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THE SUBTHALAMIC NUCLEUS AND THE GLOBUS PALLIDUS
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Abstract. The oscillatory nature of basal ganglia activity is highly tied with
some movement disorders. We study, through bifurcation analysis and com-
puter simulations, the appearance of abnormal oscillations in an already pro-
posed reduced neural circuit model of the subthalamic nucleus and globus
pallidus loop. The results show that the model exhibits stable steady states
associated to normal activity and oscillatory activity corresponding to the of-
ten termed “tremor frequency” oscillations due to their coherence with parkin-
sonian tremor observed in patients with Parkinson’s disease.

1. Introduction

The basal ganglia (BG) constitute a neural network of diverse nuclei receiving
projections from the cerebral cortex and projecting to the thalamus, which in turn
projects to the neocortex, closing an essential circuit involved in a wide range of
motor and cognitive functions. Understanding the wide range of functions carried
out by the same structures with a well-known connectivity is a hard task, and it
is even harder to explain them from a computational model that encompasses a
complex dynamics. In addition, BG are involved in several neurological disorders
such as Parkinson’s and Huntington’s diseases, as well as obsessive-compulsive
disorders, schizophrenia, and addictions [6, 1]. An understanding of BG circuits [10]
is indispensable in order to develop effective treatments for these disorders and
explain the neural basis of motor control, habit-formation, decision-making, and
reinforcement learning. Even though there is a significant amount of information
about BG, researchers keep wondering how a single subcortical circuit supports a
wide range of functions.
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Actually, there are several computational models on BG but most of them focus
on only one or two functions of the basal ganglia. One of the most widely used
models was published by Gurney et al. [8, 9]. They formulated a BG model (called
GPR model) in order to investigate the details of the operation of the BG disinhibi-
tion process, and it has been tested successfully as a mechanism of action selection
of autonomous agents. A simple representative circuit composed of an ensemble
of excitatory subthalamic nucleus (STN) neurons and an ensemble of inhibitory
globus pallidus (GP) neuron interactions was analyzed by Gillies and Willshaw [7].
They showed that the two nuclei can be switched between states of high and low
activity or can generate oscillations due to an appropriate external input. Hol-
gado et al. [14] proposed a computational model of the STN-GPe network based
on anatomical and electrophysiological studies. Their model intrinsically oscillates
in the beta band (13–30 Hz), abnormal coherent oscillations, highly correlated
with Parkinson’s disease. In order to investigate the behavior when multiple in-
teractive channels of globus pallidus pars externa (GPe) and subthalamic nucleus
neurons are present, Merrison-Hort et al. [13] proposed and analyzed an extension
of previous models. They performed a bifurcation analysis of an isolated channel
model of the STN-GPe system where a rich variety of neural dynamics was exhib-
ited. Recently, Chakravarthy and Balasubramani [3] presented a simple network
model of BG called GEN (Go/Explore/NoGo) where the STN and GPe modules
are modeled as an excitatory-inhibitory loop which is able to produce oscillations.
In their work, the dynamics of the STN-GPe system is characterized as correlations
of neural activity when different connectivity parameters are varied.

Understanding the interaction between the basal ganglia and other brain areas is
essential for finding new treatments for disorders affecting the neural systems sup-
porting motor and cognitive behaviors. Achieving a comprehensive computational
model of BG will further the development of theoretical neurobiology. There will
be important contributions to different fields, such as computer science, applied
mathematics, robotics, and machine learning.

In this paper we will study a mean firing rate mathematical model of a coupled
pair of STN and GPe populations based on the GEN model [3]. The goal of this
study is to investigate how changes in network parameters can lead to different
dynamical modes such as steady, oscillatory, or bistable behaviors as well as to
analyze the presence of oscillations associated with Parkinson’s disease. Specif-
ically, we perform a bifurcation analysis of a network of two simplified neurons
to investigate different dynamical modes with respect to changes in inputs and
interconnection strengths.

