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GOTZMANN MONOMIALS IN FOUR VARIABLES

VITTORIA BONANZINGA AND SHALOM ELIAHOU

Abstract. It is a widely open problem to determine which monomials in the
n-variable polynomial ring K[x1, . . . , xn] over a field K have the Gotzmann
property, i.e. induce a Borel-stable Gotzmann monomial ideal. Since 2007,
only the case n ≤ 3 was known. Here we solve the problem for the case n = 4.
The solution involves a surprisingly intricate characterization.

1. Introduction

Let K be a field and let Rn = K[x1, . . . , xn] be the n-variable polynomial algebra
over K endowed with its usual grading deg(xi) = 1 for all i. We denote by Sn ⊂ Rn
the set of all monomials u = xa1

1 · · ·xan
n in Rn, and by Sn,d ⊂ Sn the subset of

monomials of degree deg(u) =
∑
i ai = d.

A monomial ideal J ⊆ Rn is said to be Borel-stable or strongly stable if for any
monomial v ∈ J and any variable xj dividing v, one has xiv/xj ∈ J for all 1 ≤ i ≤ j.
Given a monomial u ∈ Sn, let 〈u〉 denote the smallest Borel-stable monomial ideal
in Rn containing u, and let B(u) denote the unique minimal system of monomial
generators of 〈u〉. Then B(u) may be described as the smallest set of monomials
containing u and stable under the operations v 7→ vxi/xj whenever xj divides v
and i ≤ j.

Recall that a homogeneous ideal I ⊆ Rn is a Gotzmann ideal if, from a certain
degree on, its Hilbert function attains Macaulay’s lower bound. See e.g. [4, 7]
for more details. Determining which homogeneous ideals are Gotzmann ideals is
notoriously difficult. This will be illustrated in this paper, where our determination
of all monomials u in S4 such that the ideal 〈u〉 is a Gotzmann ideal involves a
surprisingly complicated formula. We introduce the following definition.
Definition 1.1. We say that a monomial u ∈ Sn is a Gotzmann monomial if its
associated Borel-stable monomial ideal 〈u〉 is a Gotzmann ideal.

Determining all Gotzmann monomials in Sn is a widely open problem. Indeed,
the current knowledge about it is limited to the case n ≤ 3. Specifically, for n ≤ 2
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68 VITTORIA BONANZINGA AND SHALOM ELIAHOU

all monomials in S1 or S2 are Gotzmann, whereas for n = 3 the monomial xa1xb2xt3
is Gotzmann in S3 if and only if t ≥

(
b
2
)
. The latter result can be deduced from

[13, Proposition 8]. A short proof using the general tools developed in this paper
will be given in the last section.

The above result for n = 3 illustrates a general property of Gotzmann monomi-
als, proved in [4] using Gotzmann’s persistence theorem.

Theorem 1.2. Let u ∈ Sn.
(1) There exists k ∈ N such that uxkn is Gotzmann in Sn.
(2) If u is Gotzmann in Sn, then so is uxn.

This reduces the determination of Gotzmann monomials in Sn to the following
question. Given u0 ∈ Sn−1, what is the least exponent t ≥ 0 such that u0x

t
n is a

Gotzmann monomial in Sn?
Our main result in this paper is the classification of all Gotzmann monomials

in S4 (see Theorem 7.7); we state that a monomial u = xa1x
b
2x
c
3x
t
4 is a Gotzmann

monomial in S4 if and only if

t ≥
((b

2
)

2

)
+ b+ 4

3

(
b

2

)
+ (b+ 1)

(
c+ 1

2

)
+
(
c+ 1

3

)
− c.

Interestingly, before achieving this rather intricate characterization, all the easy-
to-perform computer-algebraic experiments we ran in order to get a clue at it were
of no help. Only the conceptual tools developed below allowed us to formulate and
prove this result. Completing the analogous task in Sn for n ≥ 5 remains an open
problem.

1.1. Some related results. In 2000, Aramova, Avramov, and Herzog posed the
open problem of determining which monomial ideals are Gotzmann ideals [2]. Some
partial answers have since emerged. In 2003, the first author characterized all
principal Borel ideals with Borel generator up to degree 4 which are Gotzmann [4].
In 2006, Mermin classified Lexlike ideals, i.e. ideals which are generated by initial
segments of “lexlike” sequences [10]. In 2007, Murai classified Gotzmann ideals
in the polynomial ring in three variables [13]. In 2008, Murai and Hibi described
all Gotzmann ideals in K[x1, . . . , xn] with fewer than n generators [11]. In 2008,
L. Sorrenti, A. Olteanu, and O. Olteanu classified Gotzmann ideals which are
generated by segments in the lexicographic order [14]. In 2012, Hoefel characterized
all Gotzmann edge ideals [8]. In 2012, Hoefel and Mermin described all Gotzmann
squarefree monomial ideals [9]. See also [15] for related results.

1.2. Contents. In Section 2, we recall or introduce basic notions such as lexseg-
ments and lexintervals, the sets of gaps and cogaps of a monomial, the maxgen
monomial of a set of monomials, and finally Gotzmann monomials and criteria in
terms of gaps and cogaps to recognize them. In Section 3, we focus on properties
of the gaps and cogaps of a monomial and how to compute them. In Section 4,
we describe the lexicographic predecessor and successor of a monomial. Section 5
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GOTZMANN MONOMIALS IN FOUR VARIABLES 69

is devoted to the determination of the maxgen monomial of lexintervals. In Sec-
tion 6, we show some specific behaviors of the first and last variables. Finally, in
Section 7 we use all the material developed in the preceding sections to prove our
main theorem on the characterization of Gotzmann monomials in four variables.

2. Background and basic notions

2.1. Lexsegments and lexintervals. Recall the definition of the lexicographic
order on Sn,d. Let u, v ∈ Sn,d. Write u = xa = xa1

1 · · · xan
n with a = (a1, . . . , an) ∈

Nn, and similarly v = xb with b ∈ Nn. By definition, we have

u >lex v

if and only if the leftmost nonzero coordinate of a−b is positive. Equivalently, let

u = xi1 · · · xid , v = xj1 · · · xjd
∈ Sn,d

with i1 ≤ · · · ≤ id, j1 ≤ · · · ≤ jd. Then u >lex v if and only if the leftmost nonzero
coordinate of (i1 − j1, . . . , id − jd) is negative. For simplicity, we shall omit the
subscript and write ≥ instead of ≥lex.

We shall need below the following well-known equivalence.

Lemma 2.1. Let u, v ∈ Sn,d. Then for all 1 ≤ i ≤ n, we have u > v if and only
if xiu > xiv.

Proof. Write u = xa, v = xb with a,b ∈ Nn. Then xiu = xa+ei , xiv = xb+ei ,
where ei ∈ Nn is the basis vector with a 1 at the ith coordinate and 0 elsewhere.
The statement follows since

(a + ei)− (b + ei) = a − b. �

The following notation will be used throughout.

Notation 2.2. For u ∈ Sn,d, we denote by L(u) the lexsegment determined by u,
i.e.

L(u) = {v ∈ Sn,d | v ≥ u}.
More generally, for u1, u2 ∈ Sn,d such that u1 ≥ u2, we denote by L(u1, u2) the
lexinterval of intermediate monomials, namely

L(u1, u2) = {v ∈ Sn,d | u1 ≥ v ≥ u2}.

Thus L(u) = L(xd1, u) for u ∈ Sn,d. Finally, we use the notation

L∗(u1, u2) = L(u1, u2) \ {u1} = {v ∈ Sn,d | u1 > v ≥ u2}.

2.2. Gotzmann sets.

Definition 2.3. A subset B ⊆ Sn is said to be Borel-stable if u ∈ B implies
xiu/xj ∈ B for all 1 ≤ i ≤ j ≤ n such that xj divides u.

