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NONDEGENERATE EXTENSIONS OF NEAR-GROUP
BRAIDED FUSION CATEGORIES

ANDREW SCHOPIERAY

Abstract. This is a study of weakly integral braided fusion categories with
elementary fusion rules to determine which possess nondegenerately braided
extensions of theoretically minimal dimension, or equivalently in this case,
which satisfy the minimal modular extension conjecture. We classify near-
group braided fusion categories satisfying the minimal modular extension con-
jecture; the remaining Tambara–Yamagami braided fusion categories provide
arbitrarily large families of braided fusion categories with identical fusion rules
violating the minimal modular extension conjecture. These examples gener-
alize to braided fusion categories with the fusion rules of the representation
categories of extraspecial p-groups for any prime p, which possess a minimal
modular extension only if they arise as the adjoint subcategory of a twisted
double of an extraspecial p-group.

1. Introduction

A braided fusion category embeds into its center, or double [4, Definition 7.13.1],
allowing specialized results about nondegenerately braided fusion categories to be
used in generality. Unfortunately, the double is a large construction. The cate-
gorical and Frobenius–Perron dimensions are squared, and the rank of the double
has yet to be bound in terms of the rank of the original. So given a braided fu-
sion category C, it is desirable to seek nondegenerately braided fusion categories
D containing C as a braided fusion subcategory which are smaller than the double
in any sense. For dimension, the theoretical minimum that can be accomplished is
FPdim(D) = FPdim(C)FPdim(CC(C)), where CC(C) is the symmetric center of C
(see Section 2.1). Whether a nondegenerately braided extension of theoretically
minimal dimension exists is a natural question which is approximately 20 years
old now [16, Conjecture 5.2]. This question is often called the minimal modular
extension conjecture as it was originally stated with the assumption of a spherical
structure; the minimal modular extension conjecture is false with or without this
assumption. The first counterexamples were explained by V. Drinfeld in private
communications which have not appeared in print at this time. Obstructions to
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the existence of certain minimal modular extensions may be found in cohomolog-
ical data of finite groups and this line of reasoning was used by C. Galindo and
C. F. Venegas-Ramı́rez in [8, Section 4.3] to provide novel counterexamples to the
minimal modular extension conjecture. The smallest of these counterexamples is
the representation category of the quaternion group of order 8 with a nonsymmet-
ric braiding (see Proposition 3.1.2 and Note 3.1.3). In Proposition 4.1.3 we prove
this is the first in an infinite family of counterexamples coming from the Tambara–
Yamagami braided fusion categories. One way in which these arguments are novel
is that they only rely on the fusion rules of the category, giving arbitrarily many
examples with the same fusion rules as their rank is increased. The Tambara–
Yamagami story is a large portion of the proof of Theorem 5.3: a classification of
near-group braided fusion categories which possess a minimal modular extension.
With 5 exceptions (Table 1) these are realized as the unique fusion subcategory of
a product of Ising braided fusion categories ⊗-generated by the simple object of
maximal dimension.

C rank(C) FPdim(C) FPdim(CC(C))
C(sl2, 4)ad 3 6 2
C(sl2, 4)rev

ad 3 6 2
Z(VecγQ8

)ad 5 8 4
Z(VecγQ8

)rev
ad 5 8 4

C(sl3, 3)ad 4 12 3

Table 1. Exceptional near-group braided fusion categories which
possess minimal modular extensions; γ is any generator of
H3(Q8,C×).

The fusion rules of integral Tambara–Yamagami braided fusion categories coin-
cide with the character rings of extraspecial 2-groups (see Section 2.4). In general,
for each prime p and n ∈ Z≥1, there exist nonsymmetrically braided fusion cate-
gories whose fusion rules coincide with the character rings of p1+2n

± , where p1+2n
±

is either of the extraspecial p-groups of order p2n+1. It is an open problem to
classify fusion categories with these fusion rules for p 6= 2, as well as to classify the
compatible braidings. One computational hurdle is exponentially increasing multi-
plicities in the fusion rules as n increases. This problem is of independent interest,
but these nonsymmetrically braided fusion categories should provide yet another
infinite class of counterexamples to the minimal modular extension conjecture. We
prove in Proposition 6.2 that a nonsymmetrically braided fusion category whose
fusion rules coincide with those of the character ring of p1+2n

± for some p 6= 2 and
n ∈ Z≥1 possesses a nondegenerately braided extension of theoretically minimal
dimension only if it arises as the adjoint subcategory of a twisted double of an
extraspecial p-group.
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Our exposition is divided into five additional sections. Section 2 describes the
notation and vocabulary used in the remainder of the sections and provides the
reader with further resources. Section 3 describes nondegenerately braided exten-
sions for (Z/2Z)⊕2 Tambara–Yamagami braided fusion categories in explicit detail,
as this is the case where two important exceptions occur. The goal of Section 4 is to
prove that (Z/2Z)⊕n Tambara–Yamagami categories are more uniform for n > 1,
with a large proportion lacking minimal modular extensions. Section 5 utilizes the
existing classification of braided near-group fusion categories due to J. Thornton
[25, Theorem III.4.6] to give a complete classification of braided near-group fusion
categories satisfying the minimal modular extension conjecture. Lastly, Section 6
contains preliminary results which should allow the content of Section 4 to be
generalized to arbitrary extraspecial p-groups.

2. Preliminaries

2.1. Braided fusion categories. The basic object in what follows is a fusion
category [5, Section 2]. Our exposition roughly follows the notation and language
used in the standard textbook [4] which we will periodically cite. Fusion cate-
gories (over C) are C-linear, semisimple, rigid monoidal categories (with product
⊗, unit 1, and duality ∗), which have finitely many isomorphism classes of simple
objects and simple monoidal unit. The canonical examples of fusion categories
are VecG, the category of G-graded complex vector spaces, and Rep(G), the cate-
gory of finite-dimensional complex representations of G, for any finite group G.
The concepts in the remainder of this paragraph are based on the underlying
Grothendieck ring of a fusion category [4, Chapter 3]. We denote the set of iso-
morphism classes of simple objects of a fusion category C by O(C). The decom-
position of x ⊗ y into simple objects for any x, y ∈ O(C) are referred to as the
fusion rules of C, and are encoded in the fusion matrices Nx := (Nz

x,y)y,z∈O(C),
where Nz

x,y := dimC HomC(x ⊗ y, z). The largest real eigenvalue of Nx is known
as the Frobenius–Perron dimension of x, or FPdim(x) for brevity, while the sum
of FPdim(x)2 over all x ∈ O(C) will be denoted by FPdim(C). A simple object
x ∈ O(C) is called invertible if FPdim(x) = 1, which implies x ⊗ y ∈ O(C) for
all y ∈ O(C). When all x ∈ O(C) are invertible, we say C is pointed, and when
FPdim(x) ∈ Z for all simple x in C, we say C is integral. But in general, Cpt and CQ
will be the maximal pointed and integral fusion subcategories of C, respectively.

Note 2.1.1. We use the notation CQ in lieu of CZ since if K is any algebraic number
field, the objects x ∈ C such that FPdim(x) ∈ K form CK, a fusion subcategory of C
by [10, Proposition 1.6]. The fact that Frobenius–Perron dimensions are algebraic
integers in these fields follows trivially from the definition.

The fusion categories VecG for finite groups G are both integral and pointed,
while the fusion categories Rep(G) are just integral unless G is abelian. In the
case where G is abelian, both of these families of examples have commutative
fusion rules. More so, for all objects x, y, one can choose natural isomorphisms
cx,y : x ⊗ y → y ⊗ x satisfying braid-like compatibilities; a fusion category along
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with a choice of natural isomorphisms {cx,y}x,y∈C satisfying the conditions in [4,
Definition 8.1.1] is known as a braided fusion category. If {cx,y}x,y∈C is a braiding
on a fusion category C, then {c−1

y,x}x,y∈C is also a braiding on C; we denote this
braided fusion category by Crev.

If ρ : G→ GL(V ) and σ : G→ GL(W ) are finite-dimensional complex represen-
tations of a finite group G, then ρ⊗σ and σ⊗ρ are naturally isomorphic by simple
transposition of bases of V ⊗W and W ⊗ V . If we denote each transposition by
cρ,σ, then Rep(G) along with {cρ,σ}ρ,σ∈Rep(G) is a braided fusion category. In this
case cσ,ρcρ,σ = idρ,σ for all ρ, σ ∈ Rep(G) and we say that Rep(G) with this par-
ticular braiding is symmetrically braided [4, Section 9.9]. But there are potentially
many other symmetric braidings one can equip the fusion category Rep(G) with.
In particular, if z ∈ Z(G) has order 2, then one can twist the standard symmetric
braiding by the parity of the action of z to produce another symmetric braiding
[4, Example 9.9.1]. To differentiate between these braided fusion categories, we
will denote them by Rep(G, z), and Rep(G) will be reserved solely for the under-
lying fusion category. For uniformity, Rep(G) equipped with the trivial symmetric
braiding will be denoted by Rep(G, e) and we refer to any braided fusion category
braided equivalent to Rep(G, e) as Tannakian.