2. Models and methods

2.1. The GPe-STN loop model. The model we propose is based on a model of
leaky-integrator neurons, which were used in the GEN model [3]. The GPe-STN
circuit is represented by two neurons which form a recurrent excitatory-inhibitory
loop, as illustrated in Fig. 1, that exhibits a rich variety of neural dynamics.
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Figure 1. Schematic diagram of the interactions between and
within the STN and GPe. Lines ending in a bar are inhibitory
(GABAergic) synapses and those ending in arrows are excitatory
(glutamatergic) synapses.

The dynamics of a single STN-GPe neuron subpopulation pair is given as

τs
dxSTN

dt
= −xSTN + wssUSTN − wgsxGPe + IHDP + KSTN, (2.1)

τg
dxGPe

dt
= −xGPe + wsgUSTN − wggxGPe − ID2, (2.2)

USTN = tanh(λSTNxSTN), (2.3)

where the time-dependent variables xSTN and xGPe, respectively, represent the av-
erage activity of all neurons of the excitatory STN subpopulation and inhibitory
GPe subpopulation. τs and τg represent the average membrane time constants of
neurons in the STN and GPe, respectively. The nonnegative connection strength
parameters are wss, wsg, wgg, and wgs and represent the strength of synaptic
connectivity between the populations, where wij is the connection strength from
population i to population j. Finally, IHDP is the constant level of cortical exci-
tation of the STN (the hyperdirect pathway), ID2 represents a constant level of
inhibition of the GPe coming from D2-expressing neurons of striatum (the indirect
pathway), and KSTN is a constant bias current given to STN neurons. It is also
worth mentioning that the output of the GPe subpopulation neurons is linear, that
is, UGPe = xGPe.

For a simpler notation, let x = xSTN, y = xGPe, λ = λSTN, and I2 = ID2.
Further, it is useful to let I1 = IHDP + KSTN in order to reduce the number of
parameters in the system. Taking into account these changes, the system (2.1)–
(2.3) can be represented in matrix form as follows:

(
ẋ
ẏ

)
=


1
τs

(−x + wss tanh(λx) − wgsy + I1)

1
τg

(−y + wsg tanh(λx) − wggy − I2)

 . (2.4)
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In order to study the time-dependent dynamics and the steady state behavior
of the neural network, it is quite important to analyze the equilibrium points of
equation (2.4) and their stability properties.

2.1.1. Equilibria and stability. Given the autonomous system in (2.4), the x and y
nullclines are respectively

y = 1
wgs

(−x + wss tanh(λx) + I1) ,

y = 1
1 + wgg

(wsg tanh(λx) − I2) .

These nullclines give rise to system’s equilibria by solving the following nonlinear
system:

(1 + wgg)x + (wgswsg − (1 + wgg)wss) tanh(λx) − (1 + wgg)I1 − wgsI2 = 0,

(1 + wgg)y − wsg tanh(λx) + I2 = 0.

Remark 2.1. The Jacobian matrix for the right-hand side of equation (2.4) around
(x, y) is

J(x, y) =

 − 1
τs

(
1 − λwss sech2(λx)

)
−wgs

τs

λwsg

τg
sech2(λx) −1 + wgg

τg

 .

The trace and the determinant of J(x, y) are respectively given by

Tr(J) = − (1 + wgg)τs + τg

τsτg
+ λwss

τs
sech2(λx)

and
det(J) = 1 + wgg

τsτg
+ λ(wgswsg − (1 + wgg)wss)

τsτg
sech2(λx).

Proposition 2.2. Consider the system given by (2.4) with wgswsg −(1+wgg)wss =
0. The following statements hold.