Definition 2.4. A monomial ideal I ⊆ Rn is said to be Borel-stable if its set of
monomials I ∩ Sn is a Borel-stable set.
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70 VITTORIA BONANZINGA AND SHALOM ELIAHOU

Let B ⊆ Sn,d. We define and denote the shade1 of B by
Shad(B) = {xiu | u ∈ B, i = 1, . . . , n} ⊆ Sn,d+1.

For i ≥ 2, the i-th shade of B is defined recursively by
Shadi(B) = Shad(Shadi−1(B)).

Notation 2.5. Let B ⊆ Sn,d. We denote by Blex the unique lexsegment in Sn,d
such that |Blex| = |B|.

Thus, there exists a unique monomial wB in Sn,d such that
Blex = L(wB).

Example 2.6. Let B =
{
x2

1, x1x2, x1x3, x
2
2
}
⊆ S4,2. The lexsegment of length

|B| = 4 in S4,2 is
L(x1x4) =

{
x2

1, x1x2, x1x3, x1x4
}
.

Hence Blex =
{
x2

1, x1x2, x1x3, x1x4
}

= L(x1x4), and thus wB = x1x4.

The following result can be found in [7, Theorem 2.7].

Theorem 2.7. For any subset B ⊆ Sn,d, one has
|Shad(B)| ≥ | Shad(Blex)|.

Proof. See [7]. �

Definition 2.8. A subset B ⊆ Sn,d is said to be a Gotzmann set if equality in
Theorem 2.7 is achieved, i.e. if

|Shad(B)| = |Shad(Blex)|.

Recall that a homogeneous ideal I ⊆ Rn is a Gotzmann ideal if, from a certain
degree on, its Hilbert function attains Macaulay’s lower bound. Gotzmann sets are
linked to Gotzmann ideals by the following result. See e.g. [15] for more details.

Proposition 2.9. Let B ⊆ Sn,d with d ≥ 1. Then the ideal (B) of Rn spanned by
B is a Gotzmann ideal if and only if B is a Gotzmann set.

The next lemma is crucial in the characterization of Borel-stable sets which are
Gotzmann sets. We first introduce some notation.

Notation 2.10. Let u ∈ Sn be a monomial distinct from 1. We denote by max(u)
the largest index i ≤ n such that xi divides u.

Notation 2.11. Let B ⊆ Sn,d be a set of monomials of degree d ≥ 1. For all
1 ≤ i ≤ n, we denote by mi(B) the number of monomials u ∈ B such that
max(u) = i.

Of course, we have |B| = m1(B) + · · ·+mn(B).

1‘Shad’ should stand for shade as in combinatorial set theory [1], and not for shadow as written
in [4, 7]. The shadow of B actually corresponds to the set of all monomials u/xj with u ∈ B and
xj dividing u.
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Lemma 2.12. Let B ⊆ Sn,d be a Borel-stable set. Then B is a Gotzmann set if
and only if

mi(B) = mi(Blex)
for all 1 ≤ i ≤ n.

Proof. See [7] and Lemma 1.6 in [4]. �

Given B ⊆ Sn,d, it will be useful to collect the numbers mi(B) for 1 ≤ i ≤ n as
a single monomial. This gives rise to the following definition.

Definition 2.13. Let B ⊆ Sn,d be a set of monomials of degree d ≥ 1. Let
mi = mi(B) for 1 ≤ i ≤ n. The maxgen monomial of B is defined by

maxgen(B) = xm1
1 · · ·xmn

n .

Note that deg(maxgen(B)) = |B|. We may now rephrase Lemma 2.12 using the
maxgen monomial.

Lemma 2.14. Let B ⊆ Sn,d be a Borel-stable set. Then B is a Gotzmann set if
and only if

maxgen(B) = maxgen(Blex).

Proof. Follows from Lemma 2.12 and the definition of maxgen(B). �

2.3. The maxgen monomial revisited. Given B ⊆ Sn,d with d ≥ 1, we now
describe maxgen(B) in a slightly more useful way. First, some preliminaries.

Notation 2.15. Let u ∈ Sn be a monomial distinct from 1. We denote by
• min(u) the smallest index i ≥ 1 such that xi divides u;
• λ(u) = xj , where j = max(u).

Thus λ(u) divides u, and it is the “last”, or lexicographically smallest, variable
with this property. This yields a function

λ : Sn,d \ {1} −→ Sn,1 = {x1, . . . , xn}.

For instance, if u = x3
2x3x

2
4, then min(u) = 2, max(u) = 4, and λ(u) = x4.

Lemma 2.16. Let B ⊆ Sn,d. Then

maxgen(B) =
∏
w∈B

λ(w) =
∏
w∈B

xmax(w).

Proof. Directly follows from the definitions. �

Thus, maxgen(B) may be viewed as the maximal index generating function of
all monomials in B.

We shall sometimes tacitly use the following easy observation.

Remark 2.17. If B ⊆ B′ ⊆ Sn,d, then maxgen(B) divides maxgen(B′).
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72 VITTORIA BONANZINGA AND SHALOM ELIAHOU

2.4. Gaps and cogaps.

Notation 2.18. Let u ∈ Sn. We denote by B(u) the smallest Borel-stable subset
of Sn containing u.

Observe that if u ∈ Sn,d, then B(u) ⊆ Sn,d.

Lemma 2.19. Let u ∈ Sn,d. Then B(u) ⊆ L(u).

Proof. Let v ∈ B(u). Then v is obtained from u by repeated operations of the
form

u′ 7→ xiu
′/xj ,

where u′ ∈ B(u), xj divides u′, and i ≤ j. Since xiu′/xj ≥ u′ at each such step, it
follows that v ≥ u, whence v ∈ L(u). �

For our present purposes, it is of particular interest to consider the set difference
L(u) \B(u). The following concept first arose in [4].

Definition 2.20. Let u ∈ Sn,d. We set gaps(u) = L(u) \ B(u), and we call gaps
of u the elements of this set.

Notation 2.21. Let u ∈ Sn,d. We denote by ũ ∈ Sn,d the unique monomial such
that

L(ũ) = B(u)lex.

Since B(u) and B(u)lex have the same cardinality by definition, we have

|L(ũ)| = |B(u)|.

Moreover, since B(u) ⊆ L(u) by the above lemma, we have xd1 ≥ ũ ≥ u and so
L(ũ) ⊆ L(u). Here is an illustration of the situation:

xd1 ũ u

L(u)

L(ũ) L∗(ũ, u)

Since |L(ũ)| = |B(u)|, we have

|L(u) \ L(ũ)| = |L(u) \B(u)| = | gaps(u)|.

This motivates our definition of cogaps(u), a lexinterval with the same cardinality
as gaps(u).

Definition 2.22. Let u ∈ Sn,d. We set cogaps(u) = L(u)\L(ũ). That is, cogaps(u)
is the lexinterval of cardinality g = | gaps(u)| with smallest element u. Equivalently,

cogaps(u) = L∗(ũ, u).
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By construction, we have | gaps(u)| = | cogaps(u)| and two partitions of L(u),
namely:

L(u) = B(u) t gaps(u),
L(u) = L(ũ) t cogaps(u).

Example 2.23. Let n = 4, d = 2, and u = x2x3. Then
B(u) =

{
x2

1, x1x2, x1x3, x
2
2, x2x3

}
,

L(u) =
{
x2

1, x1x2, x1x3, x1x4, x
2
2, x2x3

}
,

gaps(u) = L(u) \B(u) = {x1x4}.

The unique monomial ũ ∈ L(u) such that |L(ũ)| = |B(u)| is ũ = x2
2. Hence

cogaps(u) = L(u) \ L(ũ) = {x2x3}.

A word of caution regarding L(u) and B(u) is needed here.

Remark 2.24. For the lexsegment determined by u ∈ Sn, one should write Ln(u)
rather than L(u). Indeed, let m < n be positive integers. Then Sm ⊂ Sn canon-
ically. Let now u ∈ Sm. Then Lm(u) 6= Ln(u) in general. For instance, with
u = x2x3 as above, we have

L3(u) =
{
x2

1, x1x2, x1x3, x
2
2, x2x3

}
= L4(u) \ {x1x4}.