Note 2.1.2. It is crucial to emphasize the difference between an equivalence of fu-
sion categories and an equivalence of braided fusion categories [4, Definition 8.1.7],
which is a strictly stronger condition. For example, [4, Corollary 9.9.25] states that
if C is a symmetrically braided fusion category, then C is braided equivalent to
Rep(G, z) for some finite group G and z ∈ Z(G) such that z2 = e. But there are
multitudes of examples of braided fusion categories C such that C is equivalent to
Rep(G) as a fusion category for a finite group G but C is not symmetrically braided
(Section 2.5).

Any fusion subcategory D ⊂ C of a braided fusion category C is a braided
fusion category with the braiding restricted to D from C. We define the relative
centralizer of D in C, denoted by CC(D), as the full subcategory of x ∈ C such that
cy,xcx,y = idx⊗y for all y ∈ C. The special case of CC(C) is known as the symmetric
center of C as it is clearly a symmetrically braided fusion subcategory of C. In much
of the existing literature, the symmetric center of C is simply denoted by C′ but we
will avoid this notation in the remainder of the exposition as the apostrophe is an
overburdened symbol in mathematics. The condition of a braiding being symmetric
can be restated as O(CC(C)) = O(C), while we refer to braided fusion categories
such that O(CC(C)) = {1} as nondegenerately braided. Of most importance in what
follows is that if D is a braided fusion category and C ⊂ D a fusion subcategory,
then [4, Theorem 8.21.5]

FPdim(C)FPdim(CD(C)) = FPdim(D)FPdim(C ∩ CD(D)). (2.1)

2.2. Covers and extensions. For a fixed braided fusion category, often one wants
to consider categories containing the original which are larger but have more conve-
nient properties. In this laissez-faire approach, the larger category will be called a
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cover because the larger category has been loosely thrown on top without any spe-
cific information about how the smaller category is being contained. When control
is needed, the data of a cover along with specific instructions on how to connect
the category to its cover will be called an extension.

Definition 2.2.1. Let C be a braided fusion category. If D is a braided fusion
category and there exists a fully faithful braided tensor functor ι : C ↪→ D, then D
is a cover of C, while the pair (D, ι) is an extension of C.

Adjectives which apply to braided fusion categories apply to covers and ex-
tensions in a natural way. For example, a nondegenerate cover of C would be a
nondegenerately braided fusion category D which is also a cover of C.

Definition 2.2.2. Let C be a braided fusion category with extensions (D, ι) and
(E , κ). A braided equivalence F : D → E is an equivalence of covers. If F ◦ ι and κ
are naturally isomorphic as braided tensor functors, we say that F is an equivalence
of extensions.

Our description of extensions in Definition 2.2.2 is essentially taken from [14,
Definition 4.1], which emphasizes the importance of the embedding. The original
definition [16, Conjecture 5.2] in the setting of modular tensor categories aligns with
our definition of a cover. In a majority of the literature, there is a strong emphasis
on studying nondegenerate covers or extensions C ⊂ D which have the smallest
possible Frobenius–Perron dimension, which by Equation (2.1) is FPdim(D) =
FPdim(C)FPdim(CC(C)). This definition is equivalent to ensuring that no simple
object is added in the cover which centralizes the original category. In this way,
such covers can be thought of as the optimal vehicle for applying the results of
nondegenerately braided fusion categories to arbitrary braided fusion categories.

Lemma 2.2.3. Let D be a nondegenerate cover of a braided fusion category C.
Then FPdim(D) = FPdim(C)FPdim(CC(C)) if and only if CD(C) = CC(C).

Proof. It is clear that CC(C) ⊂ CD(C) from definition. But
FPdim(CD(C))FPdim(C) = FPdim(D)

by Equation (2.1) applied to C ⊂ D. Therefore
FPdim(D) = FPdim(C)FPdim(CC(C))

if and only if FPdim(CC(C)) = FPdim(CD(C)), i.e. if and only if CC(C) = CD(C).
�

In the literature thus far, extensions satisfying the hypotheses of Lemma 2.2.3
have been referred to as minimal nondegenerate extensions or minimal modular
extensions, with the addition of spherical structures (see Section 2.3). It has been
shown that these extensions have additional algebraic structure in the unitary
setting [14, Theorem 1.1] as well as physical meaning in the study of topological
phases of matter [14, Section 2]. But for many braided fusion cateogries the entire
study of minimal nondegenerate extensions in this sense is vaccuous, as none exist.
We will retain this entrenched language for both covers and extensions with a hope
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that the notion of minimal extensions will eventually apply to all braided fusion
categories.

2.3. Graded extensions and modular data. There are two structural tools for
fusion and braided fusion categories that will be used frequently.

Firstly [4, Section 4.14], each fusion category C (moreover, every fusion ring)
possesses a universal grading, i.e. an additive decomposition of C by graded com-
ponents corresponding to elements of a finite group G, such that the fusion rules
of C respect the operation of G. This grading is faithful in the sense that no graded
component is empty, and we will refer to G as the universal grading group of C.
It follows from the definition of the universal grading that the trivial component,
the fusion subcategory of C ⊗-generated by x ⊗ x∗ for all x ∈ O(C), is a fusion
subcategory which we denote by Cad and refer to as the adjoint subcategory [4,
Section 4.14]. In this way, if the universal grading group of C is a finite group G,
we say C is a G-graded extension of Cad. If a fusion category C is faithfully graded
by a finite group G, denote the graded components by Cg for g ∈ G. We will
repeatedly use the fact that all of the graded components have the same dimension
[4, Theorem 3.5.2]. In particular, FPdim(Cad) =

∑
x∈O(C)∩Cg

FPdim(x)2 for all
g ∈ G, and moreover, FPdim(C) = |G|FPdim(Cad).

Secondly, if C is a fusion category and FPdim(C) ∈ Z (i.e. C is weakly inte-
gral), then C possesses a canonical positive spherical structure [4, Corollary 9.6.6].
In practice, we only need this structure to allow us to take traces of endomor-
phisms in C, producing numerical constraints in our proofs. The positivity of
the canonical spherical structure corresponds to the fact that dim(x), the traces
of the identity morphisms on x ∈ O(C), are precisely FPdim(x). This implies
FPdim(C) = dim(C) :=

∑
x∈O(C) dim(x)2, hence in the setting of weakly integral

fusion categories we will use FPdim and dim interchangeably, while for arbitrary
fusion categories we will only use FPdim. We will consider nondegenerately braided
fusion categories as modular tensor categories [4, Definition 8.13.4] equipped with
their unique positive spherical structure, when it suits our purposes, in order to uti-
lize their modular data [4, Section 8.17]. Conveniently, the universal grading group
of a modular tensor category C is canonically isomorphic to O(Cpt) [11, Theorem
6.3]. The modular data of a modular tensor category is an invertible |O(C)|×|O(C)|
matrix S = (Sx,y)x,y∈O(C) consisting of the traces of the double-braidings [4, Sec-
tion 8.13], and a diagonal matrix with diagonal elements (θx)x∈O(C), where θx is
the trace of the ribbon structure C scaled by dim(x)−1. The matrix S is unitary
[5, Proposition 2.12]; we will refer to this fact as orthogonality relations between
simple objects of C. Specifically, if x, y ∈ O(C), then

∑
z∈O(C) Sx,zSy,z = dim(C)

if x ∼= y, and is zero otherwise, using α as the complex conjugate of α ∈ C. It is
known that θx are roots of unity for all x ∈ O(C) [4, Corollary 8.18.2] and we will
refer to the order of the T -matrix as the conductor of C. Two formulas that will
be used in our proofs are the Verlinde formula [4, Corollary 8.14.4], which states

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)



EXTENSIONS OF NEAR-GROUP BRAIDED FUSION CATEGORIES 419

that the fusion rules of a modular tensor category are given by the S-matrix via

dim(C)Nw
y,z =

∑
x∈O(C)

Sx,ySx,zSx,w
dim(x)

for all w, y, z ∈ O(C), and the balancing equation [4, Proposition 8.13.8], which
states that even without nondegeneracy of the braiding,

Sx,y = θ−1
x θ−1

y

∑
z∈O(C)

Nz
x,yθz dim(z).

The last benefit of the S-matrix is that it allows a numerical test for two objects
x, y in a spherical braided fusion category C to centralize one another, i.e. cy,xcx,y =
idx⊗y. By taking the trace of these endomorphisms we can see x, y centralizing one
another implies Sx,y = dim(x) dim(y), and the converse is also true [16, Proposition
2.5].

2.4. Extraspecial p-groups and their character rings. Let p be a prime in-
teger. Recall that a finite group G is a p-group if the order of G is a power of p.
A p-group G is extraspecial if |Z(G)| = p and G/Z(G) is a non-trivial elementary
abelian p-group, i.e. isomorphic to (Z/pZ)⊕n for some n ∈ Z≥1. For each prime
integer p and positive integer n, there exist exactly two isomorphism classes of ex-
traspecial p-groups of order p2n+1 which are traditionally denoted p1+2n

± . There do
not exist extraspecial p-groups whose order is an even power of p. All extraspecial
p-groups can be constructed as central products of the two extraspecial p-groups
of order p3. For example, the extraspecial 2-groups of order 8 are the dihedral
group D4 = 21+2

+ and the quaternion group Q8 = 21+2
− . Therefore, all extraspecial

2-groups are just central products of various copies of D4 and Q8.
The representation theory of extraspecial p-groups is straightforward as p2n

isomorphism classes of irreducible representations of p1+2n
± are one-dimensional,

corresponding to the elementary abelian p-group underlying p1+2n
± . We will abuse

notation and denote these classes by g for g ∈ (Z/pZ)⊕2n whose fusion rules are sim-
ply those of the linear characters of (Z/pZ)⊕2n. The remaining p− 1 isomorphism
classes of irreducible representations are faithful of dimension pn, and are distin-
guished by their values on Z(p1+2n

± ). Denote these classes by xg for g ∈ (Z/pZ)×.
The fusion rules involving xh are then

g ⊗ xh ∼= xh ⊗ g ∼= xh for all g ∈ (Z/pZ)⊕2n, h ∈ (Z/pZ)×,
xg ⊗ xh ∼= pnxgh if gh 6= e, and

xg ⊗ xg−1 ∼=
⊕

h∈(Z/pZ)⊕2n

h.

