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COMPLETE LIFTING OF DOUBLE-LINEAR SEMI-BASIC
TANGENT VALUED FORMS TO WEIL LIKE FUNCTORS

ON DOUBLE VECTOR BUNDLES

W LODZIMIERZ M. MIKULSKI

Abstract. Let F be a product preserving gauge bundle functor on double
vector bundles. We introduce the complete lifting Fϕ : FK → ∧pT ∗FM ⊗
TFK of a double-linear semi-basic tangent valued p-form ϕ : K → ∧pT ∗M ⊗
TK on a double vector bundle K with base M . We prove that this com-
plete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results
obtained to double-linear connections.

1. Introduction

We assume that any manifold considered in the paper is Hausdorff, second count-
able, finite dimensional, without boundary and smooth (i.e. of class C∞). All maps
between manifolds are assumed to be smooth (of class C∞).
Definition 1.1. An almost double vector bundle is a system K = (Kr,Kl, Er, El)
of vector bundles Kr = (K, τr, Er), Kl = (K, τl, El), Er = (Er, τ l,M) and El =
(El, τ r,M) such that τ l ◦ τr = τ r ◦ τl (this means that the respective diagram is
commutative). We call M the basis of K.

If K ′ = (K ′r,K ′l , E′r, E′l) is another almost double vector bundle, an almost
double vector bundle map K → K ′ is a map f : K → K ′ such that there are
maps f

r
: Er → E′r, f l : El → E′l and f : M → M ′ such that (f, f

r
) : Kr → K ′r,

(f, f
l
) : Kl → K ′l , (f

r
, f) : Er → E′r and (f

l
, f) : El → E′l are vector bundle maps.

We call f : M →M ′ the base map of f .
For example, we have the trivial almost double vector bundleK=(Kr,Kl, Er, El),

where Kl = (Rm1×Rm2×Rn1×Rn2 , τl,Rm1×Rn1), Kr = (Rm1×Rm2×Rn1×
Rn2 , τr,Rm1×Rm2), Er = (Rm1 ×Rm2 , τ l,Rm1) and El = (Rm1×Rn1 , τ r,Rm1),
and where τr, τl, τ r, τ l are the obvious projections. We will denote this trivial al-
most double vector bundle by Rm1,m2,n1,n2 .
Definition 1.2. A double vector bundle is a locally trivial almost double vector
bundle K. This means that there are nonnegative integers m1,m2, n1, n2 such
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that for any x ∈ M there is an open neighborhood Ω ⊂ M of x such that K|Ω =
Rm1,m2,n1,n2 modulo an almost double vector bundle isomorphism.

The tangent bundle
TE = ((TE, πTE , E), (TE, Tπ, TM), (E, π,M), (TM, πTM ,M))

of a vector bundle E = (E, π,M) is an example of a double vector bundle.
Any manifold M can be treated as the double vector bundle M with basis M .

Definition 1.3. Let K be a double vector bundle as above. A double-linear vector
field on K is a vector field Z on K such that the flow of Z is formed by (local)
double vector bundle isomorphisms.

Any double linear vector field Z on K is projectable with respect to the (com-
mon) projection K →M . Thus we have the underlying vector field Z on M .

Definition 1.4. Let K be a double vector bundle as above with basis M . A double-
linear semi-basic tangent valued p-form on K is a section ϕ : K → ∧pT ∗M ⊗ TK
such that ϕ(X1, . . . , Xp) is a double linear vector field on K for any vector fields
X1, . . . , Xp on the basis M of K.

Definition 1.5. Let K be as above. A double-linear connection in K is a double-
linear semi-basic tangent valued 1-form Γ : K → T ∗M ⊗ TK on K such that the
underlying vector field of Γ(X) is equal to X for any vector field X on basis M .

Let DVB denote the category of all double vector bundles and their almost
double vector bundle maps, and let FM denote the category of fibered manifolds
and fibered maps. (In [14], the notation 2-VB instead of DVB is used.)

The general concept of (gauge) bundle functors can be found in [7]. We need
the following particular case of it.