Consequently, one should also write gapsn(u) rather than gaps(u). However, we
shall systematically omit the index n since it will be fixed in any given discussion
below. On the other hand, the set B(u) is independent of n.

2.5. Gotzmann monomials.

Definition 2.25. Let u ∈ Sn,d. We say that u is a Gotzmann monomial if B(u)
is a Gotzmann set.

Remark 2.26. Note that Gotzmann monomials in Sn may no longer be Gotzmann
monomials in Sn+1. For instance, x2x3 is Gotzmann in S3 but not in S4.

Our determination of Gotzmann monomials in S3 and S4 will use the following
general characterization.

Theorem 2.27. Let u ∈ Sn. Then u is a Gotzmann monomial if and only if
maxgen(gaps(u)) = maxgen(cogaps(u)).

Proof. It follows from Definition 2.25 and Lemma 2.14 that u is a Gotzmann mono-
mial if and only if

maxgen(B(u)) = maxgen(B(u)lex).
Now by definition of ũ, we have

L(ũ) = B(u)lex.

Hence u is a Gotzmann monomial if and only if
maxgen(B(u)) = maxgen(L(ũ)).
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74 VITTORIA BONANZINGA AND SHALOM ELIAHOU

Since
B(u) t gaps(u) = L(ũ) t cogaps(u),

as both sides coincide with L(u), it follows that

maxgen(B(u)) = maxgen(L(ũ)) ⇐⇒ maxgen(gaps(u)) = maxgen(cogaps(u)),

and the proof is complete. �

Thus, from now on, our task will be to develop tools to compute or determine
gaps(u), cogaps(u), and their respective maxgen monomials, so as to be able to
apply the characterization of Gotzmann monomials provided by Theorem 2.27.

3. Some results on gaps

Let u ∈ Sn,d. Recall that B(u) ⊆ L(u) and that gaps(u) = L(u) \ B(u). We
first describe the gaps of u in an equivalent way.

Lemma 3.1. Let u, v ∈ Sn,d be monomials of degree d in Sn. Set u = xi1 · · · xid
with i1 ≤ · · · ≤ id and v = xj1 · · · xjd

with j1 ≤ · · · ≤ jd. The following are
equivalent:

(1) v is a gap of u;
(2) there exist indices 1 ≤ s < t ≤ d such that

(j1, . . . , js−1) = (i1, . . . , is−1), js < is, jt > it.

Proof. We have v 6= u since v /∈ B(u). The existence of an index s with the given
property then follows from the hypothesis v ∈ L(u). The existence of an index t > s
with the desired property then directly follows from the hypothesis v /∈ B(u). �

We need yet another notation which will be used to give a structural description
of gaps(u).

Notation 3.2. For a monomial u = xi1 · · · xid with i1 ≤ · · · ≤ id, and for any
integer 0 ≤ k ≤ d, we denote by prek(u) the prefix of u of degree k, defined by

prek(u) = xi1 · · ·xik .

Observe that prek(u) may be characterized as follows: it is the unique mono-
mial v of degree k dividing u and satisfying max(v) ≤ min(u/v).

Definition 3.3. For any v ∈ Sn,k, we define subsets A1(v), A2(v) ⊂ Sn,k as follows:

A1(v) = B(v) \ {v},
A2(v) = {w ∈ Sn,k | min(v) + 1 ≤ min(w) ≤ n}.

Proposition 3.4. Let u ∈ Sn,d. For all 1 ≤ k ≤ d− 1, let uk = prek(u). Then

gaps(u) =
d−1⊔
k=1

A1(uk)A2(u/uk).
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Proof. First, any monomial v = v1v2 with v1 ∈ A1(uk), where uk is the prefix of u
of degree k for some 1 ≤ k ≤ d−1, and v2 ∈ A2(u/uk), is a gap of u by construction
and Lemma 3.1.

Conversely, let v be a gap of u. Set u = xi1 · · · xid with i1 ≤ · · · ≤ id and
v = xj1 · · · xjd

with j1 ≤ · · · ≤ jd. In the notation of Lemma 3.1, let s be such that
is < js, and let t > s be the least index satisfying jt > it. Set k = t− 1. Then by
construction, the factor xj1 · · ·xjk

of degree k of v belongs to B(uk), since iα ≤ jα
for all α < t by minimality of t, and in fact belongs to A1(uk) since is < js, whereas
the cofactor xjk+1 · · · xjd

belongs to A2(u/uk) since jd ≥ · · · ≥ jk+1 = jt > it. �

Corollary 3.5. Let u = xi1 · · · xid with i1 ≤ · · · ≤ id. Then

| gaps(u)| =
d−1∑
k=1

(∣∣B(xi1 · · · xik )
∣∣− 1

)
·
∣∣Sn−ik+1,d−k

∣∣.
Proof. The number of monomials w2 ∈ Sn of degree d− k in the variables xik+1+1,
. . . , xn is equal to the number of monomials of the same degree in Sn−ik+1 , i.e. to∣∣Sn−ik+1,d−k

∣∣. �

This prompts us to find good formulas for |B(w)| for any monomial w. Here is
an inductive approach.

Proposition 3.6. Let w ∈ Sn and m = max(w). Let r ≥ 1 be the largest exponent
such that xrm divides w. Let v = w/xrm, so that max(v) < m. Then

B(w) =
r⊔
i=0

B
(
vxr−im−1

)
xim.

Proof. Indeed, let w′ ∈ B(w). Then maxw′ ≤ m. If maxw′ < m, then clearly
w′ ∈ B(vxrm−1). Otherwise, if maxw′ = m, let i be the largest exponent such that
xim divides w′, so that 1 ≤ i ≤ r. Let v′ = w′/xim. Then clearly v′ ∈ B(vxr−im−1), so
that w′ ∈ B(vxr−im−1)xim. �

Corollary 3.7. As above, let w = vxrm ∈ Sn with max(w) = m and max(v) < m.
Then

|B(w)| =
r∑
i=0

∣∣B(vxr−im−1)
∣∣.

Proof. Directly follows from the above partition of B(w). �

This corollary reduces the computation of |B(w)| for monomials in Sn to that
for monomials in Sn−1.

4. Predecessors and successors

Definition 4.1. Let u, v ∈ Sn,d such that u > v. We say that u covers v if there
are no intermediate monomials between them, i.e. if for any w ∈ Sn,d such that
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76 VITTORIA BONANZINGA AND SHALOM ELIAHOU

u ≥ w ≥ v, we have w = u or w = v. In that case, we say that u is the predecessor
of v, that v is the successor of u, and we write

u = pred(v), v = succ(u).
Since xd1 and xdn are the largest and smallest elements in Sn,d, respectively, the

predecessor of xd1 and the successor of xdn are undefined.
Note that, for all u ∈ Sn,d with u /∈ {xd1, xdn}, we have

succ(pred(u)) = pred(succ(u)) = u.

Proposition 4.2. Let u ∈ Sn and g = | gaps(u)|. Then ũ is the gth predecessor
of u, i.e.

ũ = predg(u).
Proof. Indeed, recall the partition L(u) = L(ũ) t L∗(ũ, u). Thus ũ, the smallest
element of L(ũ), is the predecessor of the largest element of L∗(ũ, u) = cogaps(u).
Since cogaps(u) has cardinality g and is a lexinterval ending at u, its largest element
is predg−1(u). Hence ũ = pred(predg−1(u)), as desired. �

Lexintervals ending at a monomial u are made up of iterated predecessors of u.
This motivates the following notation.
Notation 4.3. Let u ∈ Sn,d and r ≤ |L(u)|. Then,

predr(u) = {predi(u) | 0 ≤ i < r}.
That is, predr(u) is the set of r predecessors of u, including u itself. This set

is well defined, since r ≤ |L(u)| by hypothesis. Of course predr(u) is a lexinterval,
since

predr(u) = {w ∈ Sn,d | predr(u) > w ≥ u} = L∗(predr(u), u). (4.1)
We may now reinterpret the lexinterval cogaps(u) in terms of the above concept.