Extraspecial p-groups are characterized by the degrees of their characters. This
result can be found in standard textbooks on the character theory of finite groups
such as [13, Proposition 7.7]. For our purposes, we will only need a trivial corollary
of this fact.
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Lemma 2.4.1. Let R be the character ring of an extraspecial p-group. If G is
a finite group whose character ring is isomorphic to R, then G is an extraspecial
p-group.
2.5. Braided Tambara–Yamagami. Tambara–Yamagami fusion categories are
Z/2Z-graded extensions (see Section 2.3) of pointed fusion categories whose non-
trivial graded component has exactly one isomorphism class of simple objects.
We will denote the isomorphism classes of invertible objects by g ∈ G, a finite
group, and the isomorphism class of the noninvertible simple object by x. The
fusion rules for invertible elements follow the group operation of G while fusion
rules with x must be g ⊗ x ∼= x ⊗ g ∼= x and x ⊗ x ∼=

⊕
g∈G g. For example,

Rep(21+2n
± ) for n ∈ Z≥1 are Tambara–Yamagami fusion categories whose adjoint

subcategories have the fusion rules of an elementary abelian 2-group. It was shown
in [24] that a Tambara–Yamagami fusion category (over C) is characterized by the
group of invertible objects, G, which must be abelian, a nondegenerate bicharacter
χ : G × G → C× such that χ(g, h) = χ(h, g) for all g, h ∈ G, and an extension
sign [6, Example 9.4] which is usually recorded as τ , a square root of |G|−1 as this
value appears in many computations. It is reasonable to use the notation C(χ, τ)
for such a category since a description of χ includes a description of the finite
abelian group G. This is the original notation of D. Tambara and S. Yamagami
[24, Definition 3.1].

It has been proven [21, Theorem 1.2 (1)] that Tambara–Yamagami fusion cat-
egories possess a braiding if and only if G is an elementary abelian 2-group, i.e.
G = En := (Z/2Z)⊕n for some n ∈ Z≥1. Up to isometry, there is a unique nonde-
generate bicharacter χ1 on En such that χ1(g, h) = χ1(h, g) for all g ∈ En when n
is odd and exactly two, χ0, χ1, up to isomorphism when n is even [26, Section 5].
Specifically, χ0(g, g) = 1 and χ1(g, g) = −1 for all generators g ∈ En. When no
specific braiding needs to be defined, it will suffice to denote all braided Tambara–
Yamagami fusion categories as C(χkn, τ), where k = 1, 2 and n indicates En is the
underlying group of invertible objects.

For fixed n ∈ Z≥1, it was further proven that there exist at most 2n+1 in-
equivalent braidings for each C(χkn, τ), indexed by choices of signs (δ1, . . . , δn, ε)
[21, Theorem 1.2 (2)]. Many of these braidings are equivalent. A more pre-
cise statement can be found in [7, Corollary 4.10] and elsewhere. Here the data
(δ1, . . . , δn, ε) is replaced with (q, α), where q : En → C× is a quadratic form such
that χkn(g, h) = q(g)q(h)q(g + h)−1 for all g, h ∈ En, and α ∈ C is a chosen square
root of τ

∑
g∈En

q(g). To translate between the two sets of data, q(g) = σ1(g)
for all g ∈ En in the notation of [21, Section 2.3], while α = σ3(e). Two braid-
ings (q, α), (q′, α′) on a fixed fusion category C(χ, τ) with χ : En × En → C× are
equivalent if and only if there exists a group automorphism f ∈ Aut(En) such that
q′(f(g)) = q(g) for all g ∈ En and α = α′ [7, Corollary 4.10]. This implies that f
satisfies χ(g, h) = χ(f(g), f(h)) for all g, h ∈ En.
Example 2.5.1. The braided equivalence classes of C(χ1

1, τ) are given by the fol-
lowing sets of data in Table 2, displayed in both the notation of [21, Section 2.3]
and [7, Section 4.3], where we have indexed the categories by the primitive 16th
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root of unity α. We use the label I as they have traditionally been referred to as
Ising categories [3, Appendix B].

τ δ ε q(e) q(g) α

I1 1/
√

2 1 1 1 i ζ16

I3 −1/
√

2 −1 1 1 −i ζ3
16

I5 −1/
√

2 1 −1 1 i ζ5
16

I7 1/
√

2 −1 −1 1 −i ζ7
16

I9 1/
√

2 1 −1 1 i ζ9
16

I11 −1/
√

2 −1 −1 1 −i ζ11
16

I13 −1/
√

2 1 1 1 i ζ13
16

I15 1/
√

2 −1 1 1 −i ζ15
16

Table 2. χ1
1 braidings; ζ16 = exp(2πi/16).

Example 2.5.2. Order the elements of E2 = (Z/2Z)⊕2 as e, g1, g2, g1 + g2. For
reference, the nondegenerate bilinear forms χk2 : E2 × E2 → C× are given by

χ0
2 :


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 and χ1
2 :


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
There exist at most 8 braidings for each category which are defined by three sign
choices in [21]: δ1, δ2, and ε. The choice of ε will always result in 2 inequivalent
braidings by [7, Corollary 4.10(c)] when other parameters are held constant, so it
remains to determine whether any assignments of δ1, δ2 are equivalent. Commuta-
tion of group elements g1, g2 with the noninvertible simple x acts as multiplication
by q(gj) = σ1(gj) = δj

√
χ(gj , gj) for j = 1, 2, and as multiplication by

q(g1 + g2) = σ1(g1 + g2) = δ1δ2
√
χ(g1, g1)

√
χ(g2, g2)χ(g1, g2) = −δ0δ1

by the commutation of g1 + g2 with x. Lastly, since x⊗x = e⊕ g1⊕ g2⊕ (g1 + g2),
we can describe the braiding of x with itself on the component corresponding to
e ∈ E2 as multiplication by

α = σ3(e) = ε

√
τ
(

1 + δ1
√
χ(g1, g1) + δ2

√
χ(g2, g2)− δ1δ2

)
.

We have Aut(E2) ∼= S3, but for χ1
2, only the permutation g1 ↔ g2 preserves q

as q(g1 + g2) ∈ R while q(g1), q(g2) 6∈ R, leaving 6 inequivalent braidings on each
C(χ1

2, τ). For χ0
2, q(g) = ±1 for all g ∈ E2 and any two braidings are equivalent if

the images of their quadratic forms q have the same number of 1’s and −1’s, and
α = σ3(e) corresponding to each is equal. Therefore, for a fixed fusion category
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C(χ0
2, τ), there are 4 inequivalent braidings for a total of 16 braided equivalence

classes of E2 Tambara–Yamagami braided fusion categories.
One can verify with the above formulas that the collections of braiding data in

Table 3, displayed in both the notation of [21, Section 2.3] and [7, Section 4.3], cor-
respond to the 4 symmetrically braided E2 Tambara–Yamagami fusion categories,
where z ∈ Z(G) for G = D4, Q8 is the unique nontrivial central element. The
observation that C(χ0

2, 1/2) is equivalent to Rep(D4) and C(χ0
2,−1/2) is equivalent

to Rep(Q8) as fusion categories was made in [24, Section 4]. The remaining 4
equivalence classes of braided fusion categories C(χ0

2, τ) in Table 4, and 12 equiva-
lence classes of braided fusion categories C(χ1

2, τ) in Table 5, are not symmetrically
braided. We label these braided fusion categories by their realizations, which are
discussed in Section 3.

τ δ1 δ2 ε q(e) q(g1) q(g2) q(g1 + g2) α

Rep(D4, e) 1/2 1 1 1 1 1 1 −1 1
Rep(D4, z) 1/2 1 1 −1 1 1 1 −1 −1
Rep(Q8, e) −1/2 −1 −1 1 1 −1 −1 −1 1
Rep(Q8, z) −1/2 −1 −1 −1 1 −1 −1 −1 −1

Table 3. Symmetric χ0
2 braidings.

τ δ1 δ2 ε q(e) q(g1) q(g2) q(g1 + g2) α

Z(VecγQ8
)ad 1/2 −1 −1 1 1 −1 −1 −1 i

Z(VecγQ8
)rev
ad 1/2 −1 −1 −1 1 −1 −1 −1 −i

K −1/2 1 1 1 1 1 1 −1 i

Krev −1/2 1 1 −1 1 1 1 −1 −i

Table 4. Nonsymmetric χ0
2 braidings.