Definition 1.6. A gauge bundle functor on DVB is a covariant functor F : DVB →
FM sending any double vector bundle K with basis M into a fibered manifold
pK : FK → M over M and any double vector bundle map f : K → K ′ with the
base map f : M →M ′ into a fibered map Ff : FK → FK ′ over f : M →M ′, and
satisfying the following conditions:

(i) Localization condition: For every double vector bundle K with basis M
and any open subset U ⊂M the inclusion map iK|U : K|U → K induces a
diffeomorphism FiK|U : F (K|U)→ p−1

K (U).
(ii) Regularity condition: F transforms smoothly parametrized families ofDVB-

maps into smoothly parametrized families of FM-maps.

A gauge bundle functor F on DVB is product preserving (ppgb-functor) if
F (K1 × K2) = F (K1) × F (K2) for any DVB-objects K1 and K2. Product pre-
serving gauge bundle functors can be also called Weil like functors, because the
product preserving bundle functors on manifolds are the usual Weil functors.

A simple example of a ppgb-functor on DVB is the tangent functor T sending
any DVB-object K into the tangent bundle TK (over M) and any DVB-map
f : K → K ′ into the tangent map Tf : TK → TK ′.
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By [14], the ppgb-functors F on DVB are in bijection with the AF -bilinear maps
�F : UF×V F →WF , where AF are Weil algebras and UF , V F and WF are finitely
dimensional (over R) AF -modules. Moreover, the ppgb-functors F on DVB have
values in DVB. For any such F , if K is a DVB-object with basis M , then FK is a
DVB-object with basis FM = TA

F

M ; see [14].
Let F be a ppgb-functor on DVB and let �F : UF × V F → WF be the

corresponding AF -bilinear map. Let K be a DVB-object. Then any double-
linear vector field Z on K can be lifted to the double-linear vector field FZ
on FK via F -prolongation of flow. By [14], for any a ∈ AF we have the affi-
nor af(a) : TFK → TFK on FK. We have af(a1a2) = af(a1) ◦ af(a2) and af(1) is
the identity affinor. If f : K → K1 is a DVB-map, then TFf ◦af(a) = af(a)◦TFf .

The main result of the paper is the following one (see Theorem 4.5):
Let F be a ppgb-functor on DVB. Let ϕ : K → ∧pT ∗M ⊗ TK be a double-

linear semi-basic tangent valued p-form on a double vector bundle K with basis M .
Then there exists one and only one double-linear semi-basic tangent valued p-form
Fϕ : FK → ∧pT ∗FM ⊗ TFK on FK such that
Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp) = af(a1 · . . . · ap) ◦ F(ϕ(X1, . . . , Xp))

for any vector fields X1, . . . , Xp on M and any a1, . . . , ap ∈ AF .

Definition 1.7. We call Fϕ (as above) the complete lift of ϕ to F .

Next we study the complete lifting F . We prove that F commutes with the
Frolicher–Nijenhuis bracket (see Theorem 5.1) and apply this fact to double-linear
connections Γ : K → T ∗M ⊗ TK in K (see Theorem 6.3).

By the local description of double vector bundles, presented in [8], the notion of
double vector bundles in the sense of the present paper is equivalent to the one in
the book [11]. Product preserving (gauge) bundle functors are studied in [1, 6, 7,
9, 10, 12, 13, 14, 16, 17, 18]. Liftings of vector fields to product preserving (gauge)
bundle functors are studied in [5, 10, 14]. Complete lifting of general connections on
fibered manifolds to Weil functors is studied in [7]. Complete lifting of semi-basic
tangent valued p-forms on fibered manifolds to Weil functors is studied in [2, 3].
Complete lifting of linear semi-basic tangent valued forms to product preserving
gauge bundle functors on vector bundles is studied in [15]. The Frolicher–Nijenhuis
bracket on projectable tangent valued forms is studied in [4].

2. Preliminaries

Let K be a double vector bundle. Let M be the basis of K and π : K →M be
the projection.

Lemma 2.1. Let Z,Z1 be double-linear vector fields on K, α a real number and
f : M → R a map. Then Z+Z1, αZ, f ◦π ·Z and [Z,Z1] are double linear vector
fields on K.