Proposition 4.4. Let u ∈ Sn,d and g = | gaps(u)|. Then
cogaps(u) = predg(u).

Proof. By Definition 2.22, we have | cogaps(u)| = | gaps(u)| = g, and cogaps(u) =
L∗(ũ, u), where ũ = predg(u). The stated equality follows from (4.1). �

As we shall need to determine predi(u) for any given u ∈ Sn,d, we need an
explicit description of pred(u). We start with the description of the successor of a
monomial in Sn,d distinct from xdn.
Proposition 4.5. Let u ∈ Sn,d, distinct from xdn. Set u = vxan

n with an ∈ N and
max(v) = m with m ≤ n− 1. Then

succ(u) = (v/xm)xan+1
m+1 .

Proof. This easily follows from the definition of the lexicographic order on Sn,d. �

Proposition 4.6. Let u ∈ Sn,d be such that u 6= xd1, and let m = max(u). Write
u = vxam with a ≥ 1 and v ∈ Sn,d−a, so that max(v) ≤ m− 1. Then

pred(u) = vxm−1x
a−1
n .
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Proof. Follows from the description above of the successor of a monomial in Sn,d
distinct from xdn. �

The next corollary compares max(pred(u)) with max(u). There are only two
possible outcomes, linked to whether λ(u)2 divides u or not; recall that λ(u) always
divides u by construction.

Corollary 4.7. For all u ∈ Sn,d such that u 6= xd1, we have

max(pred(u)) =
{
n, if λ(u)2 | u;
max(u)− 1, if not.

Example 4.8. The lexicographically smallest monomial u ∈ S4,d such that

max(pred(u)) ≤ 2

is xd−1
2 x3. That is, for all v ∈ S4,d such that v ≤ xd−1

2 x3, we have max(v) ≥ 3, i.e.
λ(v) ∈ {x3, x4}.

5. The maxgen monomial of lexintervals

5.1. The function µn. We now introduce a function of two monomials u1 ≥ u2
in Sn,d which will later be used to give an equivalent description of cogaps. Recall
the notation

L∗(u1, u2) = L(u1, u2) \ {u1} = {v ∈ Sn,d | u1 > v ≥ u2}.

Definition 5.1. For u1, u2 ∈ Sn,d such that u1 ≥ u2, we define µn(u2, u1) ∈ Sn to
be the maxgen monomial of the lexinterval L∗(u1, u2), i.e.

µn(u2, u1) = maxgen(L∗(u1, u2)).

Equivalently, recalling that maxgen collects the last variables of a set of mono-
mials and takes their product:

µn(u2, u1) =
∏

u1>v≥u2

λ(v).

Note that by construction, the last variable of u1 is not taken into account in
µn(u2, u1).

Remark 5.2. As in Remark 2.24, we have Sn,d ⊂ Sn+1,d canonically. Now if
u1, u2 ∈ Sn,d, then µn(u2, u1) and µn+1(u2, u1) differ in general. However, when
the number n of variables involved is clear from the context, we shall simply write
µ(u2, u1) for µn(u2, u1).

The function µ on Sn,d has the following transitive property.

Lemma 5.3. For all u1, u2, u3 ∈ Sn,d such that u1 ≥ u2 ≥ u3, we have

µ(u3, u1) = µ(u3, u2)µ(u2, u1).

Proof. Directly follows from the definition. �
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Notation 5.4. For monomials u1 ≥ u2 in Sn,d, we shall occasionally denote the
equality µ(u2, u1) = w as follows:

u2
w

−−−−−−−−→ u1.

Lemma 5.3 then amounts to arrow composition: if u1 ≥ u2 ≥ u3 in Sn,d, then

u3
w2

−−−−−−−−→ u2
w1

−−−−−−−−→ u1

is equivalent to
u3

w2w1
−−−−−−−−→ u1.

For instance, starting from x2
3 and taking successive predecessors in S3, one has

x2
3

x3
−−−−−−−−→ x2x3

x3
−−−−−−−−→ x2

2
x2

−−−−−−−−→ x1x3
x3

−−−−−−−−→ x1x2.

By arrow composition, this may be summarized as

x2
3

x2x
3
3

−−−−−−−−−→ x1x2,

expressing the equality µ3(x2
3, x1x2) = x2x

2
3.

Remark 5.5. If r ≤ |L(u)|, then predr(u) is defined and we have

u
maxgen(predr(u))

−−−−−−−−−−−−−−−−−→ predr(u)
by construction.

In particular, with r = | gaps(u)|, this yields the following tool in view of effec-
tively applying Theorem 2.27.

Proposition 5.6. Let u ∈ Sn,d. Then
maxgen(cogaps(u)) = µ(u, ũ),

i.e., in arrow notation, u
maxgen(cogaps(u))

−−−−−−−−−−−−−−−−−→ ũ.

Proof. Follows from the above remark and the facts that, if g = | gaps(u)|, then ũ =
predg(u) and cogaps(u) = predg(u) by Propositions 4.2 and 4.4, respectively. �

Lemma 5.7. Let v, w ∈ Sn. If max(v) < max(w), then
pred(vw) = v pred(w).

Proof. Let j = max(w). Then w = w′xaj with max(w′) < j and a ≥ 1. Hence

pred(w) = w′xj−1x
a−1
n .

Now vw = vw′xaj , and max(vw′) < j since max(v) < j by hypothesis. Hence

pred(vw) = vw′xj−1x
a−1
n = v pred(w). �

Lemma 5.8. For all u1, u2 ∈ Sn,d such that u1 > u2 and all v ∈ Sn such that
max(v) < minµ(u2, u1), we have

µ(vu2, vu1) = µ(u2, u1).
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Proof. Let w ∈ Sn,d satisfy u1 > w ≥ u2. We have vu1 > vw ≥ vu2, since
the product is compatible with the lex order. It follows from the hypothesis that
max(v) < max(w). Lemma 5.7 then implies pred(vw) = v pred(w). Therefore
L∗(vu1, vu2) = vL∗(u1, u2), whence the conclusion. �

In order to apply this lemma, we need some control on minµ(u2, u1). This is
provided by the next proposition. First, a lemma.

Lemma 5.9. Let u, v ∈ Sn,d. If u ≥ v then min u ≤ min v.

Proof. By definition of the lex order, small indices weigh more. Hence if min u >
min v then u < v. �

Proposition 5.10. Let u1, u2 ∈ Sn,d. If u1 > u2 then minµ(u2, u1) > min u1.

Proof. By Definition 5.1, we have

µ(u2, u1) =
∏

u1>v≥u2

λ(v).

For v < u1, the above lemma implies min v ≥ min u1. Hence max v > min u1, for
otherwise we would have max v = min v = min u1, implying v = xdi for some i. But
from v = xdi < u1, it follows that min u1 < i, contradicting min v = min u1. Having
established that max v > min u1 for all v < u1, it follows that minµ(u2, u1) >
min u1, as stated. �

Here are straightforward applications.

Corollary 5.11. For all u1, u2 ∈ Sn,d such that u1 > u2 and all v ∈ Sn such that
max v ≤ min u1, we have

µ(vu2, vu1) = µ(u2, u1).

Proof. By the above proposition, we have minµ(u2, u1) > min u1. Hence max v <
minµ(u2, u1) by hypothesis, and the claimed equality then follows from Lemma 5.8.

�

Corollary 5.12. Let m ≤ n− 1 and let u ∈ Sn,d be such that u < xdm. Then
minµ(u, xdm) ≥ m+ 1.