2.6. Doubles and algebras. Lastly, we outline the center, or double construction,
for fusion categories and its relation to commutative algebras. If C is a fusion
category, then Z(C), the center or double of C, has objects in correspondence with
pairs (x, {ρy}y∈C), where x ∈ C and ρy : x⊗y → y⊗x is a natural isomorphism for
all y ∈ C satisfying the coherence diagram in [4, Definition 7.13.1], where one can
find the definition of morphisms in this category, its monoidal product, etc. The
goal of this construction is to create a nondegenerately braided fusion category from
C in a uniform manner, which often ends up being quite unwieldy. The namesake
of the double comes from the fact that the representation category of the quantum
double of a Hopf algebra H is precisely the double Z(Rep(H)) [4, Proposition
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τ δ1 δ2 ε q(e) q(g1) q(g2) q(g1 + g2) α

(I1 � I1)Q 1/2 1 1 1 1 i i −1 ζ8

(I5 � I5)Q 1/2 1 1 −1 1 i i −1 ζ5
8

(Iζ1 � I15)Q 1/2 1 −1 1 1 i −i 1 1
(I1 � I7)Q 1/2 1 −1 −1 1 i −i 1 −1
(I7 � I7)Q 1/2 −1 −1 1 1 −i −i −1 ζ7

8

(I3 � I3)Q 1/2 −1 −1 −1 1 −i −i −1 ζ3
8

(I1 � I13)Q −1/2 1 1 1 1 i i −1 ζ7
8

(I1 � I5)Q −1/2 1 1 −1 1 i i −1 ζ3
8

(I1 � I3)Q −1/2 1 −1 1 1 i −i 1 i
(I1 � I11)Q −1/2 1 −1 −1 1 i −i 1 −i
(I3 � I15)Q −1/2 −1 −1 1 1 −i −i −1 ζ8

(I3 � I7)Q −1/2 −1 −1 −1 1 −i −i −1 ζ5
8

Table 5. χ1
2 braidings; ζ8 = exp(2πi/8).

7.14.6]. Let G be a finite group and ω ∈ H3(G,C×) a cohomological twisting of
the associativity of VecG, producing the fusion category of twisted G-graded vector
spaces VecωG [4, Example 2.3.8]. The center Z(VecωG) is known as the twisted double
of G whose modular data has been known for quite some time [9, Sections 2.2 &
5.2].

Alternatively, twisted doubles of finite groups can be characterized by possessing
maximal Tannakian fusion subcategories which we will understand through the
following construction. In general, if C is a braided fusion category and D ⊂ C is a
Tannakian fusion subcategory for a finite group G, i.e. there exists an equivalence
Rep(G) ' D as braided fusion categories, then the image of the algebra of functions
on G under this equivalence has the structure of a connected étale algebra in C [1,
Example 2.8]; we will refer to this algebra as the regular algebra of the Tannakian
subcategory and denote it by R. The category of local R-modules C0

R is then a
braided fusion category which is nondegenerately braided if and only if C is [1,
Corollary 3.30]. Moreover, C0

R inherits the spherical structure of C so the passage
C → C0

R sends modular tensor categories to modular tensor categories. When R is
the regular algebra of a Tannakian fusion subcategory E ⊂ C, the simple objects
of C0

R are summands of the free R-modules R ⊗ x for x ∈ O(CC(E)) [1, Example
3.14].

We will use regular algebras of Tannakian subcategories for numerical argu-
ments as well, but one important application is to prove a reconstruction theo-
rem for twisted doubles of finite groups from Lagrangian subcategories, i.e. Tan-
nakian fusion subcategories E of braided fusion categories C such that FPdim(E)2 =
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FPdim(C). Theorem 4.5 of [2] states that a modular tensor category C is braided
equivalent to a twisted double of a finite group G if and only if there exists a
Lagrangian subcategory Rep(G) ⊂ C.

3. Nondegenerate covers and extensions of C(χk2 , τ)

Here we describe minimal nondegenerate covers (Section 2.2) for nonsymmet-
rically braided E2 Tambara–Yamagami fusion categories when they exist, while
Z(C) is known to be a minimal nondegenerate cover for all symmetrically braided
fusion categories C. The main objective of this section is to provide an independent
proof that there exists a braided fusion category of Frobenius–Perron dimension 8
whose symmetric center has Frobenius–Perron dimension 4, which does not possess
a nondegenerate cover of Frobenius–Perron dimension of 32 [8, Proposition 4.11].
In fact, there are 2 such braided fusion categories, equivalent as fusion categories,
with reverse braidings, denoted by K and Krev in Table 4. We do so in a way
that generalizes to an infinite family of examples which have not appeared in the
literature thus far in Section 4, and also illustrates the structure between some
minimal nondegenerate covers (Example 3.2.2).

3.1. Nonsymmetric χ0
2 braidings. Let C be one of the 4 nonsymmetrically

braided fusion categories C(χ0
2, τ) (Table 4). Note that the symmetric center

CC(C) = Cpt is Tannakian, using the formulas of [21, Section 2.3 (2)]. Let D
be a nondegenerate cover of C with FPdim(D) = 32. As D is weakly integral,
we may assume D is a modular tensor category equipped with its unique positive
spherical structure. We will refer to O(Cpt) by its structure as an abelian group,
E2 = (Z/2Z)2.

We will first demonstrate that Dpt = Cpt and Dad = C. To this end, since D is
weakly integral, [10, Lemma 1.1] implies Dad is integral, of dimension 4 or 8 since
dim(D) = dim(Dpt) dim(Dad) by [4, Corollaries 8.21.7 & 8.22.8]. Recall that D
is nilpotent, as its dimension is a prime power [11, Example 4.5]. Hence in the
former case, every y ∈ O(D) satisfies dim(y)2 ∈ {1, 2, 4} as dim(y)2 must divide
dim(Dad) [11, Theorem 5.2.]. If there exists simple y ∈ D with dim(y)2 = 2 then
there exists a unique simple object g ∈ E2 with g⊗y ∼= y: the nontrivial summand
of y ⊗ y∗. The other two nontrivial h1, h2 ∈ E2 must then satisfy hj ⊗ y ∼= z,
where z is another simple object in the same universally graded component as y
with dim(z)2 = 2. Moreover, y ⊗ z ∼= h1 ⊕ h2 ∈ Dad. Therefore y ⊗ y ∼= 1 ⊕ g
(and z⊗ z ∼= 1⊕ g), implying y ∼= y∗. This forces y to ⊗-generate a braided fusion
category of dimension 4 which is not pointed. Such a category is an Ising modular
tensor category, whose pointed subcategory is not Tannakian [3, Lemma B.18].
But Cpt is Tannakian so this is cannot be the case. Hence every simple object is
invertible or dimension 2 and thus lies in its own universally graded component.
This implies g ⊗ x ∼= x for any x such that dim(x) = 2, hence Sg,x = 2 by the
balancing equation and thus x is centralized by Dad. This is a contradiction since
CD(Dad) = Dpt. We may then conclude that dim(Dad) = 8, hence Dpt = Cpt, and
lastly, Dad = C.
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We may now reveal the S-matrix of D (Section 2.3). The balancing equation
implies Sx,x = Sx,x∗ = 4θ−2

x since θg = 1 for all g ∈ E2, while Sx,g = 2 for all
g ∈ E2 since x centralizes g. From the formulas of [21, Section 3.7] and [21, Section
2.3 (2)], θx = ±i since C is not symmetric. Moreover, Sx,x = −4. The orthogonality
relation (Section 2.3) of x with itself is

32 =
∑

z∈O(D)

|Sx,z|2 =
∑

z∈O(C)

|Sx,z|2 +
∑

z∈O(D)\O(C)

|Sx,z|2

= 4 · 22 + 42 +
∑

z∈O(D)\O(C)

|Sx,z|2.

Therefore
∑
z∈O(D)\O(C) |Sx,z|2 = 0, and moreover, Sx,z = 0 for all z ∈ O(D)\O(C).

The Verlinde formula then implies, for y ∈ O(D) \ O(C),

dim(D)Ny
x,y =

∑
z∈E2

Sx,zSy,zSy,z
dim(z) =

∑
z∈E2

Sx,z|Sy,z|2,

since, for every z ∈ O(D) \ E2, we have shown that either Sx,z = 0 or Sy,z = 0.
Moreover, we have computed the remaning S-matrix entries above, implying

Nx
y,y∗ = Ny

x,y = 1
32
∑
z∈E2

Sx,z|Sy,z|2 = 1
32
∑
z∈E2

2 · dim(y)2 = dim(y)2

4 .

As this and dim(y) must be integers, and dim(y)2 divides dim(Dad) = 8, we have
that dim(y)2 = 4 or dim(y)2 = 8. But if dim(y)2 = 8 then g ⊗ y ∼= y for all
g ∈ E2 since y is the unique simple object in its universally graded component,
hence y is centralized by E2, i.e. y ∈ Cad, a contradiction. Therefore dim(y) = 2
and thus each nontrivially graded component contains exactly 2 simple objects of
dimension 2, which are permuted transitively by E2. Moreover, rank(D) = 11.

To compute the remaining S-matrix entries, let y ∈ O(D)\O(C) with y′ the only
other simple object in the orbit of y under the ⊗-action of E2. The orthogonality
relation of y with x is

0 =
∑

z∈O(D)

Sy,zSx,z =
∑
z∈E2

Sy,zSx,z =
∑
z∈E2

θy⊗z
θy

dim(y) dim(x) = 8
θy

(θy + θy′).