(1) (x∗, y∗) ∈ R2 is an equilibrium point of the system (2.4) if and only if

x∗ = I1 + wss

wsg
I2 and y∗ = wss

wgs
tanh

(
λ

(
I1 + wss

wsg
I2

))
− wss

wgswsg
I2. (2.5)

(2) The sets

H1
c =

{
(I1, I2) : I1 + wss

wsg
I2 = 1

λ
arctanh

(√
1 − τgwss + wgswsgτs

τgw2
ssλ

)}
, (2.6)

H2
c =

{
(I1, I2) : I1 + wss

wsg
I2 = 1

λ
arctanh

(
−
√

1 − τgwss + wgswsgτs

τgw2
ssλ

)}
, (2.7)

are bifurcation sets, at the (I1-I2) parameter space, corresponding with an
Andronov–Hopf bifurcation of codimension one.
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(3) The set

H3
c =

{
(τs, τg) : τs = wss

wgswsg

(
wssλ sech2

(
λ

(
I1 + wss

wsg
I2

))
− 1
)

τg

}
is a bifurcation set, at the (τs-τg) parameter space, corresponding with an
Andronov–Hopf bifurcation of codimension one.

Proof. (1) It is sufficient to consider Fi = 0, where the vector fields Fi are the
components of the right-hand side defined in (2.4) and 0 is the null vector.

(2)-(3) It is sufficient to consider Tr(J) = 0. □

Remark 2.3. It is easy to conclude that at the 2-parameter space, curves corre-
sponding with an Andronov–Hopf bifurcation are straight lines, as shown in Fig. 4a.

2.2. The GEN model. Chakravarthy and Balasubramani [3] modeled and an-
alyzed the STN-GPe system based on the parameters defined in Table 1. They
demonstrated the emergence of the Explore regime. The exploratory dynamics is
necessary for reward-based or reinforcement learning and the authors concluded
that oscillations of the STN-GPe system drive exploratory behavior. The GEN
model is also involved in binary action selection; however, due to the complex dy-
namics of the STN-GPe system, they proved that it is not necessary for the winning
action to be always the one represented with greater saliency and proposed three
possible outcomes [2]: “Go” (winning neuron has greater salience), “Explore” (win-
ning neuron has lesser salience), and “NoGo” (no winner and therefore no action
selection). These regimes were controlled by dopamine in a scalable manner, i.e.,
the Go regime is exhibited with high probability for large values of dopamine, the
Explore regime is also selected with the probability maximized for moderate values
of dopamine, and the NoGo for the smallest values.

Table 1. Fixed parameter values taken from [3].

Parameters Symbol Value

Self-excitation within the STN wss 1
Coupling strength within GPe subpopulation wgg 0
Connection strength from STN to GPe wsg 1
Connection strength from GPe to STN wgs 1
Time constant of neurons in the STN τs 0.03
Time constant of neurons in the GPe τg 0.1
Constant bias current given to STN neuron KSTN −1
Slope parameter of the sigmoid function λSTN 3
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Figure 2. Steady-state regime when IHDP = 0 and ID2 = 0.5.
(a) Neural activation and (b) phase portrait showing a stable fixed
point.

2.2.1. Simulating the GPe-STN loop model. Let us consider the system (2.1)–(2.3)
based on the parameter values from Table 1 along with IHDP = 0 and ID2 = 0.5.
Under these specific conditions, the STN-GPe circuit shows a single stable steady-
state or stable fixed point (Fig. 2a) and it is represented by the intersection of the
xSTN- and xGPe-nullclines as shown in Fig. 2b.

Note that the system with this set of parameters satisfies the hypothesis of
Proposition 2.2. Then, from equation (2.5), (x∗, y∗) = (−0.5, −1.4051) is the stable
equilibrium point, analytically obtained and exhibited in Fig. 2. The stability of the
equilibrium point is due to the Jacobian matrix at the equilibrium point having
negative trace and positive determinant (the Jacobian matrix, its trace, and its
determinant were defined in Remark 2.1).

When considering the value of the parameter ID2 as 0.9, the system changes from
a single steady-state regime to a globally stable limit cycle (oscillatory regime) as
shown in Fig. 3. The limit cycle is the closed trajectory in phase space that contains
within its interior an unstable stationary point of the system as shown in Fig. 3b.
The emergence of this limit cycle means that globally stable oscillations are possible
in the STN-GPe circuit (Fig. 3a) by increased striatal input (ID2) to GPe. These
results were presented in [3] and corroborated by electrophysiological data [5].

