The total co-independent domination number of some graph operations
DOI:
https://doi.org/10.33044/revuma.1652Abstract
A set $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total dominating set $D$ is called a total co-independent dominating set if the subgraph induced by $V(G) - D$ is edgeless. The minimum cardinality among all total co-independent dominating sets of $G$ is the total co-independent domination number of $G$. In this article we study the total co-independent domination number of the join, strong, lexicographic, direct and rooted products of graphs.
Downloads
References
H. Abdollahzadeh Ahangar, M. Chellali and V. Samodivkin, Outer independent Roman dominating functions in graphs, Int. J. Comput. Math. 94 (2017), no. 12, 2547–2557. MR 3740665.
H. Abdollahzadeh Ahangar, M. Chellali and S. M. Sheikholeslami, Outer independent double Roman domination, Appl. Math. Comput. 364 (2020), 124617, 9 pp. MR 3993956.
A. Cabrera Martínez, Double outer-independent domination number of graphs, Quaest. Math. 44 (2021), no. 12, 1835–1850. MR 4356810.
A. Cabrera Martínez, J. C. Hernández-Gómez, E. Parra Inza and J. M. Sigarreta Almira, On the total outer $k$-independent domination number of graphs, Mathematics 8 (2020), no. 2, article #194. https://doi.org/10.3390/math8020194.
A. Cabrera Martínez, F. A. Hernández-Mira, J. M. Sigarreta Almira and I. G. Yero, A note on total co-independent domination in trees, https://arxiv.org/abs/2005.02185 [math.CO], 2020.
A. Cabrera Martínez, F. A. Hernández Mira, J. M. Sigarreta Almira and I. G. Yero, On computational and combinatorial properties of the total co-independent domination number of graphs, Comput. J. 62 (2019), no. 1, 97–108. MR 3897420.
A. Cabrera Martínez, D. Kuziak and I. G. Yero, Outer-independent total Roman domination in graphs, Discrete Appl. Math. 269 (2019), 107–119. MR 4016589.
A. Cabrera Martínez, D. Kuziak and I. G. Yero, A constructive characterization of vertex cover Roman trees, Discuss. Math. Graph Theory 41 (2021), no. 1, 267–283. MR 4171002.
P. Dorbec, S. Gravier, S. Klavžar and S. Špacapan, Some results on total domination in direct products of graphs, Discuss. Math. Graph Theory 26 (2006), no. 1, 103–112. MR 2230822.
M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008), no. 10, 2025–2029. MR 2394471.
W. Fan, A. Ye, F. Miao, Z. Shao, V. Samodivkin and S. M. Sheikholeslami, Outer-independent Italian domination in graphs, IEEE Access 7 (2019) 22756–22762. https://doi.org/10.1109/ACCESS.2019.2899875.
T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 133–138. MR 0131370.
D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 87–95. MR 0392645.
R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, second edition, CRC Press, Boca Raton, FL, 2011. MR 2817074.
M. A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009), no. 1, 32–63. MR 2474998.
M. A. Henning and A. Yeo, Total Domination in Graphs, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060714.
D. Kuziak, M. Lemańska and I. G. Yero, Domination-related parameters in rooted product graphs, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 1, 199–217. MR 3439855.
Z. Li, Z. Shao, F. Lang, X. Zhang and J. B. Liu, Computational complexity of outer-independent total and total Roman domination numbers in trees, IEEE Access 6 (2018) 35544–35550. https://doi.org/10.1109/ACCESS.2018.2851972.
C. Löwenstein, In the Complement of a Dominating Set, Ph.D. Dissertation, Technische Universität Ilmenau, Germany, 2010. https://d-nb.info/1007949198/34.
R. J. Nowakowski and D. F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996), no. 1, 53–79. MR 1429806.
D. F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005), no. 1-2, 35–44. MR 2152047.
D. Seinsche, On a property of the class of $n$-colorable graphs, J. Combinatorial Theory Ser. B 16 (1974), 191–193. MR 0337679.
N. D. Soner, B. V. Dhananjaya Murthy and G. Deepak, Total co-independent domination in graphs, Appl. Math. Sci. (Ruse) 6 (2012), no. 129-132, 6545–6551. MR 2989791.
S. Špacapan, The $k$-independence number of direct products of graphs and Hedetniemi's conjecture, European J. Combin. 32 (2011), no. 8, 1377–1383. MR 2838023.
P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962), 47–52. MR 0133816.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Abel Cabrera-Martinez, Suitberto Cabrera-Garcia, Iztok Peterin, Ismael Gonzalez Yero
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.