Therefore θy = −θy′ . In particular, y ∼= y∗ for all y ∈ O(D) \ O(C) as duality is a
permutation of each universally graded component since E2 has exponent 2, along
with the fact that θy∗ = θy in complete generality. The fact that θy = −θy′ also
completes the S-matrix columns for g ∈ E2 since Sg,y = Sg,y = 2 if g ⊗ y = y and
S′g,y = −2 if g ⊗ y ∼= y′. The balancing equation then implies

Sy,y = θ−2
y

∑
z∈E2

Nz
y,yθz + 2θx +

∑
z∈O(D)\O(C)

2Nz
y,yθz

 = 2θ−2
y (1 + θx).

It was already determined that θx = ±i, so (1/
√

2)(1 + θx) = ζ−iθx
8 , where ζ8 :=

exp(2πi/8). Thus Sy,y = 2
√

2 ·θ−2
y ζ−iθx

8 . But y ∼= y∗, hence Sy,y ∈ R and therefore
θy is a primitive 16th root of unity for all y ∈ O(D) \ O(C). Moreover, we may
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define the signs εy := θ−2
y ζ−iθx

8 so that Sy,y = εy2
√

2. Furthermore, if y 6∼= y′ are
in the same nontrivial graded component with g ⊗ y ∼= y′ for some g ∈ G, then by
[4, Proposition 8.13.10],

Sy,y′ = Sy,g⊗y = 1
2Sy,gSy,y = θg⊗y

θy
Sy,y = −Sy,y.

Orthogonality of y with itself is then

32 =
∑

z∈O(D)

|Sy,z|2 = 4 · 22 + 2 · (2
√

2)2 +
∑

z∈O(D)\(O(C)∪{y,y′})

|Sy,z|2.

Therefore Sy,z = 0 for all z 6∼= y, y′ ∈ O(D)\O(C). Moreover, up to permutation of
simple objects, there exist signs ε1, ε2, ε3 (determined by the T -matrix) such that
the S-matrix of D is

1 1 1 1 2 2 2 2 2 2 2
1 1 1 1 2 2 2 −2 −2 −2 −2
1 1 1 1 2 −2 −2 2 2 −2 −2
1 1 1 1 2 −2 −2 −2 −2 2 2
2 2 2 2 −4 0 0 0 0 0 0
2 2 −2 −2 0 ε12

√
2 −ε12

√
2 0 0 0 0

2 2 −2 −2 0 −ε12
√

2 ε12
√

2 0 0 0 0
2 −2 2 −2 0 0 0 ε22

√
2 −ε22

√
2 0 0

2 −2 2 −2 0 0 0 −ε22
√

2 ε22
√

2 0 0
2 −2 −2 2 0 0 0 0 0 ε32

√
2 −ε32

√
2

2 −2 −2 2 0 0 0 0 0 −ε32
√

2 ε32
√

2



.

(3.1)
Let P be the unique (up to modular equivalence) pointed modular tensor cat-

egory of rank 2 whose nontrivial simple object x′ has full twist θx′ = θ−1
x . Then

D � P contains a Lagrangian subcategory ⊗-generated by Dpt and the simple ob-
ject x � x′. This implies D � P ' Z(VecωG) for a finite group G of order 8 and
a 3-cocycle ω on G [2, Theorem 4.5]. There are 38 braided equivalence classes of
Z(VecωG) of this form [15, Section 2.8]. But moreover, D�P must have conductor
(Frobenius–Schur exponent) 16 and 12 simple objects whose twists are 16th roots
of unity. There are only 4 braided equivalence classes of Z(VecωG) with these char-
acteristics which can be indexed as Z(VecγQ8

), where γ is any of the 4 generators of
H3(Q8,C×) ∼= Z/8Z [12, Appendix A]. One can easily verify that each of Z(VecγQ8

)
factors as a Deligne product in this way, proving the following result.

Lemma 3.1.1. Let C := C(χ0
2, τ) be a nonsymmetrically braided fusion category.

There exists a nondegenerate cover D of C with FPdim(D) = 32 if and only if there
exists a generator γ ∈ H3(Q8,C×) and a braided equivalence C ' Z(VecγQ8

)ad.

We have shown that if D is a nondegenerate cover of dimension 32 of nonsym-
metrically braided C(χ0

2, τ), then D is a factor of one of the 4 doubles Z(VecγQ8
)

for a generator γ ∈ H3(Q8,C×). Each Z(VecγQ8
) factors like this in exactly 4
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ways, depending on the choice of the order 2 invertible object to include in the
other factor, which is necessarily rank 2 and pointed. Therefore, there are at most
16 distinct minimal nondegenerate covers D over all C(χ0

2, τ); in fact, there are
exactly 16 as they are differentiated by their modular data. We include the non-
trivial T -eigenvalues in Table 6 which determine the S-matrix in (3.1). As a result,
we have recovered the original counterexample of the minimal modular extension
conjecture due to V. Drinfeld (along with its reverse braiding).

θx θy1 θy′1 θy2 θy′2 θy′3 θy′3

i ζ5
16 −ζ5

16 ζ5
16 −ζ5

16 ζ5
16 −ζ5

16

ζ16 −ζ16 ζ5
16 −ζ5

16 ζ16 −ζ16

ζ5
16 −ζ5

16 ζ16 −ζ16 ζ16 −ζ16

ζ16 −ζ16 ζ16 −ζ16 ζ5
16 −ζ5

16

i ζ5
16 −ζ5

16 ζ5
16 −ζ5

16 ζ16 −ζ16

ζ16 −ζ16 ζ5
16 −ζ5

16 ζ5
16 −ζ5

16

ζ5
16 −ζ5

16 ζ16 −ζ16 ζ5
16 −ζ5

16

ζ16 −ζ16 ζ16 −ζ16 ζ16 −ζ16

−i ζ7
16 −ζ7

16 ζ7
16 −ζ7

16 ζ7
16 −ζ7

16

ζ3
16 −ζ3

16 ζ7
16 −ζ7

16 ζ3
16 −ζ3

16

ζ7
16 −ζ7

16 ζ3
16 −ζ3

16 ζ3
16 −ζ3

16

ζ3
16 −ζ3

16 ζ3
16 −ζ3

16 ζ7
16 −ζ7

16

−i ζ7
16 −ζ7

16 ζ7
16 −ζ7

16 ζ3
16 −ζ3

16

ζ3
16 −ζ3

16 ζ7
16 −ζ7

16 ζ7
16 −ζ7

16

ζ7
16 −ζ7

16 ζ3
16 −ζ3

16 ζ7
16 −ζ7

16

ζ3
16 −ζ3

16 ζ3
16 −ζ3

16 ζ3
16 −ζ3

16

Table 6. T -matrices of minimal nondegenerate covers of
Z(VecγQ8

)ad for generators γ ∈ H3(Q8,C×); ζ16 = exp(2πi/16).

Proposition 3.1.2. Let C be either of the E2 Tambara–Yamagami braided fusion
categories labeled K and Krev from Table 4. There does not exist a nondegenerate
cover D of C with FPdim(D) = 32.

Proof. This follows from Lemma 3.1.1 along with [14, Theorem 4.22] and [14, The-
orem 1.1]. The latter two imply that a nonsymmetrically braided E2 Tambara–
Yamagami fusion category C(χ0

2, τ) has exactly |H3(E2,C×)| = 8 nondegenerate
extensions of dimension 32, up to equivalence. Lemma 3.1.1 then implies only
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two such C(χ0
2, τ) can possess nondegenerate covers of this dimension, which are

distinguished by the twist on the noninvertible simple object x. �

Note 3.1.3. One can readily identify K and Z(VecγQ8
)ad as fusion categories (i.e.

up to a reversal of their braiding) in Table 4. In particular, all E2 Tambara–
Yamagami fusion categories C(χ0

2, τ) are uniquely determined by their Frobenius–
Schur indicators evaluated on their unique noninvertible simple object [20, Table 1].
Comparing these to the Frobenius–Schur indicators computed for the unique non-
invertible simple object of Z(VecγQ8

)ad in [12, Appendix] (the unique simple object
of dimension 2 and full twist ±i) shows that Z(VecγQ8

)ad ' C(χ0
2, 1/2) ' Rep(D8)

as fusion categories.

3.2. χ1
2 braidings. Here we consider the 12 braided equivalence classes of C(χ1

2, τ).
Recall that the pointed fusion subcategory corresponding to E2 is symmetric in any
case, and q(gj)2 = −1 for j = 1, 2, hence g1, g2 do not lie in the symmetric center
of C(χ1

2, τ), while g1 + g2 does as q(g1 + g2)2 = 1. We have χ1
2(g1 + g2, g1 + g2) = 1,

hence the symmetric center of C(χ1
2, τ) is braided equivalent to Rep(Z/2Z, e) for

any χ1
2 braiding.