Proof. Using DVB-charts, we may assume K = Rm1,m2,n1,n2 . Let x1, . . . , xm1 ,
u1, . . . , um2 , v1, . . . , vn1 , w1, . . . , wn2 be the usual coordinates. A map f : K → K
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is a DVB-map if and only if it is of the form

xi ◦ f = αi(x), i = 1, . . . ,m1,

uj ◦ f =
m2∑
j1=1

βjj1
(x)uj1 , j = 1, . . . ,m2,

vk ◦ f =
n1∑
k1=1

γkk1
(x)vk1 , k = 1, . . . , n1,

wl ◦ f =
n2∑
l1=1

γll1(x)wl1 +
m2∑
j1=1

n1∑
k1=1

σlj1k1
(x)uj1vk1 , l = 1, . . . , n2,

where x = (x1, . . . , xm1). Consequently, a vector field Z on K is double linear if
and only if it is of the form

Z =
m1∑
i=1

ai(x) ∂

∂xi
+

m2∑
j,j1=1

bj1
j (x)uj ∂

∂uj1
+

n1∑
k,k1=1

ck1
k (x)vk ∂

∂vk1

+
n2∑

l,l1=1

el1l (x)wl ∂

∂wl1
+

m2∑
j2=1

n1∑
k2=1

n2∑
l2=1

f l2j2k2
(x)uj2vk2

∂

∂wl2
.

(2.1)

The lemma is now clear. �

Now, we treat K as a fibered manifold over M or (generally) let π : K →M be
an arbitrary fibered manifold.

Definition 2.2. A projectable semi-basic tangent valued p-form on K is a section
ϕ : K → ∧pT ∗M ⊗TK such that ϕ(X1, . . . , Xp) is a projectable vector field on K.

Given a projectable semi-basic tangent valued p-form ϕ : K → ∧pT ∗M ⊗ TK
we have the underlying tangent valued p-form ϕ : M → ∧pT ∗M ⊗ TM on M such
that ϕ(X1, . . . , Xp) is the underlying vector field of the projectable vector field
ϕ(X1, . . . , Xp) for any vector fields X1, . . . , Xp on M .

The following fact is well known; see e.g. [3, 4].

Lemma 2.3. Given a projectable semi-basic tangent-valued p-form ϕ : K →
∧pT ∗M ⊗ TK on K and a projectable semi-basic tangent valued q-form ψ : K →
∧qT ∗M ⊗ TK on K there exists a (unique) projectable semi-basic tangent valued
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(p+ q)-form [[ϕ,ψ]] : K → ∧p+qT ∗M ⊗ TK on K such that
[[ϕ,ψ]](X1, . . . , Xp+q)

= 1
p!q!

∑
σ

sgn σ · [ϕ(Xσ1, . . . , Xσp), ψ(Xσ(p+1), . . . , Xσ(p+q))]

+ −1
p!(q − 1)!

∑
σ

sgn σ · ψ([ϕ(Xσ1, . . . , Xσp), Xσ(p+1)], Xσ(p+2), . . . )

+ (−1)pq

(p− 1)!q!
∑
σ

sgn σ · ϕ([ψ(Xσ1, . . . , Xσq), Xσ(q+1)], Xσ(q+2), . . . )

+ (−1)p−1

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · ψ(ϕ([Xσ1, Xσ2], Xσ3, . . . ), Xσ(p+2), . . . )

+ (−1)(p−1)q

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · ϕ(ψ([Xσ1 , Xσ2], Xσ3, . . . ), Xσ(q+2), . . . )

(2.2)

for any vector fields X1, . . . , Xp+q on M , where sums are over all permutations
σ : {1, . . . , p+ q} → {1, . . . , p+ q} and sgn σ is the signum of σ.

The underlying tangent valued (p+ q)-form of [[ϕ,ψ]] is [[ϕ,ψ]].

Definition 2.4. The bracket [[−,−]] is called the Frolicher–Nijenhuis bracket.