2.2.2. Bifurcation under one and two parameter variation. Finding the exact value
of ID2 where the system generates a limit cycle would be a significant result. How-
ever, we found a large area of the state space where the system exhibits oscillatory
behavior. This result is presented in Fig. 4 and derived from Proposition 2.2(2).
Fig. 4a shows a 2D bifurcation diagram of the STN-GPe system for fixed parameter
values presented in Table 1 while parameters ID2 and IHDP are varied. The 2D
bifurcation diagram represents the (ID2, IHDP) parameter space which is divided

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)



DYNAMICS IN THE BASAL GANGLIA 403

0 0.5 1 1.5 2 2.5

Time(s)

-2

-1.5

-1

-0.5

0

0.5

1

N
eu

ro
n 

ac
tiv

at
io

n

USTN

xGPe

(a)

-3 -2 -1 0 1 2 3

xSTN

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

xG
P

e

STN nullcline
GPe nullcline
Limit cycle

(b)

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

xG
P

e
 S

ig
na

l

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

xS
T

N
 S

ig
na

l

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-1

0

1

U
S

T
N

 S
ig

na
l

(c)

Figure 3. Oscillatory regime when IHDP = 0 and ID2 = 0.9.
(a) Neural activation and (b) phase portrait showing a limit cycle.
(c) The activity signal of the system when it is started near to the
unstable equilibrium point.

in five regions, by four straight lines. From Fig. 4a, the two continuous black lines
are obtained from equations (2.6)–(2.7) as defined in Proposition 2.2 and their
equations are ID2 = −IHDP + 1 + 1

3 arctanh
(

±
√

17
30

)
. Specifically, every point

on the line indicates the values of ID2 and IHDP where there occurs a subcriti-
cal Andronov–Hopf (A–H) bifurcation. A subcritical A–H bifurcation leads to the
presence of an unstable limit cycle. The other two continuous dashed lines give
place to a limit point bifurcation of cycles (LPC). They were obtained with the
matcont package, which performs numerical continuation of equilibria [4]. The
LPC bifurcation is a type of saddle-node bifurcation of limit cycles, in which a
stable limit cycle is approached by an unstable one, they coalesce, and then they
disappear.
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Figure 4. (a) 2D bifurcation diagram showing the Hopf bifurca-
tion curves that the STN-GPe system undergoes under variation of
ID2 and IHDP. (b) Phase portrait with IHDP = 0 and ID2 = 1.3381
showing three different trajectories whose time series, depending
on initial conditions, are shown in (c).

In Fig. 4a, within each of the regions A1, A2, . . . , A5, the phase portraits of
the system are topologically equivalent. Within regions A1 and A5 the system
has only steady-state behavior: a “normal regime” represented by a single, stable,
equilibrium point. On the other hand, within region A3 the dynamical system
generates an oscillatory regime due to a stable limit cycle, surrounding an unstable
spiral, which is a global attractor. This region is limited by the two subcritical
A–H bifurcation curves. Fig. 4b shows an example of the phase portrait that is
representative of the system’s behaviour in region A3. The time series in Fig. 4c
show the activity signal of the system when it is started near to the unstable equi-
librium point. Since it is unstable, it repels nearby trajectories and, consequently,
trajectories are attracted by the stable limit cycle. Finally, the most interesting
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behavior is found within regions A2 and A4. Within these regions the system has
a bistability regime between steady-state and oscillatory behavior that depends
on initial conditions. The region A2 is bounded at the top by a subcritical A–H
bifurcation curve and at the bottom by an LPC bifurcation curve. Similarly, the
region A4 is bounded above by an LPC bifurcation curve and below by a subcritical
A–H bifurcation curve. The last two regions are exhibited in the one-dimensional
bifurcation diagram shown in Fig. 5a.

