorem to prove existence of a matching function m as required. This
is [10, Proposition 8.11].

Ta da! That’s all, folks.
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