Proposition 2.5. Let K be a double vector bundle with basis M . Let ϕ : K →
∧pT ∗M⊗TK be a double-linear (then projectable) semi-basic tangent valued p-form
on K and let ψ : K → ∧qT ∗M ⊗ TK be a double-linear semi-basic tangent valued
q-form on K. Then the Frolicher–Nijenhuis bracket [[ϕ,ψ]] : K → ∧p+qT ∗M⊗TK
is a double-linear semi-basic tangent valued (p+ q)-form on K.

Proof. It follows from formula (2.2), Lemma 2.1 and Definition 1.4. �

We end this section with the DVB-version of the well-known fact of the simplicity
of vector fields.

Lemma 2.6. Let Z be a double linear vector field on a double vector bundle K
such that the underlying vector field Z on basis M is nonzero at a point xo ∈ M .
Then there exists a local DVB-coordinate system (x1, . . . ) on K with centrum xo
such that Z = ∂

∂x1 .

Proof. The proof is quite similar to that of the manifold case. We may assume
that K = Rm1,m2,n1,n2 , xo = 0 and Z |0 = ∂

∂x1 |0. Let {ϕt} be the flow of Z.
Then Φ : K → K given by Φ(x1, . . . ) = ϕx1(0, x2, . . . ) is a local DVB-isomorphism
sending ∂

∂x1 to Z. �

3. On the complete lifting of double-linear vector fields to
ppgb-functors on double vector bundles

Let F : DVB → FM be a ppgb-functor. We know that F : DVB → DVB. Let
Z be a double-linear vector field on a double vector bundle K.
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Definition 3.1. The complete lift of Z to F is the double-linear vector field FZ
on FK corresponding to the flow {Fϕt}, where {ϕt} is the flow of Z.

Lemma 3.2. If ϕ : K → K1 is a (locally defined) DVB-isomorphism, then
F(ϕ∗Z) = (Fϕ)∗FZ.

Proof. The flow of ϕ∗Z is {ϕ ◦ϕt ◦ϕ−1}. Then the flow of F(ϕ∗Z) is {Fϕ ◦Fϕt ◦
(Fϕ)−1}. The last flow is the one of (Fϕ)∗FZ. �

Lemma 3.3. If α is a real number, then F(αZ) = αFZ. Consequently, F(αZ +
α1Z1) = αFZ+α1FZ1 for any real numbers α and α1 and any double linear vector
fields Z and Z1 on K.

Proof. If {ϕt} is the flow of Z, then {ϕαt} is the flow of αZ. So, {Fϕαt} is the flow
of F(αZ) and of αFZ. Hence, F is R-linear because of the homogeneous function
theorem and the nonlinear Peetre theorem [7]. �

Let �F : UF × V F →WF be the AF -bilinear map corresponding to F .

Lemma 3.4. Let Z be a double linear vector field on a double vector bundle K with
basis M and let a ∈ AF . Then af(a) ◦ FZ is a double linear vector field on FK.

Proof. We may assume that the underlying vector field Z is nowhere vanishing.
Then using DVB-charts and Lemma 2.6 we may assume that Z = ∂

∂x1 and K =
Rm1,m2,n1,n2 . Then FK = (AF )m1 × (UF )m2 × (V F )n1 × (WF )n2 and af(a) ◦ FZ
can be treated as a vector field on (AF )m1 (and consequently as a double linear
vector field on FK). �

By Lemma 2.1, if Z and Z1 are double linear vector fields on K then so is [Z,Z1].

Proposition 3.5. For any double linear vector fields Z and Z1 on K and any
a, a1 ∈ AF we have

[af(a) ◦ FZ, af(a1) ◦ FZ1] = af(aa1) ◦ F([Z,Z1]). (3.1)

Proof. We may assume thatK = Rm1,m2,n1,n2 , Z = ∂
∂x1 and Z1 = f(x1, . . . , xm1)Z2,

where Z2 ∈
{

∂
∂xi , u

j ∂
∂uj1 , v

k ∂
∂vk1 , w

l ∂
∂wl1 , u

jvk ∂
∂wl

}
.