Let I, I ′ be any of the 8 Ising braided fusion categories and denote their iso-
morphism classes of simple objects by {e, g, x} and {e′, g′, x′}, where x, x′ are the
unique noninvertible isomorphism classes. These categories were described in Ex-
ample 2.5.1. In particular, each Ising braided fusion category is distinguished by a
primitive 16th root of unity ζ. It is clear that I � I ′ is self-dual and I � I ′ con-
tains a maximal integral subcategory (I � I ′)Q with four invertible simple objects
(I � I ′)pt along with the simple object x � x′ of Frobenius–Perron dimension 2.
The subcategory (I � I ′)Q can also be identified as the relative centralizer of the
Tannakian subcategory generated by g�g′. Therefore (I�I ′)Q is a braided fusion
category of the form C(χ1

2, τ).
Conversely, assume a braided fusion category C := C(χ1

2, τ) is given with iso-
morphism classes of simple objects {e, g1, g2, g1 +g2, x}. Without loss of generality,
consider C as a modular tensor category with its unique positive spherical structure.
Assume D is a nondegenerate cover of C with dim(D) = 16 so that C = CD(CC(C))
by Lemma 2.2.3. If dim(Dpt) > dim(Cpt) = 4, then the adjoint subcategory of D
would have dimension 2 or 1. But Cpt ⊂ Dad, so we may conclude that each
universally graded component has dimension 4 with Cpt = Dad as the trivially
graded component. As D is nilpotent and weakly integral, dim(y)2 ∈ {2, 4} for
all noninvertible y ∈ O(D). Any object of dimension 2 is unique in its univer-
sally graded component so it lies in CD(CC(C)) = C by the balancing equation [4,
Proposition 8.13.8], since θg1+g2 = 1. Moreover, x ∈ O(D) is the unique simple
object of dimension 2 while the other 2 nontrivial components have 2 isomorphism
classes of simple objects of dimension

√
2. Let y 6∼= y′ be simple objects of dimen-

sion
√

2 in a nontrivially graded component of D. If y∗ ∼= y′, we still have θy = θy′ .
Hence Sg1+g2,y = Sg1+g2,y′ =

√
2 by the balancing equation which again implies

y, y′ ∈ CD(CC(C)) = C, a contradiction. Therefore we conclude that D is self-dual.
Moreover, any simple object of dimension

√
2 ⊗-generates an Ising braided fusion
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category which is necessarily nondegenerately braided. Hence D factors as a prod-
uct of Ising braided fusion categories [3, Theorem 3.13], finishing the proof of the
following fact.

Lemma 3.2.1. Let C := C(χ1
2, τ) be given. There exists a nondegenerate cover D

of C with FPdim(D) = 16 if and only if there exist Ising braided fusion categories
I, I ′ and a braided equivalence C ' (I � I ′)Q.

There are at most
(8+2−1

2
)

= 36 distinct products I�I ′ up to braided equivalence
since � is symmetric, which we can sort by Witt equivalence [1, Definition 5.1]
prior to sorting each Witt equivalence class by braided equivalence. If I = Ij
and I ′ = Ik for some primitive 16th roots of unity ζ = ζj16, ζ

′ = ζk16, then the
Witt equivalence classes of products I � I ′ are indexed by 8th roots of unity ξ via
ξ := f(ζ)f(ζ ′)/2, where f(ζ) := ζ−1(ζ2 + ζ−2) [3, Lemma B.24]. When I, I ′ are
equipped with their unique positive spherical structure, this is the multiplicative
central charge [4, Equation (8.60)] of I�I ′. Among Witt equivalence classes many
of these products are braided equivalent. In particular, it is easy to check that in
I � I ′, any of the 4 simple objects of dimension

√
2 ⊗-generates an Ising braided

fusion category I ′′ and I � I ′ ' I ′′ � CI�I′(I ′′) is a braided equivalence, which
implies that there exist at most 2 distinct nontrivial factorizations of this type.
In particular, Ij � Ik ' Ij+8 � Ik+8 is a braided equivalence, where j + 8, k + 8
are considered modulo 16. Once accounting for this symmetry, the remaining 20
braided equivalence classes of categories I � I ′, which we collect in column 3 of
Table 7, are distinguished by the modular data associated to their unique positive
spherical structure.

We further distinguish the braided equivalence classes of I � I ′ in column 4 of
Table 7 by identifying those whose integral braided fusion subcategories are equiva-
lent. This is straightforward because as fusion categories, (C(χ1

1, τ)�C(χ1
1, τ
′))Q '

C(χ1
2, ττ

′) (see Lemma 4.2.1). This shows there are at least 12 braided equivalence
classes of (I � I ′)Q. As there are 12 braided equivalence classes of braided fusion
categories C(χ1

2, τ), there are exactly 12 braided equivalence classes of (Ij � Ik)Q
across all products I � I ′.

Example 3.2.2. The take-away from Table 7 is that of the 12 braided equivalence
classes of categories C(χ1

2, τ), 8 have 2 minimal nondegenerate covers up to equiva-
lence, and 4 have a unique minimal nondegenerate cover up to equivalence. This is
seemingly at odds with [14, Theorem 1.1] combined with [14, Theorem 4.22] which,
since C(χ1

2, τ) have unitary structures and symmetric center Rep(Z/2Z), imply that
there are exactly 2 minimal nondegenerate extensions of C(χ1

2, τ) up to equivalence.
The difference between the minimal nondegenerate covers of C(χ1

2, τ) and the min-
imal nondegenerate extensions of C(χ1

2, τ) lies in the braided autoequivalences of
C(χ1

2, τ).
Recall [23, Proposition 1] that there is exactly one nontrivial element P ∈

Autbr
⊗ (C(χ1

2, τ)) ∼= Autbr
⊗ ((I � I ′)Q) which is the strict autoequivalence permut-

ing g1 ↔ g2. Now assume that P lifts to a braided autoequivalence P̃ of the cover
I � I ′. Then the obvious extension (I � I ′, ι) given by the chosen basis g1, g2
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ξ (j, k) Ij � Ik br. eq. classes (Ij � Ik)Q br. eq. classes
1 (1,15), (3,13), (5,11), (7,9) (1,15), (3,13) (1,15)
ζ8 (1,5), (3,11), (7,7), (9,13), (15,15) (1,5), (3,11), (7,7) (1,5), (7,7)
i (1,3), (5,15), (7,13), (9,11) (1,3), (5,15) (1,3)
ζ3
8 (1,9), (3,15), (5,5), (7,11), (13,13) (1,9), (3,15), (5,5) (1,9), (5,5)
−1 (1,7), (3,5), (9,15), (11,13) (1,7), (3,5) (1,7)
ζ5
8 (1,13), (3,3), (5,9), (7,15), (11,11) (1,13), (3,3), (7,15) (1,13), (3,3)
−i (1,11), (3,9), (5,7), (13,15) (1,11), (5,7) (1,11)
ζ7
8 (1,1), (3,7), (5,13), (9,9), (11,15) (1,1), (3,7), (5,13) (1,1), (3,7)

Table 7. Braided equivalence classes of I � I ′ and (I � I ′)Q.

of E2 is equivalent to (I � I ′, ι ◦ P ) precisely via the braided autoequivalence P̃ .
Conversely, assume F : (I � I ′, ι) → (I � I ′, κ) is an equivalence of extensions.
Then F |(I�I′)Q is a braided autoequivalence of (I � I ′)Q. In particular, P acts
trivially on equivalence classes of minimal nondegenerate extensions of (I � I ′)Q
if and only if P lifts to a braided equivalence P̃ of I � I ′. Any lifting P̃ of the
braided autoequivalence permuting g1 ↔ g2 must nontrivally permute the simple
objects of dimension

√
2 (so the fusion rules coincide). In the cases where I � I ′

has a unique minimal nondegenerate cover, all simple objects of dimension
√

2 have
distinct twists, hence (I�I ′, ι) and (I�I ′, P ◦ι) are inequivalent as extensions. In
the cases where I � I ′ has two inequivalent minimal nondegenerate covers, ζ = ζ ′

or ζ = −ζ ′, which determines the lifting P̃ on the level of objects. We graphically
represent the two distinct situations in Figure 1 for ξ = ζ8.

(I1 � I5)Q

I1 � I5

P

(I7 � I7)Q

I3 � I11 I7 � I7

P P

Figure 1. Minimal nondegenerate extensions of (I � I ′)Q with
ξ = ζ8.
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4. General Tambara–Yamagami braided fusion categories

If C(χkn, τ) is symmetrically braided, then by the formulas for the braidings
in Section 2.5, we must have k = 0. All 4 of these symmetrically braided fu-
sion categories possess minimal nondegenerate covers with FPdim(C(χkn, τ))2 =
24n+2, e.g., their doubles, Z(C(χkn, τ)). The remainder of this section describes
existence/nonexistence of minimal nondegenerate covers in the nonsymmetrically
braided case. We prove in Section 4.1 that there do not exist nondegenerate covers
of C(χ0

2n, τ) with Frobenius–Perron dimension 24n+1. We prove in Section 4.2 that
there exist minimal nondegenerate covers of all C(χ1

n, τ).

4.1. Nonsymmetric χ0
2n braidings. The proof of the following lemma is a gen-

eralization of the explanation in Section 3.1.

Lemma 4.1.1. Let nonsymmetrically braided C := C(χ0
2n, τ) be given for some

n ∈ Z≥1. Let D be a nondegenerate cover of C with FPdim(D) = 24n+1 and
consider D as a modular tensor category equipped with its unique positive spherical
structure. Then θy is a primitive 16th root of unity for all y ∈ O(D) \ O(C).