Proof. Directly follows from the above proposition. �

We now compute µ(vxkm, vxkm−1) provided max v ≤ m− 1. For instance, in Sn,d
we have by the theorem below:

vxkn
xk

n

−−−−−−−−→ vxkn−1, if max v ≤ n− 1;

vxkn−1

xk
n−1x

(k
2)

n

−−−−−−−−−−→ vxkn−2, if max v ≤ n− 2;

vxkn−2

xk
n−2x

(k
2)

n−1x
(k+1

3 )
n

−−−−−−−−−−−−−→ vxkn−3, if max v ≤ n− 3.
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In view of a general statement, the following intermediate formula will be useful.

Proposition 5.13. For all 2 ≤ m ≤ n and all k ≥ 1, we have

µ(xkm, xkm−1) = xkm
∏

1≤i≤k−1
µ(xin, xim). (5.1)

Proof. By induction on k. For k = 1, it is clear that µ(xm, xm−1) = xm, since the
predecessor of xm is xm−1. Assume now k ≥ 2 and that formula (5.1) holds for
k − 1, i.e.

µ(xk−1
m , xk−1

m−1) = xk−1
m

∏
1≤i≤k−2

µ(xin, xim).

Thus, in order to establish (5.1), we only need to show

µ(xkm, xkm−1) = xmµ(xk−1
n , xk−1

m )µ(xk−1
m , xk−1

m−1),
that is, by Lemma 5.3,

µ(xkm, xkm−1) = xmµ(xk−1
n , xk−1

m−1). (5.2)

In Sn, the predecessor of xkm is xm−1x
k−1
n . Hence we have

xkm
xm

−−−−−→ xm−1x
k−1
n

µ(xm−1x
k−1
n ,xm−1x

k−1
m )

−−−−−−−−−−−−−−−−−−→ xm−1x
k−1
m .

This means
µ(xkm, xm−1x

k−1
m ) = xmµ(xm−1x

k−1
n , xm−1x

k−1
m ). (5.3)

But it follows from Corollary 5.11 that
µ(xm−1x

k−1
n , xm−1x

k−1
m ) = µ(xk−1

n , xk−1
m ). (5.4)

By Lemma 5.3, we have
µ(xkm, xkm−1) = µ(xkm, xm−1x

k−1
m )µ(xm−1x

k−1
m , xkm−1).

Moreover, by (5.3) and (5.4) again, we have
µ(xkm, xm−1x

k−1
m ) = xmµ(xk−1

n , xk−1
m ).

Hence
µ(xkm, xkm−1) = xmµ(xk−1

n , xk−1
m )µ(xm−1x

k−1
m , xkm−1).

By Corollary 5.11, we have
µ(xm−1x

k−1
m , xkm−1) = µ(xk−1

m , xk−1
m−1).

This proves (5.2) and hence the claimed formula (5.1). �

Here is the promised general statement. As usual, by convention, an empty
product equals 1, as occurs below for m = n.

Theorem 5.14. For all 2 ≤ m ≤ n, for all k ≥ 1, and for all v ∈ Sn such that
max v ≤ m− 1, we have

µ(vxkm, vxkm−1) = xkm

n−m∏
i=1

x
(k−1+i

i+1 )
m+i . (5.5)
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Proof. By Corollary 5.11, we have

µ(vxkm, vxkm−1) = µ(xkm, xkm−1).

Hence, it suffices to establish (5.5) for v = 1. We proceed by induction on k and
descending induction on m. For k = 1 and any m ≥ 1, we have µ(xm, xm−1) = xm,
and this plainly coincides with the right-hand side of (5.5) since

(1−1+i
i+1

)
= 0 for

all i ≥ 1. Similarly, for m = n and any k ≥ 1, we have

xkn
xk

n

−−−−−−−−−→ xkn−1,

since L∗(xkn−1, x
k
n) = {xk−in−1x

i
n | 1 ≤ i ≤ k} and

µ(xkn, xkn−1) = maxgen(L∗(xkn−1, x
k
n)) =

∏
xk

n−1>v≥xk
n

λ(v).

Equivalently, in formula:

µ(xkn, xkn−1) = xkn.

Assume now that (5.5) holds for some m such that n ≥ m ≥ 2 and some k ≥ 2.
We now show that (5.5) also holds for m− 1. By arrow composition, we have

µ(xin, xim−1) = µ(xin, xim)µ(xim, xim−1).

Therefore,

k−1∏
i=1

µ(xin, xim−1) =
k−1∏
i=1

µ(xin, xim)
k−1∏
i=1

µ(xim, xim−1)

=
n−m∏
i=1

x
(k−1+i

i+1 )
m+i

k−1∏
i=1

µ(xim, xim−1) (by induction on m)

=
n−m∏
i=1

x
(k−1+i

i+1 )
m+i

k−1∏
i=1

xim

n−m∏
j=1

x
(i−1+j

j+1 )
m+j (by induction on k)

= x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )
m+i

k−1∏
i=1

n−m∏
j=1

x
(i−1+j

j+1 )
m+j

= x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )
m+i

n−m∏
j=1

k−1∏
i=1

x
(i−1+j

j+1 )
m+j

= x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )
m+i

n−m∏
j=1

x

∑k−1
i=1 (i−1+j

j+1 )
m+j .
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Exchanging the names of the indices i, j in the last product, we get
k−1∏
i=1

µ(xin, xim−1) = x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )
m+i

n−m∏
i=1

x

∑k−1
j=1 (i−1+j

i+1 )
m+i

= x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )+
∑k−1

j=1 (i−1+j
i+1 )

m+i

= x
(k

2)
m

n−m∏
i=1

x
(k−1+i

i+1 )+(k−1+i
i+2 )

m+i

= x
(k

2)
m

n−m∏
i=1

x
(k+i

i+2)
m+i

=
n−m∏
i=0

x
(k+i

i+2)
m+i .

Finally, substituting i with i− 1 in the last product yields
k−1∏
i=1

µ(xin, xim−1) =
n−(m−1)∏

i=1
x

(k−1+i
i+1 )

(m−1)+i.

Hence (5.5) also holds for m − 1, as claimed. This concludes the proof of the
theorem. �

5.2. Some maxgen computations. The following result uses the setsA1(v), A2(v)
introduced in Definition 3.3; it will be needed in view of applying Theorem 2.27.

Proposition 5.15. Let u = xi1 · · · xid with i1 ≤ · · · ≤ id. For all 1 ≤ k ≤ d − 1,
let uk = prek(u). Then

maxgen(gaps(u)) =
d−1∏
k=1

(maxgen(A2(u/uk)))|A1(uk)|.

Proof. Consider the description of gaps given in Proposition 3.4. For any monomial
w = w1w2 ∈ A1(uk)A2(u/uk) with w1 ∈ A1(uk) and w2 ∈ A2(u/uk), we have
max(w) = max(w2), since max(w1) < min(w2) by construction. Therefore, for
all k we have

maxgen(A1(uk)A2(u/uk)) = maxgen(A2(u/uk))|A1(uk)|. �

Since A2(u/uk) is the set of all monomials of degree deg(u/uk) in the variables xi
with min(u/uk) + 1 ≤ i ≤ n, we will be able to determine maxgen(A2(u/uk)) if we
can determine maxgen(Sn,d) for any n, d. Let us proceed to do just that. We start
with a recurrence formula.

Proposition 5.16. For all integers n, d ≥ 1, we have

maxgen(Sn,d) = maxgen(Sn−1,d)x
(n+d−2

d−1 )
n .
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Proof. Obviously, we have

Sn,d =
d⊔
i=0

Sn−1,d−i · xin.

This follows from writing any u ∈ Sn,d as u = vxin with v ∈ Sn−1,d−i. Hence

maxgen(Sn,d) =
d∏
i=0

maxgen(Sn−1,d−i · xin)

= maxgen(Sn−1,d)
d∏
i=1

x
|Sn−1,d−i|
n

= maxgen(Sn−1,d)x
∑d

i=1
|Sn−1,d−i|

n

= maxgen(Sn−1,d)x
∑d

i=1 (n−2+d−i
d−i )

n

= maxgen(Sn−1,d)x
∑d−1

j=0 (n−2+j
j )

n .