If Z2 = ∂
∂xi , then the formula is the well-know one for usual Weil functors on

manifolds. For other values of Z2, using formula (3.2) (below) and the known for-
mula aFZ(a1Ff) = aa1F (Z(f)) for usual Weil functors on manifolds, we get
[af(a) ◦ FZ, af(a1) ◦ F(fZ2)] = [a · FZ, a1Ff · FZ2] = aFZ(a1Ff) · FZ2 =
aa1F (Z(f)) · FZ2 = aa1 · F(Z(f)Z2) = af(aa1) ◦ F([Z,Z1]). �

Lemma 3.6. Let Z be a double linear vector field on K and let f : M → R be a
map. Then

F(f ◦ π · Z) = Ff ◦ Fπ · FZ, (3.2)
where π : K → M is the projection (we treat M as a DVB-object and π as a
DVB-map in the obvious way) and Ff : FM → FR = AF . Here (in the right of
the formula) a · y := af(a)(y) for a ∈ AF and y ∈ TFK.
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Proof. By Lemma 2.1, f ◦π ·Z is double linear. So, both sides of (3.2) make sense.
By the linearity of F , we may assume that Z is not π-vertical. Then by Lemma 2.6
we may assume that K = Rm1,m2,n1,n2 and Z = ∂

∂x1 . Then we may additional
assume that K = M is a manifold, Z is a vector field on M and F is a Weil functor
on manifolds. Then our lemma is the (well known for Weil functors on manifolds)
formula F(fZ) = Ff · FZ. �

4. On the complete lifting of double-linear semi-basic tangent
valued p-forms to ppgb-functors on double vector bundles

For a moment, let F be a ppgb-functor (Weil functor) on manifolds. Let ω ∈
Ωp(M) be a p-form on a manifold M . Then ω : TM ×M . . . ×M TM → R is a
fiber skew p-linear map. Applying F , we get the fibre skew p-linear (over AF ) map
Fω : FTM×FM . . .×FMFTM → AF (this is a well-known fact for Weil functors on
manifolds). Then applying the exchange isomorphism ηM : TFM → FTM , which
is a vector bundle isomorphism (this is also a well-known fact for Weil functors on
manifolds), we obtain the AF -valued p-form

Fω := Fω ◦ (ηM × . . . × ηM ) : TFM ×FM . . . ×FM TFM → AF

over FM .
Lemma 4.1. Fω is the unique AF -valued p-form on FM such that
Fω(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp) = a1 · . . . · ap · F (ω(X1, . . . , Xp)) (4.1)

for any vector fields X1, . . . , Xp on M and any a1, . . . , ap ∈ AF .
Proof. The uniqueness is a consequence of the well-known fact for Weil functors
on manifolds that the vector fields af(a) ◦ FX generate over C∞(M) the vector
space X (FM). Formula (4.1) follows from the well-known (for Weil functors on
manifolds) equalities FX = η−1

M ◦ FX and ηM ◦ af(a) = a · ηM . �

Definition 4.2. The AF -valued p-form on FM satisfying (4.1) is called the com-
plete lift of ω to F .

For the rest of this section, let F : DVB → FM be a ppgb-functor.
Let x1, . . . , xm1 , u1, . . . , um2 , v1, . . . , vn1 , w1, . . . , wn2 be the usual coordinates

on Rm1,m2,n1,n2 .
Because of the local expression (2.1) of double-linear vector fields and of the

Definition 1.4 of double-linear semi-basic tangent valued p-forms, any double-linear
semi-basic tangent valued p-form ϕ on Rm1,m2,n1,n2 is of the form

ϕ =
m1∑
i=1

ϕi ⊗R
∂

∂xi
+

m2∑
j,j1=1

ψjj1
⊗R uj1

∂

∂uj

+
n1∑

k,k1=1
χkk1
⊗R vk1

∂

∂vk
+

n2∑
l,l1=1

ξll1 ⊗R wl1
∂

∂wl

+
m2∑
j=1

n1∑
k=1

n2∑
l=1

ρljk ⊗R ujvk
∂

∂wl
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for unique p-forms ϕi, ψjj1
, χkk1

, ξll1 , ρljk on Rm, where (ω ⊗R Z)(X1, . . . , Xp) :=
ω(X1, . . . , Xp) ◦ π · Z.