An example of a phase portrait, when IHDP = 0 and ID2 = 1.3381, that rep-
resents the behavior of the system in region A4 is shown in Fig. 4b. This figure
shows the nullclines with an intersection at the stable spiral, the stable and un-
stable limit cycles, and three trajectories starting from different initial conditions.
Bistability within this region leads to the fact that both the fixed point and the
stable limit cycle have local basins of attraction. In fact, the basin of attraction
of the attracting fixed point is the open set inside the unstable limit cycle (dashed
brown line). Therefore, trajectories starting from this set tend to the fixed point
as shown in Fig. 4b. The time series at the top panel in Fig. 4c show the activity
signal of the system when it is started near to the unstable limit cycle. Since the
limit cycle is unstable, it repels nearby trajectories and, consequently, trajectories
are attracted by the stable equilibrium.

On the other hand, the region inside the stable limit cycle (continuous brown
line) is divided by the unstable limit cycle into two concentric areas. Trajectories
that start within the outer area tend to the stable cycle as shown in Fig. 4b. In
the middle panel in Fig. 4c, the time series show the activity signal of the system
when it is started near to the unstable limit cycle. Once again, as the limit cycle is
unstable, it repels nearby trajectories and, consequently, trajectories are attracted
by the stable limit cycle. Finally, the entire basin of attraction of the stable limit
cycle is completed by the region outside of it (see Fig. 4b). The time series at
the bottom panel in Fig. 4c show the activity signal corresponding with initial
conditions outside of the stable limit cycle. The last two time series show that the
system exhibits an oscillatory regime. To sum up, the system’s behavior within
regions A2 and A4 is bi-stable and, depending on initial conditions, may show either
steady-state or oscillatory activity regimes.

In our simulations, we performed a one-dimensional bifurcation analysis in order
to have a better visualization of the dynamical repertoire of the STN-GPe system
undergoing a parameter variation. A bifurcation diagram may reveal critical values
and qualitative changes that separate the different dynamical behaviors.

For example, a numerical continuation was performed by starting at a fixed
point and varying the parameter ID2 from 0.5 to 1.5 and keeping IHDP fixed at 0.
Simulation results were plotted, as bifurcation diagrams, in Fig. 5. Fig. 5a depicts,
in detail for xSTN, qualitative changes and different regimes when ID2 varies from
0.5 to 1.5. These nonlinear phenomena occur, at the same values, for USTN (Fig. 5b)
and xGPe (Fig. 5c).
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Figure 5. (a)–(c) The effect of ID2 on the generation of oscilla-
tions with IHDP = 0. (d) Top: frequency range 0.5–4 Hz (delta
band); bottom: oscillatory activity of the model with ID2 = 1.338.

Figs. 5a–5c show that the STN-GPe system presents a steady-state regime when
ID2 < 0.6575. At ID2 = 0.6575 the STN-GPe system undergoes an LPC bifurca-
tion, a limit cycle that is neither stable nor unstable. As ID2 increases, this limit
cycle bifurcates into a stable limit cycle and an unstable one giving rise to a bistable
regime. It should be noted that the equilibrium point remains stable. The bistable
regime is maintained until a small unstable limit cycle shrinks to the stable equilib-
rium and makes it lose stability. At this bifurcation point, amplitude of the limit
cycle becomes zero and then a subcritical Andronov–Hopf bifurcation emerges.
The A–H bifurcation occurs at ID2 = 0.6735, where a pair of purely imaginary
complex conjugate eigenvalues is reached, and a positive first Lyapunov coefficient
also appears, l1 = 98.19735.

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)



DYNAMICS IN THE BASAL GANGLIA 407

Another subcritical A–H bifurcation occurs at ID2 = 1.3264. Indeed, there
are two eigenvalues of the equilibrium where the real part becomes zero and then
positive, meaning that the equilibrium (focus) is no longer unstable, while the
first Lyapunov coefficient is positive, l1 = 98.19747. Thus, there should exist an
unstable limit cycle bifurcating from the equilibrium, located at (xSTN, xGPe) =
(0.326441, −0.573668). This means that a new bistable regime takes place until
the stable and the unstable limit cycles approach, coalesce and then annihilate
each other, thus the STN-GPe system, once again, undergoes an LPC bifurcation
at ID2 = 1.3425. Ultimately, the STN-GPe system presents a steady-state regime
when ID2 > 1.3425.