We conclude the proof by applying the well-known formula
d−1∑
j=0

(
n− 2 + j

j

)
=
(
n+ d− 2
d− 1

)
. �

Corollary 5.17. For all n, d, we have

maxgen(Sn,d) =
n∏
i=1

x
(d−2+i

d−1 )
i .

Proof. Use the above induction formula. �

Corollary 5.18. For all 1 ≤ l ≤ n and all d, let Sl,n,d be the set of all monomials
of degree d in the variables xl, . . . , xn. Then we have

maxgen(Sl,n,d) =
n∏
j=l

x
(d−1+j−l

d−1 )
j .

Proof. Directly follows from the preceding corollary by properly translating indices.
�

We may now inject this information into Proposition 5.15. This yields the
following result.

Theorem 5.19. Let u = xi1 · · · xid with i1 ≤ · · · ≤ id. Then

maxgen(gaps(u)) =
d−1∏
k=1

 n∏
j=ik+1+1

x
(d−k−2+j−ik+1

d−k−1 )
j

|B(xi1 ···xik
)|−1

,

where the internal product is set to 1 if ik+1 = n.
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Proof. The proof follows from Proposition 5.15 together with the above corollary.
Using Definition 3.3 for A1(v), A2(v), and since uk = xi1 · · · xik , we have

|A1(uk)| = |B(xi1 · · · xik )| − 1.

Moreover, A2(u/uk) is the set of all monomials of degree deg(u/uk) in the variables
xi with min(u/uk)+1 ≤ i ≤ n. Therefore, in order to determine maxgen(A2(u/uk)),
it remains to apply Corollary 5.18, using l = ik+1 + 1 since u/uk = xik+1 · · · xid
and so min(u/uk) = ik+1. �

6. On the first and last variables

For the determination of Gotzmann monomials in Sn, both variables x1 and xn
behave in some specific ways. This section describes how.

6.1. Neutrality of x1. Our purpose here is to show that a monomial u ∈ Sn is
Gotzmann if and only if x1u is. We start with some intermediate results.

Lemma 6.1. Let u, v ∈ Sn,d be such that u ≥ v. If x1 divides v then x1 divides u.

Proof. Write u = xi1 · · · xid , v = xj1 · · · xjd
, with 1 ≤ i1 ≤ · · · ≤ id ≤ n and

1 ≤ j1 ≤ · · · ≤ jd ≤ n. Without loss of generality, we may assume u > v. Hence
there exists an index 1 ≤ k ≤ d such that

i1 = j1, . . . , ik−1 = jk−1, ik < jk.

Therefore i1 ≤ j1. Assume x1 divides v. This is equivalent to j1 = 1. Since
1 ≤ i1 ≤ j1, we have that i1 = 1, whence x1 divides u and we are done. �

Lemma 6.2. Let u ∈ Sn,d. Then x1L(u) = L(x1u).

Proof. Let v ∈ L(u). Then v ≥ u, whence x1v ≥ x1u by Lemma 2.1, i.e. x1v ∈
L(x1u). Therefore x1L(u) ⊆ L(x1u). Conversely, let v′ ∈ L(x1u) ⊆ Sn,d+1. Then
v′ ≥ x1u. Hence, mutatis mutandis, x1 divides v′ by Lemma 6.1. Thus there
exists v ∈ Sn,d such that v′ = x1v. Now x1v ≥ x1u by hypothesis, whence v ≥ u
by Lemma 2.1 again, i.e. v ∈ L(u) and so v′ ∈ x1L(u). Therefore L(x1u) ⊆
x1L(u). �

In particular, the lemma implies that multiplying any lexsegment by x1 again
yields a lexsegment.

Lemma 6.3. Let B ⊆ Sn,d. Then (x1B)lex = x1B
lex.

Proof. We have |Blex| = |B| = |x1B|. Applying this to the set x1B yields

|(x1B)lex| = |x1B| = |B| = |Blex| = |x1B
lex|. (6.1)

Now Blex is a lexsegment, whence x1B
lex also is by Lemma 6.2 and the comment

following it. Moreover, x1B
lex has the same cardinality as the lexsegment (x1B)lex

by (6.1), whence these two lexsegments coincide. �
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Proposition 6.4. Let u ∈ Sn,d. Then gaps(x1u) = x1 gaps(u).
Proof. Let v′ ∈ gaps(x1u). Then v′ > x1u, whence x1 divides v′ by Lemma 6.1.
Let v ∈ Sn,d such that v′ = x1v. Since x1v ∈ gaps(x1u), it follows that v ∈ gaps(u),
since v ≥ u and v cannot belong to B(u), for otherwise x1v would belong to B(x1u).
Hence v′ ∈ x1 gaps(u).

Conversely, let v ∈ gaps(u). Then v > u, whence x1v > x1u and so x1v ∈
L(x1u). Since v /∈ B(u), it follows that x1v /∈ B(x1u), whence x1v ∈ gaps(x1u). �

Theorem 6.5. Let u ∈ Sn. Then u is Gotzmann if and only if x1u is Gotzmann.
Proof. First, some preliminary steps.
Step 1. We have B(x1u) = x1B(u).

Indeed, by applying transformations of the form v 7→ v′ = xiv/xj for v ∈ B(x1u)
or v ∈ x1B(u), with xj dividing v and 1 ≤ i < j, the variable x1 is not affected
since j ≥ 2, whence the claimed equality.
Step 2. We have x̃1u = x1ũ.

Indeed, it suffices to prove that L(x̃1u) = L(x1ũ). On the one hand, we have
L(x̃1u) = B(x1u)lex by definition. Now B(x1u) = x1B(u) by Step 1. Thus
L(x̃1u) = (x1B(u))lex, and (x1B(u))lex = x1B(u)lex by Lemma 6.3, and x1B(u)lex =
x1L(ũ) by definition. Finally, x1L(ũ) = L(x1ũ) by Lemma 6.2 applied to ũ. This
concludes the proof of Step 2.
Step 3. For all B ⊆ Sn,d, we have maxgen(x1B) = maxgen(B).

Indeed, this follows from Lemma 2.16 and the obvious equality λ(x1v) = λ(v)
for all v ∈ Sn,d.

We may now compare the maxgen monomials of gaps(u), cogaps(u) with those
of gaps(x1u), cogaps(x1u), respectively. First, by Proposition 6.4 and Step 3, we
have

maxgen(gaps(x1u)) = maxgen(gaps(u)). (6.2)
Symmetrically, we also have

maxgen(cogaps(x1u)) = maxgen(cogaps(u)), (6.3)
as we now show:

maxgen(cogaps(x1u)) = maxgen(L(x1u) \ L(x̃1u))
= maxgen(L(x1u) \ L(x1ũ)) (by Step 2)
= maxgen(x1(L(u) \ L(ũ))) (by Lemma 6.2)
= maxgen(L(u) \ L(ũ)) (by Step 3)
= maxgen(cogaps(u)).

The desired equivalence is now easy to establish. Indeed, it follows from (6.2) and
(6.3) that

maxgen(gaps(x1u)) = maxgen(cogaps(x1u))
if and only if

maxgen(gaps(u)) = maxgen(cogaps(u)).
Therefore, x1u is Gotzmann if and only if u is Gotzmann. �
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6.2. On gaps(uxn). For use in the next section, we shall need to control
maxgen(gaps(uxn)).

Definition 6.6. Let u ∈ Sn. For all i ≤ n, we shall use the notation
gaps(u, i) = {v ∈ gaps(u) | max v = i}.

Note that gaps(u, 1) is empty, for xd1 cannot be a gap since it obviously belongs
to B(u) for all u ∈ Sn,d.

Theorem 6.7. Let u ∈ Sn. Then for all 1 ≤ j ≤ n, we have

gaps(uxn, j) =
j⊔
i=1

gaps(u, i)xj .