Proof. Let C := C(χ0
2n, τ) be given with O(Cpt) = E2n = (Z/2Z)⊕2n and a unique

isomorphism class of simple objects x. We have that CC(C) = Cpt is Tannakian with
FPdim(Cpt) = 22n; denote the regular algebra by R. Let D be a nondegenerate
cover with FPdim(D) = 24n+1. When D (and thus C) are equipped with their
unique positive spherical structure, D0

R is a rank 2 pointed modular tensor category
by [1, Corollary 3.32], hence its multiplicative central charge is ξ(D) = ζ±8 [1,
Remark 5.29]. On the other hand, CD(Cpt) = C by Lemma 2.2.3, hence ξ(D)

√
2 =

1 + θx from [1, Example 3.14] and the definition [3, Section 6.2]. We reserve this
fact for later use.

Also, since CD(Dpt) = Dad [4, Corollary 8.22.8], if dim(Dpt) ≥ 22n+1 then
dim(Dad) ≤ 22n by Equation (2.1). But Cpt ⊂ Dad, so Dad = Cpt in this case.
Therefore,

C = CC(Cpt) ⊂ CD(Cpt) = CD(Dad) = Dpt,

a contradiction. Moreover, we may conclude that Dpt = Cpt and thus Dad = C.
Now let g ∈ E2n and y ∈ O(D). The balancing equation states that Sg,y =

θ−1
g θ−1

y θg⊗y dim(g ⊗ y), hence |Sg,y|2 = dim(y)2. Also, Sx,x = Sx,x∗ = θ−2
x 22n.

Thus |Sx,x|2 = 24n. The orthogonality relation of x with itself yields

dim(D) =
∑
g∈E2n

|Sg,x|2 + |Sx,x|2 +
∑

y∈O(D)\O(C)

|Sy,x|2

= 22n · 22n + 24n +
∑

y∈O(D)\O(C)

|Sy,x|2

= dim(D) +
∑

y∈O(D)\O(C)

|Sy,x|2.
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Therefore
∑
y∈O(D)\O(C) |Sy,x|2 = 0, and moreover, Sx,y = Sy,x = 0 for every

y ∈ O(D) \ O(C). The Verlinde formula then implies, for all y ∈ O(D) \ O(C),

dim(D)Ny
x,y =

∑
g∈E2n

Sx,gSy,gSy,g
dim(g) =

∑
g∈E2n

Sx,g|Sy,g|2,

since, for every z ∈ O(D) \ E2n, we have shown that either Sx,z = 0 or Sy,z =
0. Moreover, we have already computed the remaning S-matrix entries above,
implying

Nx
y,y∗ = Ny

x,y = 1
24n+1

∑
g∈E2n

Sx,g|Sy,g|2 = 1
24n+1

∑
g∈E2n

2n dim(y)2 = dim(y)2

2n+1 .

Since y ⊗ y∗ ∼= Nx
y,y∗x⊕

⊕
g∈E2n

Ng
y,y∗g, we may compute the dimension of y ⊗ y∗

as

dim(y)2 =
∑
g∈E2n

Ng
y,y∗ + dim(y)2

2n+1 2n,

and therefore ∑
g∈E2n

Ng
y,y∗ = dim(y)2/2,

which is the order of the stabilizer subgroup of y under the ⊗-action of E2n.
The orbit-stabilizer theorem then implies that the cardinality of the orbit of y
is 22n+1/ dim(y)2. Moreover, by computing the dimension of this orbit, by [4,
Theorem 3.5.2] each nontrivial graded component of D consists of the orbit of a
single simple object under the ⊗-action of E2n. In particular, this implies that
there exists g ∈ E2n such that y∗ ∼= g ⊗ y, since the universal grading group is an
elementary abelian 2-group.

Lastly we compute with the balancing equation [4, Proposition 8.13.8],

Sy,y∗ = θ−2
y

( ∑
g∈E2n

Ng
y,y∗ dim(g)θg +Nx

y,y∗ dim(x)θx

)

= θ−2
y

(
dim(y)2

2 + dim(y)2

2n+1 2nθx
)

= dim(y)2ξ(D)
√

2
2θ2
y

. (4.1)

As y∗ ∼= g ⊗ y for g ∈ G, by a trivial application of [4, Proposition 8.13.10] and
recalling that θy∗ = θy, we have

Sy,y = Sy,y∗ = Sy,g⊗y = 1
dim(y)Sg,ySy,y = θg⊗y

θy
Sy,y = θy∗

θy
Sy,y = Sy,y.

Moreover, Sy,y = Sy,y∗ is real and we may conclude from Equation (4.1) that
θ2
y = ±ξ(D), i.e. θy is a primitive 16th root of unity for all y ∈ O(D) \ O(C). �
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Lemma 4.1.2. Let nonsymmetrically braided C := C(χ0
2n, τ) be given for some

n ∈ Z≥1. If D is a nondegenerate cover of C with FPdim(D) = 24n+1, then D is
integral.

Proof. As D is a weakly integral modular tensor category, it may be equipped with
its unique positive spherical structure, so that for all y ∈ O(D), Q(FPdim(y)) is
either Q or Q(

√
2) by [4, Proposition 8.14.6] and [10, Proposition 1.4]. If there exists

z ∈ O(D) with Q(FPdim(z)) = Q(
√

2), then the graded component containing z
along with the trivial component Dad = C generates a fusion subcategory E ⊂ D
with FPdim(E) = 22n+2, as the universal grading group has exponent 2. From
the fact that C ( E , CD(E) is pointed with FPdim(CD(E)) = 22n−1; let R be the
regular algebra. Then FPdim(D0

R) = 8 by [1, Corollary 3.32] and the Frobenius–
Perron dimensions of simple objects are known because O(D0

R) corresponds to
the isomorphism classes of simple summands of the free R-modules R ⊗ w for
w ∈ O(E) (Section 2.6). There are two nonisomorphic invertible objects in O(D0

R)
corresponding to the free R-modules on w ∈ O(Dpt). The simple summands of
R⊗ x must all be isomorphic with Frobenius–Perron dimension 2, or else the sum
of their dimensions is greater than or equal to 8. The remaining simple objects
of D0

R correspond to the (necessarily isomorphic) simple summands of the free R-
module R ⊗ z which must have Frobenius–Perron dimension

√
2. Moreover, the

list of dimensions of D0
R is 1, 1, 2,

√
2. But no such fusion category exists since

FPdim((D0
R)Q) = 6 does not divide FPdim(D0

R) = 8, violating [5, Proposition
8.15]. �

Proposition 4.1.3. Let nonsymmetrically braided C := C(χ0
2n, τ) be given for some

n ∈ Z≥1. If there exists a nondegenerate cover D of C with FPdim(D) = 24n+1,
then n = 1.

Proof. Let C := C(χ0
2n, τ) be given and assume D is a nondegenerate cover of C with

FPdim(D) = 24n+1, which is a modular tensor category equipped with its unique
positive spherical structure. Set P to be the pointed modular tensor category of
rank 2 such that ξ(D) = ξ(P)−1. Note that this implies the nontrivial simple
object h ∈ O(P) has twist θh = θ−1

x by construction, where x ∈ O(C) is the
unique noninvertible simple object. Lemma 4.1.2 ensures that D is integral, hence
D � P ' Z(VecωG) is a braided equivalence for some finite group G of order 22n+1

and ω ∈ H3(G,C×) [2, Theorem 1.3]. Lemma 4.1.1 implies that x�h is the unique
noninvertible simple object z ∈ O(D�P) such that θz = 1, while g� e for g ∈ E2n
are the only invertible objects with trivial twist. Therefore the fusion subcategory
generated by these simple objects is the unique Lagrangian subcategory of Z(VecωG),
and has the fusion rules of the character ring of an extraspecial 2-group. Moreover,
G is isomorphic to an extraspecial 2-group by Lemma 2.4. If n > 1 this is impossible
due to Lemma 4.1.1, since the conductor (Frobenius–Schur exponent) of Z(VecωG)
is less than or equal to 8 for extra-special 2-groups G of order greater than 23 [12,
Theorem 4.7]. �
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4.2. χ1
n braidings. Let C := C(χ1

n, τ) be given. Recall from Section 2.5 that
FPdim(C) = 2n+1 and FPdim(CC(C)) = 2n−1. Here we will describe a nondegen-
erate cover of C(χ1

n, τ) with Frobenius–Perron dimension 22n, which is the absolute
minimum possible acccording to Equation (2.1).

Lemma 4.2.1. Let n ∈ Z≥1 and τj = ±1/
√

2 for 1 ≤ j ≤ n. Let C(χ1
1, τj) be Ising

braided fusion categories with braiding data qj : E1 × E1 → C× and αj ∈ C as in
Section 2.5. There is an equivalence of braided fusion categories(

�nj=1C(χ1
1, τj)

)
0 ' C

(
χ1
n,

n∏
j=1

τj

)
, (4.2)

where
(
�nj=1C(χ1

1, τj)
)

0 is the braided fusion subcategory generated by the unique
simple object of maximal dimension. The braiding data for the righthand side
of the equivalence in (4.2) is given by q : En × En → C× defined on the basis
gj ∈ O(C(χ1

1, τj)pt) as q(gj) := qj(gj), and α :=
∏n
j=1 αj.