In order to find, from the model, indications of the presence of oscillations associ-
ated with Parkinson’s disease, we plotted a diagram (the one at the top in Fig. 5d)
that shows the frequency presented between the values of ID2 where the oscillations
occur. The diagram shows that the frequency of the sustained oscillation is in the
range 1.7–2.5 Hz when ID2 takes values in the interval (0.6575, 1.3425). It can
be seen from the graph that those frequencies are related with stable oscillations
whereas unstable oscillations (dashed lines) may reach frequencies up to 2.9 Hz.
At the bottom of Fig. 5d the oscillatory activity of the coupled nucleus model with
ID2 = 1.338 is shown. Accordingly, it falls into the delta band (0.5–4 Hz). The
delta frequency band shows oscillatory activity within the basal ganglia in patients
with Parkinson’s disease in relation to tremor, but their relation to other parkin-
sonian symptoms is not well known yet [15]. This low-frequency oscillations band
has been subject to very limited study, and little has been reported on functions
related to it. probably because the delta band is particularly susceptible to move-
ment artifacts and is often filtered. This oscillation can be detected, from EEG
studies, during slow wave sleep and cognitive task execution [16].

When the model was simulated varying parameter values corresponding to the
slope parameter of the sigmoid function (λSTN) and connections strength, wsg and
wgs, and keeping ID2 fixed at 0.7, the STN-GPe system also produces oscillations.

Similar to the previous diagrams, Figs. 6a-6b show that the STN-GPe system
presents an oscillatory regime and Figs. 6c-6d show the frequency of the sustained
oscillations in the range 1.25–2.9 Hz.

In Fig. 6a, the oscillatory regime is present when λSTN takes values in the interval
(1.642, 4.114). This interval is determined due to the STN-GPe system undergoing,
first, a subcritical Andronov–Hopf bifurcation and then an LPC bifurcation. At
λSTN = 3.728 a subcritical Andronov–Hopf bifurcation emerges and then a new
bistable regime takes place.

When changing the value of ID2 to 0.657, the oscillatory regime emerges when
λSTN is in the interval (2.052, 2.985), as illustrated in Fig. 6b. This range is de-
termined due to the fact that the STN-GPe system undergoes two LPC bifurca-
tions. The diagram also shows, at λSTN = 2.096 and λSTN = 2.41, two subcritical
Andronov–Hopf bifurcations, which define two bistable regimes for the system.
Notice that there is a wide range of lambda values where the system is bistable.
Regarding the frequency of the system for both ID2 values, oscillatory conditions
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Figure 6. The effect of λSTN on the generation of oscillations
with IHDP = 0 and (a) ID2 = 0.7, (b) ID2 = 0.657. (c) Top:
frequency range 0.5–4 Hz (delta band); bottom: oscillatory activ-
ity of the model with λSTN = 1.6555. (d) Top: frequency range
0.5–4 Hz (delta band); bottom: oscillatory activity of the model
with λSTN = 2.104.

mainly fall in the range of 1–3 Hz, which is the same parkinsonian oscillation delta
band mentioned before, as shown at the top of Figs. 6c and 6d.

As a last attempt to find high-frequency oscillations, the values of ID2 and λSTN

were set at 0.9 and 3, respectively, and the values of the connections strength wsg

and wgs were varied. A 2D bifurcation diagram of the STN-GPe system is shown
in Fig. 7a. The equilibria that correspond to the system solution are shown as
solid blue and green lines, the blue lines represent LP (limit point) bifurcations
(or saddle-node bifurcations) and the green lines represent Andronov–Hopf bifur-
cations. The latter are responsible for oscillations occurring in the system as seen
before.
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Figure 7. (a) (wsg, wgs) parameter bifurcation diagram showing
Andronov–Hopf (green lines) and limit point (blue lines) bifurca-
tion curves that give rise to codimension-two bifurcations such as
CP (cusp point) and BT (Bogdanov–Takens), with IHDP = 0 and
ID2 = 0.9. (b) The effect of wgs on the generation of oscillations
with wsg = 0.52. (c) Top: frequency range 0.5–4 Hz (delta band);
bottom: oscillatory activity of the model with wgs = 1.125.