For any such ϕ we define its complete lift Fϕ by

Fϕ :=
m1∑
i=1
Fϕi ⊗AF F ∂

∂xi
+

m2∑
j,j1=1

Fψjj1
⊗AF F

(
uj1

∂

∂uj

)

+
n1∑

k,k1=1
Fχkk1

⊗AF F
(
vk1

∂

∂vk

)
+

n2∑
l,l1=1

Fξll1 ⊗AF F
(
wl1

∂

∂wl

)

+
m2∑
j=1

n1∑
k=1

n2∑
l=1
Fρljk ⊗AF F

(
ujvk

∂

∂wl

)
,

(4.2)

where (Fω ⊗AF FZ)(Y1, . . . , Yp) := Fω(Y1, . . . , Yp) ◦ Fπ · FZ for Y1, . . . , Yp ∈
X (FRm1).

Proposition 4.3. The complete lift Fϕ as in (4.2) is the unique double-linear
semi-basic tangent valued p-form on FRm1,m2,n1,n2 such that

Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp) = af(a1 · . . . · ap) ◦ F(ϕ(X1, . . . , Xp)) (4.3)

for any a1, . . . , ap ∈ AF and any X1, . . . , Xp ∈ X (Rm1).

Proof. The uniqueness is clear because the vector fields af(a)◦FX for a ∈ AF and
X ∈ X (Rm1) generate (over C∞(FRm1)) the vector space X (FRm1). This is a
well-known fact for Weil functors on manifolds.

Now, we prove (4.3). Since both sides of (4.3) are linear in ϕ, we may assume that
ϕ = ω⊗RZ, where ω ∈ Ωp(Rm1) and Z ∈

{
∂
∂xi , u

j1 ∂
∂uj , v

k1 ∂
∂vk , w

l1 ∂
∂wl , u

jvk ∂
∂wl

}
.

Then by (4.2), (4.1) and (3.2) we have

Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp)
= F(ω ⊗R Z)(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp)
= (Fω ⊗AF FZ)(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp)
= Fω(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp) ◦ Fπ · FZ
= a1 · . . . · ap · F (ω(X1, . . . , Xp)) ◦ Fπ · FZ
= a1 · . . . · ap · F(ω(X1, . . . , Xp) ◦ π · Z)
= a1 · . . . · ap · F((ω ⊗R Z)(X1, . . . , Xp))
= af(a1 · . . . · ap) ◦ F(ϕ(X1, . . . , Xp)). �

Lemma 4.4. For any (local) double vector bundle isomorphism f : Rm1,m2,n1,n2 →
Rm1,m2,n1,n2 and any double-linear semi-basic tangent valued p-form ϕ on the dou-
ble vector bundle Rm1,m2,n1,n2 , we have (Ff)∗Fϕ = F(f∗ϕ).

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)



COMPLETE LIFTING ON DOUBLE VECTOR BUNDLES 359

Proof. We have

(Ff)∗Fϕ(af(a1) ◦ FX1, . . . , af(ap)FXp)
= Fϕ(Ff−1

∗ (af(a1) ◦ FX1), . . . , Ff−1
∗ (af(ap) ◦ FXp))

= Fϕ(af(a1) ◦ F(f−1
∗ X1), . . . , af(ap) ◦ F(f−1

∗ Xp))
= af(a1 · . . . · ap) ◦ Fϕ(F(f−1

∗ X1), . . . ,F(f−1
∗ Xp))

= af(a1 · . . . · ap) ◦ F(ϕ(f−1
∗ X1, . . . , f

−1
∗ Xp))

= af(a1 · . . . · ap) ◦ F((f∗ϕ)(X1, . . . , Xp))
= F(f∗ϕ)(af(a1) · FX1, . . . , af(ap) · FXp).

Now, applying the uniqueness case of Proposition 4.3 (or, better, the sentence of
the proof of the uniqueness case of Proposition 4.3) we end the proof. �

We are now in a position to prove the following result.