Proof. Set D := �nj=1C(χ1
1, τj) and let xj ∈ O(C(χ1

1, τj)) be the noninvertible
simple object for all 1 ≤ j ≤ n. As Frobenius–Perron dimension is multiplicative
across �, there exists a unique simple object x := x1 � · · ·� xn ∈ O(D) of squared
Frobenius–Perron dimension 2n. Therefore g ⊗ x ∼= x for all g ∈ O(Dpt). Hence
x ⊗ x ∼= ⊕g∈O(Dpt)g, and x ⊗-generates a braided fusion subcategory D0 braided
equivalent to an En Tambara–Yamagami fusion category C(χ, τ) corresponding to
some χ : En ×En → C× and τ = ±1/2n/2. Since D0 is braided, χ(gj , gj) = −1 for
1 ≤ j ≤ n as this is the braiding of gj with itself in C(χ1

1, τj). By the classification
of symmetric nondegenerate bilinear forms on En [26, Section 5], we must have
χ = χ1

n. Now recall that by definition the square of the braiding of xj with itself
is multiplication by α2

j = τj(1 + qj(gj)) for all 1 ≤ j ≤ n, and the square of the
braiding of x with itself is multiplication by α2 = τ

∑
g∈O(Dpt) q(g). Since C(χ1

1, τj)
for 1 ≤ j ≤ n centralize one another pairwise, we have α = α1 · · ·αn. This implies

τ
∑

g∈O(Dpt)

q(g) = α2 =
n∏
j=1

α2
j =

n∏
j=1

τj (1 + qj(gj)) =
n∏
j=1

τj
∑

g∈O(Dpt)

q(g),

when q is defined as in the statement of the lemma. Moreover, τ =
∏n
j=1 τj . �

Proposition 4.2.2. Let C := C(χ1
n, τ) be given for n ∈ Z≥1. Then there exists

an n-fold Deligne product of Ising braided fusion categories which is a minimal
nondegenerate cover of C.

Proof. For n = 1 the statement is trivial so let n ≥ 2. Consider any n-fold Deligne
product D := �nj=1C(χ1

1, τj). We need only show that there exists some choice of
τj and braiding data qj and αj for 1 ≤ j ≤ n such that C and D0 are braided
equivalent where D0 is defined in Lemma 4.2.1. To this end, define τj := 1/

√
2

for all 1 ≤ j ≤ n − 1, τn := τ |τ |−1√2. Then D0 is equivalent to C as a fusion
category by Lemma 4.2.1. For the braiding, choose a basis g1, . . . , gn of En and
define qj : E1 × E1 → C× by qj(gj) = q(gj). This ensures α2 =

∏n
j=1 α

2
j as in the
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proof of Lemma 4.2.1, hence α = ±
∏n
j=1 αj . Therefore if α1, . . . , αn are arbitrary

and α =
∏n
j=1 αj , we are done; otherwise, switch α1 7→ −α1. �

Question 4.2.3. Does there exist a minimal nondegenerate cover D of C(χ1
n, τ)

for some n ∈ Z≥1 and τ = ±1/2n/2 which is not braided equivalent to an n-fold
Deligne product of Ising braided fusion categories?

5. Braided near-group fusion categories

A fusion category is near-group if there exists exactly one isomorphism class of
non-invertible objects. This definition is more general than Tambara–Yamagami
since such a fusion category may have a trivial universal grading. Near-group fusion
categories which possess a braiding were classified by J. Thornton [25, Theorem
III.4.6]. Surprisingly, there are only 7 braided near-group fusion categories up to
braided equivalence which are not symmetrically braided, or Tambara–Yamagami
(Section 2.5). These are four of rank 2, two of rank 3, and one of rank 4.

Note 5.1. G. Seitz [19] classified finite groups having a unique isomorphism class
of irreducible representations with dimension greater than 1, giving a complete
classification of symmetrically braided near-group fusion categories up to braided
equivalence.

Example 5.2. The 7 nonsymmetrically braided near-group fusion categories which
are not Tambara–Yamagami are easily found in nature. The four examples of rank 2
are described in detail in [17] and all have nondegenerate braidings. Therefore they
are their own unique minimal nondegenerate cover and extension. They can be
constructed from the category C(sl2, 3)ad in the notation of [18].

The two examples of rank 3 have the fusion rules of Rep(S3) (but nonsymmetric
braidings), where S3 is the symmetric group on 3 elements, and can be found
as braided fusion subcategories of the untwisted double Z(VecS3) ⊗-generated,
respectively, by the simple objects (g, χ), where g is any element of order 3 and
χ is one of two nontrivial characters of degree 1 of the cyclic group C3. Their
symmetric center is Tannakian of rank 2 and they each possess 2 inequivalent
nondegenerate covers with Frobenius–Perron dimension 12, which can be realized
from C(sl2, 4) in the notation of [18].

The unique example of rank 4 has the fusion rules of Rep(A4) and can be found
as a braided fusion subcategory of the untwisted double Z(VecA4) generated by
the simple object (g, χ), where g is any element of order 2 and χ is any character
of degree 1 of C2

2 with χ(g) = −1. Its symmetric center is Tannakian of rank 3 and
it possesses 3 inequivalent nondegenerate covers with Frobenius–Perron dimension
36, which can be constructed from C(sl3, 3) in the notation of [18].

The classification of fusion categories with the fusion rules of the rank 3 and 4
examples above dates back to [22, Section 3].

The minimal nondegenerate covers for all the near-group fusion categories dis-
cussed so far are weakly integral, hence they have a unique positive spherical struc-
ture and can be considered as modular tensor categories (Section 2.3).

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)



436 ANDREW SCHOPIERAY

Theorem 5.3. Let C be a braided near-group fusion category. Then C possesses a
minimal modular extension if and only if C is braided equivalent to

(a) Z(VecγQ8
)ad or Z(VecγQ8

)rev
ad for some generator γ ∈ H3(Q8,C×);

(b) C(χ1
n, τ) for some n ∈ Z≥1 and τ = ±1/2n/2 with arbitrary braiding data

(Section 2.5);
(c) a symmetrically braided near-group fusion category (Note 5.1); or
(d) one of the 7 nonsymmetrically braided near-group fusion categories in Ex-

ample 5.2.

Proof. This is a culmination of the results of Section 3, Proposition 4.1.3, [25,
Theorem III.4.6], and Example 5.2. �

6. Extraspecial p-groups and minimal nondegenerate covers

Here we extend the principal results of Section 4 to braided fusion categories
whose fusion rules coincide with the character rings of extraspecial p-groups when
p is an odd prime (see Section 2.4). Fusion and braided fusion categories of these
Grothendieck equivalence classes have not been classified as they have for those
when p = 2, so a complete generalization of Section 4 is left for future research.

Lemma 6.1. Let C be a braided fusion category Grothendieck equivalent to
Rep(p1+2n

± ) for an odd prime p. Then CC(C) is Tannakian, and either CC(C) = C
or CC(C) = Cpt.

Proof. We know CC(C) is Tannakian by [4, Corollary 9.9.32 (i)] since it is symmet-
rically braided and p is odd. Any g ∈ O(Cpt) generates a pointed braided fusion
subcategory D of dimension p. Since p is prime, CD(D) = D or CD(D) is triv-
ial. In the latter case D is nondegenerately braided and C factors as a nontrivial
Deligne product [16, Theorem 4.2]. But the fusion rules cannot factor since each
of the noninvertible objects ⊗-generates all of C, thus Cpt is symmetrically braided
and Tannakian. Lastly note that when equipped with its unique positive spherical
structure, the balancing equation implies that g ∈ O(Cpt) centralize all noninvert-
ible simple objects as they are fixed points of the ⊗-action. Therefore Cpt ⊂ CC(C),
which proves our claim since CC(C) ⊂ C is a fusion subcategory. �

Proposition 6.2. Let C be a nonsymmetrically braided fusion category with the
fusion rules of the character ring of p1+2n

± for an odd prime p. If there exists a
nondegenerate cover D of C with FPdim(D) = p4n+1, then there exists an extraspe-
cial p-group G and 3-cocycle ω ∈ H3(G,C×) such that C ' Z(VecωG)ad is a braided
equivalence.

Proof. Lemma 6.1 implies that Cpt is Tannakian since p is odd; let R be the regular
algebra. Then FPdim(D0

R) = p4n+1/(p2n)2 = p [1, Corollary 3.32]. Let P :=
(D0

R)rev so that ξ(D) = ξ(P)−1. This implies, by [2, Theorem 1.3], that there
exists a finite p-group G, ω ∈ H3(G,C×), and a braided equivalence F : D � P →
Z(VecωG). As F is monoidal, for all X ∈ O(C), F (X) ∈ O(Z(VecωG)ad). But
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Equation (2.1) implies

FPdim(Z(VecωG)ad) = FPdim(Z(VecωG))
FPdim(Z(VecωG)pt)

= p4n+2

p2n+1 = p2n+1 = FPdim(C),

thus the restriction F |C : C → Z(VecωG)ad is a braided equivalence by [4, Proposi-
tion 6.3.3].

Finally, recall that D0
R = Prev. Each nontrivial simple object of D0

R corre-
sponds to the summands of the free R-module on some noninvertible x ∈ O(C)
(see Section 2.6), so we can derive from this braided equivalence a bijection ψ :
O(C)\O(Cpt)→ O(P)\{1}. Note that the simple objects g ∈ O(Cpt) and x�ψ(x)
are closed under ⊗ and all have trivial twist, i.e. they ⊗-generate a Tannakian
fusion subcategory of D�P. This subcategory is Lagrangian, with the fusion rules
of the character ring of an extraspecial p-group. Moreover, by the reconstruction
theorem for twisted doubles of finite groups [2, Theorem 4.5], the finite group G
can be chosen to be an extraspecial p-group by Lemma 2.4.1. �
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