Here is an equivalent formulation.

Theorem 6.8. Let u ∈ Sn. Then, for any w ∈ Sn, we have

w ∈ gaps(uxn) ⇐⇒ w

λ(w) ∈ gaps(u).

Proof. Let d = deg(u), and write u = xi1 · · · xid , with 1 ≤ i1 ≤ · · · ≤ id ≤ n. We
may assume deg(w) = d+1, for otherwise w cannot be a gap of uxn. Set max(w) =
m. Let v = w/λ(w), and write v = xj1 · · · xjd

, with 1 ≤ j1 ≤ · · · ≤ jd ≤ m.
By Lemma 3.1, v is a gap of u if and only if there exist indices 1 ≤ s < t ≤ d

such that js < is and jt > it. If these conditions are met, then since w = vxm with
m ≥ max(v), automatically w is a gap of uxn, still by Lemma 3.1. Conversely, if
w is a gap of uxn, and since max(w) ≤ max(uxn) = n, then the index t ≤ d + 1
given by Lemma 3.4 necessarily satisfies t ≤ d. Hence v is a gap of u. �

Corollary 6.9. Let u ∈ Sn. If maxgen(gaps(u)) =
n∏
i=1

xki
i then

maxgen(gaps(uxn)) =
n∏
j=1

x
k1+···+kj

j .

Proof. By Theorem 6.7, we have

| gaps(uxn, j)| =
j∑
i=1
| gaps(u, i)xj | =

j∑
i=1
| gaps(u, i)|.

The statement now follows from the definition of the maxgen monomial. �

7. Gotzmann monomials in S2, S3, S4

This section contains the main result of this paper, namely the characterization
of Gotzmann monomials in Sn for n = 4. This is achieved in Theorem 7.7. The
strategy is as follows. Let u = xa1

1 · · · x
an−1
n−1 x

t
n ∈ Sn. We may assume a1 = 0

by Theorem 6.5, according to which u is Gotzmann in Sn if and only if u/xa1
1 is.

We first compute w1 = maxgen(gaps(u)) using Theorem 5.19. The degree g of
w1 gives the numbers of gaps of u. We then focus on cogaps(u) = predg(u) and,
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more precisely, compute its maxgen monomial w2 = maxgen(predg(u)). Finally,
requiring w1 = w2 gives necessary and sufficient conditions on the exponent t of
xn for u to be a Gotzmann monomial.

Before turning to the case n = 4, we start by reviewing the known cases n = 2
and 3.

7.1. The case n = 2. This is easy. Indeed, every monomial u = xa1x
t
2 is Gotzmann

in S2. For in this case, the sets B(u) and L(u) coincide, whence B(u)lex = B(u)
and so B(u) is a Gotzmann set by Lemma 2.12.

7.2. The case n = 3. The result below for n = 3 may be deduced from [13,
Proposition 8]. As an illustration of the strategy briefly described above, we give
here an independent short proof using the tools developed in this paper.

Proposition 7.1. Let u = xa1x
b
2x
t
3 ∈ S3. Then u is a Gotzmann monomial in S3

if and only if t ≥
(
b
2
)
.

Proof. Let g = | gaps(u)|, w1 = maxgen(gaps(u)), and w2 = maxgen(cogaps(u)).
Then g = deg(w1) = deg(w2). A straightforward computation with Theorem 5.19
yields the monomial

w1 = x
(b

2)
3

independent of t. Therefore, g =
(
b
2
)
. Thus cogaps(u) = predg(u). Consider now

w2 = maxgen(predg(u)). For all i ≤ t, we have predi(u) = xa1x
b+i
2 xt−i3 . Thus

λ(predi(u)) = x3 if i < t and λ(predt(u)) = x2. Hence maxgen(predt(u)) = xt3
and maxgen(predt+1(u)) = x2x

t
3. Consequently, if t < g then x2 divides w2, by

Remark 2.17, and so w2 6= w1, whereas if t ≥ g then w2 = xg3 = w1. Thus u is
Gotzmann if and only t ≥ g, as claimed. �

7.3. The case n = 4. Our purpose in this section is to determine all Gotzmann
monomials in four variables. This is achieved in Theorem 7.7. As recalled above, it
suffices to consider monomials of the form xb2x

c
3x
t
4. Implementing our proof strategy

requires several preliminary results.

We start by determining maxgen(gaps(xb2xc3xt4)).

Proposition 7.2. Let u0 = xb2x
c
3 ∈ S4. Then for all t ≥ 0, we have

maxgen(gaps(u0x
t
4)) = x

(b
2)

3 x
f(t)
4 , (7.1)

where

f(t) = f(0) + t

(
b

2

)
,

f(0) =
(
b+ 1

3 + c

)(
b

2

)
+ (b+ 1)

(
c+ 1

2

)
+
(
c+ 1

3

)
− c.
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Proof.
Case t = 0. This is the longest part of the proof, yet it follows almost mechanically
from Theorem 5.19 and a few formulas. In the notation of that result, let us write
u0 = xi1 · · · xid , with i1 ≤ · · · ≤ id, where d = deg(u0) = b+ c. Thus

u0 = x2 · · ·x2︸ ︷︷ ︸
b times

x3 · · ·x3︸ ︷︷ ︸
c times

.

Hence for 1 ≤ k ≤ d, we have ik = 2 if k ≤ b, and ik = 3 otherwise. By
Theorem 5.19, we have

maxgen(gaps(u0)) =
d−1∏
k=1

 n∏
j=ik+1+1

x
(d−k−2+j−ik+1

d−k−1 )
j

|B(xi1 ···xik
)|−1

=
b−1∏
k=1

 4∏
j=3

x
(d−k−2+j−2

d−k−1 )
j

|B(xk
2 )|−1

·
d−1∏
k=b

(
x1

4
)|B(xb

2x
k−b
3 )|−1

=
b−1∏
k=1

(
x1

3x
d−k
4
)|B(xk

2 )|−1 ·
d−1∏
k=b

(
x1

4
)|B(xb

2x
k−b
3 )|−1

.

We now compute the involved exponents. We have |B(xk2)| = k+1, as follows from
the set equality B(xk2) = {xk−i1 xi2 | 0 ≤ i ≤ k}. On the other hand, we have

|B(xr2xs3)| =
(
s+ 1

2

)
+ (r + 1)(s+ 1),

as follows from the formula

|B(xr2xs3)| =
s∑
i=0
|B(xr+s−i2 )|

of Corollary 3.7, the above formula for |B(xk2)|, and some straightforward compu-
tations.

Inserting these exponent values into the above formula for maxgen(gaps(u0)),
we get

maxgen(gaps(u0)) =
b−1∏
k=1

(
x3x

d−k
4
)k · d−1∏

k=b
x

(k−b+1
2 )+(b+1)(k−b+1)−1

4

= x
(b

2)
3 xA+B

4 ,

where

A =
b−1∑
k=1

k(d− k),

B =
d−1∑
k=b

((
k − b+ 1

2

)
+ (b+ 1)(k − b+ 1)− 1

)
.
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By the formula
b−1∑
k=1

k2 = 2b− 1
3

(
b

2

)
and some straightforward computations, we get

A =
(
b+ 1

3 + c

)(
b

2

)
.

Similarly, the formula
c∑
l=1

(
l

2

)
=
(
c+ 1

3

)
and some further straightforward computations yield

B = (b+ 1)
(
c+ 1

2

)
+
(
c+ 1

3

)
− c.

As f(0) = A+B, the proof of formula (7.1) in the case t = 0 is complete.

Case t ≥ 1. For all s ≥ 1, Corollary 6.9 and the above case t = 0 imply

maxgen(gaps(u0x
s
4)) = maxgen(gaps(u0x

s−1
4 ))x(b

2)
4

by induction on s. The claimed formula

maxgen(gaps(u0x
t
4)) = x

(b
2)

3 x
f(t)
4

follows by induction on t. �

We now proceed to determine maxgen(cogaps(xb2xc3xt4)). We first need two lem-
mas.