Theorem 4.5. Let F be a ppgb-functor on DVB. Let ϕ : K → ∧pT ∗M ⊗ TK
be a double-linear semi-basic tangent valued p-form on a double vector bundle K
with basis M . Then there exists one and only one double-linear semi-basic tangent
valued p-form Fϕ : FK → ∧pT ∗FM ⊗ TFK on FK such that

Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp) = af(a1 · . . . · ap) ◦ F(ϕ(X1, . . . , Xp)) (4.4)

for any vector fields X1, . . . , Xp on M and any a1, . . . , ap ∈ AF .

Proof. Using DVB-charts on K, we spread the complete lifting of double-linear
semi-basic tangent valued p-forms on Rm1,m2,n1,n2 to the one on K. This is possible
because of Lemma 4.4. �

5. The complete lifting of double-linear semi-basic tangent valued
p-forms preserves the Frolicher–Nijenhuis bracket

Let F be a ppgb-functor on DVB. Then F : DVB → DVB.
Let ϕ : K → ∧pT ∗M ⊗TK be a double-linear semi-basic tangent valued p-form

on K and let ψ : K → ∧qT ∗M ⊗ TK be a double-linear semi-basic tangent valued
q-form on K. We can lift ϕ and ψ to FK and obtain a double-linear semi-basic tan-
gent valued p-form Fϕ on FK and a double-linear semi-basic tangent valued q-form
Fψ on FK. Then we can produce the Frolicher–Nijenhuis bracket [[Fϕ,Fψ]]. By
Proposition 2.5, this bracket is a double-linear semi-basic tangent valued (p + q)-
form on FK.

On the other hand, by Proposition 2.5, the Frolicher–Nijenhuis bracket [[ϕ,ψ]] is
a double-linear semi-basic tangent valued (p+ q)-form on K. So, we can lift it and
obtain a double-linear semi-basic tangent valued (p+ q)-form F([[ϕ,ψ]]) on FK.

Theorem 5.1. We have

F([[ϕ,ψ]]) = [[Fϕ,Fψ]]. (5.1)
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Proof. For any a1, . . . , ap+1 ∈ AF and vector fields X1, . . . , Xp+q on M we have

[Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp),
Fψ(af(ap+1) ◦ FXp+1, . . . , af(ap+q) ◦ FXp+q)]
= af(a1 · . . . · ap+q) ◦ F([ϕ(X1, . . . , Xp), ψ(Xp+1, . . . , Xp+q)]).

Indeed, applying formulas (4.4) and (3.1) we easily get

[Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp),
Fψ(af(ap+1) ◦ FXp+1, . . . , af(ap+q) ◦ FXp+q)]

= [af(a1 · . . . · ap) ◦ F(ϕ(X1, . . . , Xp)),
af(ap+1 · . . . · ap+q) ◦ F(ψ(Xp+1, . . . , Xp+q))]

= af(a1 · . . . · ap+q) ◦ F([ϕ(X1, . . . , Xp), ψ(Xp+1, . . . , Xp+q)]).

Similarly, we have

Fψ([Fϕ(af(a1) ◦ FX1, . . . , af(ap) ◦ FXp), af(ap+1) ◦ FXp+1],
af(ap+2) ◦ FXp+2, . . . , af(ap+q) ◦ FXp+q)

= af(a1 · . . . · ap+q) ◦ F(ψ([ϕ(X1, . . . , Xp), Xp+1], Xp+2, . . . , Xp+q))

and

Fψ(Fϕ([af(a1) ◦ FX1, af(a2) ◦ FX2], af(a3) ◦ FX3, . . . , af(ap+1) ◦ FXp+1),
af(ap+2) ◦ FXp+2, . . . , af(ap+q) ◦ FXp+q)

= af(a1 · . . . · ap+q) ◦ F(ψ(ϕ([X1, X2], X3, . . . , Xp+1), Xp+2, . . . , Xp+q)),

and the same formulas with ϕ replaced by ψ and vice versa, and the same for-
mulas with indices 1, . . . , p + q replaced by σ(1), . . . , σ(p + q). Now, using the
above formulas and formula (4.4) for [[ϕ,ψ]] instead of ϕ and formula (2.2) on the
Frolicher–Nijenhuis bracket [[ϕ,ψ]] and formula (2.2) with ϕ and ψ replaced by Fϕ
and Fψ, and the R-linearity of the complete lifting of vector fields (Lemma 3.3),
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we get
F([[ϕ,ψ]])(af(a1) ◦ FX1, . . . , af(ap+q) ◦ FXp+q)

= af(a) ◦ F([[ϕ,ψ]](X1, . . . , Xp+q))

= 1
p!q!