Similarly to that seen in Fig. 4a, these curves separate the (wsg, wgs) parameter
space into different regions in which the phase portraits of the STN-GPe system
are topologically equivalent. On the other hand, Fig. 7a shows the presence of
codimension-two bifurcations such as cusp point (CP) and Bogdanov–Takens (BT)
as well. The occurrence of a CP bifurcation is due to the fact that two branches of
the limit point bifurcation curve meet tangentially. The cusp bifurcation strongly
suggests the existence of a hysteresis phenomenon [12]. BT bifurcation points
are those at which Andronov–Hopf curves terminate on saddle-node curves. A
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BT bifurcation gives rise to an LPC bifurcation, specifically, the emergence of a
homoclinic orbit (HC), for nearby parameter values [12].

Fig. 7b, for example, displays all bifurcations found for the system equilibria in
the case wsg = 0.52. The figure shows two subcritical Hopf bifurcations H1 and
H2 that occur where the parameter wgs = 1.104 or wgs = 1.128. From H2, as
wgs increases, the two limit cycles disappear at wgs = 1.148, where the STN-GPe
system undergoes an LPC bifurcation. From H1, as wgs decreases, the two limit
cycles disappear at wgs = 1.097, where the STN-GPe system undergoes an SHC
(saddle-homoclinic orbit) bifurcation [11]. The SHC bifurcation corresponds to a
limit cycle that grows into a saddle point; the unstable manifold of the saddle makes
a loop and returns via the stable manifold. As mentioned before, in the graph of
Fig. 7b a kind of hysteresis phenomena can be recognized when considering different
values of wgs. If it is varied slowly back and forth, the connection strength wgs

between a value where the A–H bifurcations occur and another one after LPC
occur, it can be noticed that the system promotes a transition from an oscillatory
regime to a normal one. Once a normal regime is elicited, reducing the connection
strength no longer evokes an oscillatory regime, but simply promotes a normal
regime. Finally, Fig. 7b also shows two limit points LP1 and LP2 where unstable
equilibria disappears or appears depending on the direction of movement of the
bifurcation parameter.

Regarding the frequency of the system, oscillatory conditions mainly fall in the
range of 1–3 Hz, and again a low-frequency band was found as shown at the top of
Fig. 7c. At the bottom of Fig. 7c the oscillatory activity of the STN-GPe system
with wgs = 1.125 is shown.

3. Conclusions

The connectivity and interaction between the nuclei that make up the BG and,
in particular, the excitatory-inhibitory loop between STN and GPe, produce a rich
and diverse dynamics in this system, with the presence of stable and unstable states,
oscillatory regimes of diverse nature, transitions between them and bifurcation
points, among others. The strong dependence of the dynamics exhibited on the
system parameters was shown in detail in the previous section.

From a functional neuro-anatomical perspective, BG are involved not only in
motor control tasks, but also in cognitive processes such as decision-making in ex-
ploratory or exploitative modes, or transitions between them, shown by the subjects
in response to their own needs or to demands of their environment.

The dynamics described in this work is a more detailed theoretical framework for
the explanation of the behaviors mentioned above. The identification of variations
in the values of specific parameters of the mathematical model as a source and
explanation of oscillatory regimes, of stable or unstable states and of observed
transitions, allows us to point out to correlations between organic elements in BG
and elements of the mathematical model, in addition to the correlations formulated
between regimes or states of the model and behaviors of the subject. Such is the
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case with the neurotransmitter dopamine and the ionic currents that ensure phasic
or basal states that find their correlates in the model.

The appearance of oscillations in the proposed model, which may correspond
to pathological states of sporadic or constant tremors such as those that occur
in Parkinson’s disease, shows the scope of the mathematical model in achieving a
faithful representation of the physiology of BG and its neural functionality. In a
more detailed and complete exploration of the structure and dynamics of BG in the
near future, from the approach of the nonlinear dynamics of complex systems, a
significant contribution can be expected to theoretical neurobiology and therapeutic
neuro-pharmacology in the treatment of diseases of a dynamic nature.
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