Lemma 7.3. For all r ≥ 0 and s ≥ 1, we have

µ(xr2xs4, xr+1
2 xs−1

4 ) = x3x
s
4.

Proof. Starting from xr2x
s
4 and taking s+1 successive predecessors, Proposition 4.6

yields

xr2x
s
4

xs
4

−−−−−−−−−→ xb2x
s
3

x3
−−−−−−−−−→ xr+1

2 xs−1
4

in arrow notation, i.e. µ(xr2xs4, xb2xs3) = xs4 and µ(xb2xs3, xr+1
2 xs−1

4 ) = x3. The desired
formula follows by arrow composition. �

Lemma 7.4. For all r ≥ 0 and 1 ≤ i ≤ s, we have

µ(xr2xs4, xr+i2 xs−i4 ) = xi3x
(i+1

2 )+i(s−i)
4 .
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Proof. By induction on i. The case i = 1 is just Lemma 7.3. By arrow composition,
we have

µ(xr2xs4, xr+i2 xs−i4 ) =
i−1∏
j=0

µ(xr+j2 xs−j4 , xr+j+1
2 xs−j−1

4 ).

Applying Lemma 7.3 again to each factor, we get

µ(xr2xs4, xr+i2 xs−i4 ) = xi3x

∑i−1
j=0

(s−j)
4 .

Finally,
∑i−1
j=0(s− j) =

(
i+1
2
)

+ i(s− i) and the proof is complete. �

Proposition 7.5. We have

xb2x
c
3x
t
4

x
(b

2)
3 x

h(t)
4

−−−−−−−−−−→ x
b+(b

2)
2 x

c+t−(b
2)

4 ,

where

h(t) = (c+ t)
(
b

2

)
−
((b

2
)

2

)
− c.

Proof. Starting from xb2x
c
3x
t
4 and taking t + 1 successive predecessors, Proposi-

tion 4.6 yields

xb2x
c
3x
t
4

xt
4

−−−−−−−−−→ xb2x
c+t
3

x3
−−−−−−−−−→ xb+1

2 xc+t−1
4 .

Hence
µ(xb2xc3xt4, xb+1

2 xc+t−1
4 ) = x3x

t
4. (7.2)

From xb+1
2 xc+t−1

4 , we must still reach x
b+(b

2)
2 x

c+t−(b
2)

4 . This can be done using
Lemma 7.4 with (r, s, i) = (b+ 1, c+ t− 1,

(
b
2
)
− 1). We obtain

µ
(
xb+1

2 xc+t−1
4 , x

b+(b
2)

2 x
c+t−(b

2)
4

)
= x

(b
2)−1

3 x
((

b
2)
2 )+((b

2)−1)(c+t−(b
2))

4 . (7.3)

Hence, combining (7.2) and (7.3) using arrow composition, we get

µ
(
xb2x

c
3x
t
4, x

b+(b
2)

2 x
c+t−(b

2)
4

)
= x

(b
2)

3 x
((

b
2)
2 )+((b

2)−1)(c+t−(b
2))+t

4 .

It remains to show that the exponent of x4 in the monomial of the above right-hand
side is equal to h(t). Indeed, we have((b

2
)

2

)
+
((

b

2

)
− 1
)(

c+ t−
(
b

2

))
+ t

=
((b

2
)

2

)
+ (c+ t)

(
b

2

)
−
((

b

2

)
− 1
)(

b

2

)
− c.

Since

−
((

b

2

)
− 1
)(

b

2

)
= −2

((b
2
)

2

)
,

the desired equality with h(t) follows. �
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Remark 7.6. By Propositions 7.2 and 7.5, for t ≥ 0 we have

f(t)− h(t) = f(0)− c
(
b

2

)
+
((b

2
)

2

)
+ c

= b+ 1
3

(
b

2

)
+ (b+ 1)

(
c+ 1

2

)
+
(
c+ 1

3

)
+
((b

2
)

2

)
.

In particular, f(t)− h(t) is a positive constant. This will be used below.

Here is our main result.

Theorem 7.7. Let u = xa1x
b
2x
c
3x
t
4 ∈ S4. Then u is a Gotzmann monomial in S4

if and only if

t ≥
((b

2
)

2

)
+ b+ 4

3

(
b

2

)
+ (b+ 1)

(
c+ 1

2

)
+
(
c+ 1

3

)
− c.

As expected, the absence of exponent a in this bound on t is consistent with
Theorem 6.5.

Proof. By Theorem 6.5, we may assume a = 0. Let u0 = xb2x
c
3, so that u = u0x

t
4.

There are two steps.
Step 1. The monomial u0x

t
4 is Gotzmann if and only if

t ≥ f(t)− h(t) +
(
b

2

)
− c. (7.4)

Indeed, by Proposition 7.2, we have

maxgen(gaps(u0x
t
4)) = x

(b
2)

3 x
f(t)
4 . (7.5)

Thus | gaps(u0x
t
4)| =

(
b
2
)

+ f(t). For u0x
t
4 to be a Gotzmann monomial, we apply

the criterion given by Theorem 2.27. Thus, by (7.5), we need to determine those
t ≥ 0 for which

maxgen(cogaps(u0x
t
4)) = x

(b
2)

3 x
f(t)
4 . (7.6)

Now cogaps(u0x
t
4) = pred(b

2)+f(t)(u0x
t
4) by Proposition 4.4. In order to compute

the maxgen monomial of the set of
(
b
2
)

+ f(t) predecessors of u = u0x
t
4, we first

compute it for its
(
b
2
)

+ h(t) predecessors. Let

LI(t) = pred(b
2)+h(t)(u0x

t
4),

v(t) = pred(b
2)+h(t)(u0x

t
4).

Then LI(t) = L∗(v(t), u0x
t
4), and we seek the maxgen monomial of this lexinterval.

By Proposition 7.5, we have

u0x
t
4 = xb2x

c
3x
t
4

x
(b

2)
3 x

h(t)
4

−−−−−−−−−−→ x
b+(b

2)
2 x

c+t−(b
2)

4 .
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Hence

v(t) = x
b+(b

2)
2 x

c+t−(b
2)

4 ,

maxgen(LI(t)) = x
(b

2)
3 x

h(t)
4 .

Now, restarting from v(t), it remains to compute f(t)− h(t) more predecessors in
order to reach pred(b

2)+f(t)(u0x
t
4). We will then have

maxgen(cogaps(u0x
t
4)) = maxgen(LI(t)) maxgen(predf(t)−h(t)(v(t)))

= x
(b

2)
3 x

h(t)
4 maxgen(predf(t)−h(t)(v(t))).

Therefore, in order to satisfy equality (7.6) for u0x
t
4 to be a Gotzmann monomial,

it is necessary and sufficient to satisfy

maxgen(predf(t)−h(t)(v(t))) = x
f(t)−h(t)
4 .

Since v(t) = x
b+(b

2)
2 x

c+t−(b
2)

4 , the above condition is realizable if and only if the
exponent of x4 in v(t) is large enough, namely

c+ t−
(
b

2

)
≥ f(t)− h(t).

This condition being equivalent to (7.4), the proof of the claim in Step 1 is complete.
Step 2. A straightforward computation on the right-hand side of (7.4) yields

f(t)− h(t) +
(
b

2

)
− c = f0 + t

(
b

2

)
−
(

(c+ t)
(
b

2

)
−
((b

2
)

2

)
− c
)

+
(
b

2

)
− c

= f0 − c
(
b

2

)
+
((b

2
)

2

)
+ c+

(
b

2

)
− c

= f0 − c
(
b

2

)
+
((b

2
)

2

)
+
(
b

2

)
=
((b

2
)

2

)
+ b+ 4

3

(
b

2

)
+ (b+ 1)

(
c+ 1

2

)
+
(
c+ 1

3

)
− c.

The conjunction of Steps 1 and 2 completes the proof of the theorem. �
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