∑
σ

sgn σ · af(a) ◦ F([ϕ(Xσ1, . . . , Xσp), ψ(Xσ(p+1), . . . , Xσ(p+q))])

+ −1
p!(q − 1)!

∑
σ

sgn σ · af(a) ◦ F(ψ([ϕ(Xσ1, . . . , Xσp), Xσ(p+1)], Xσ(p+2), . . . ))

+ (−1)pq

(p− 1)!q!
∑
σ

sgn σ · af(a) ◦ F(ϕ([ψ(Xσ1, . . . , Xσq), Xσ(q+1)], Xσ(q+2), . . . ))

+ (−1)p−1

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · af(a) ◦ F(ψ(ϕ([Xσ1, Xσ2], Xσ3, . . . ), Xσ(p+2), . . . ))

+ (−1)(p−1)q

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · af(a) ◦ F(ϕ(ψ([Xσ1 , Xσ2], Xσ3, . . . ), Xσ(q+2), . . . ))

= 1
p!q!

∑
σ

sgn σ · [Fϕ(af(aσ1) ◦ FXσ1, . . . ),Fψ(af(aσ(p+1)) ◦ FXσ(p+1), . . . )]

+ −1
p!(q − 1)!

∑
σ

sgn σ · Fψ([Fϕ(af(aσ1) ◦ FXσ1, . . . ), af(aσ(p+1)) ◦ FXσ(p+1)], . . . )

+ (−1)pq

(p− 1)!q!
∑
σ

sgn σ · Fϕ([Fψ(af(aσ1) ◦ FXσ1, . . . ), af(aσ(p+1)) ◦ FXσ(p+1)], . . . )

+ (−1)p−1

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · Fψ(Fϕ([af(aσ1) ◦ FXσ1, af(aσ2) ◦ FXσ2], . . . ), . . . )

+ (−1)(p−1)q

(p− 1)!(q − 1)!2!
∑
σ

sgn σ · Fϕ(Fψ([af(aσ1) ◦ FXσ1, af(aσ2) ◦ FXσ2], . . . ), . . . )

= [[Fϕ,Fψ]](af(a1) ◦ FX1, . . . , af(ap+q) ◦ FXp+q),

for any vector fields X1, . . . , Xp+q on M and any a1, . . . , ap+q ∈ AF , where a :=
a1 · . . . · ap+q. Then, since the vector fields af(a) ◦ FX generate (over C∞(FM))
the space X (FM), formula (5.1) holds. �

6. An application to double-linear general connections

Let F be a ppgb-functor on DVB.
In Definition 1.5, we introduced the concept of double-linear connections Γ in a

double vector bundle K.
Lemma 6.1. Given a double linear connection Γ in K, its complete lift FΓ is a
double-linear connection in FK.
Proof. Since Γ(X) is a double-linear vector field on K with the underlying vector
field equal to X, we have that FΓ(af(a)◦FX) = af(a) ·F(Γ(X)) is a double-linear
vector field with the underlying vector field equal to af(a) ◦ FX. Consequently,
for any vector field Y ∈ X (FM), FΓ(Y ) is a double linear vector field with the
underlying vector field equal to Y . �
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Definition 6.2. A curvature of a double linear connection Γ in a double vector
bundle K is RΓ := 1

2 [[Γ,Γ]] : K → ∧2T ∗M ⊗V K (i.e., RΓ(X,Y ) = [Γ(X),Γ(Y )]−
Γ([X,Y ])).

Theorem 6.3. We have
RFΓ = F(RΓ).

Proof. It is clear because of F([[Γ,Γ]]) = [[FΓ,FΓ]]. �
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