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Vol. 62, No. 2, 2021, Pages 365–383
Published online: November 4, 2021
https://doi.org/10.33044/revuma.1722

SIMPLE, LOCAL AND SUBDIRECTLY IRREDUCIBLE STATE
RESIDUATED LATTICES

MOHAMMAD TAHERI, FARHAD KHAKSAR HAGHANI, AND SAEED RASOULI

Abstract. This paper is devoted to investigating the notions of simple, local
and subdirectly irreducible state residuated lattices and some of their related
properties. The filters generated by a subset in state residuated lattices are
characterized and it is shown that the lattice of filters of a state residuated
lattice forms a complete Heyting algebra. Maximal, prime and minimal prime
filters of a state residuated lattice are investigated and it is shown that any
filter of a state residuated lattice contains a minimal prime filter. Finally, the
relevant notions are discussed and characterized.

1. Introduction

The notion of a state is an analogue of probability measure. Such a notion plays
a crucial role in the theory of quantum structures which generalizes the Kolmogorov
probabilistic space. Forty years after the appearance of MV-algebras [2], states of
MV-algebras (MV-states) have been introduced by [17] as maps from any MV-
algebra to the real unit interval [0, 1] satisfying a normalization condition and a
generalized version of the finite additivity law of classical probability measures.
This notion was introduced as an averaging process for formulas in  Lukasiewicz
logic and also as a special case of a state on a D-poset [14]. Since MV-algebras with
state are not universal algebras, they do not automatically induce an assertional
logic. The papers [7] and [8] presented an algebraizable logic using a probabilistic
approach, and its equivalent algebraic semantics is precisely the variety of state MV-
algebras. The concept of a state BL-algebra was introduced by [4], as an extension
of the concept of a state MV-algebra. The paper [11] introduced the notion of
state operators on residuated lattices and investigated some related properties of
such operators. Recently, [13] and [19] defined and studied some properties of
generalized state operators on residuated lattices and non-commutative residuated
lattices, respectively. The present work is greatly motivated by the the ones above
and a desire to extend these investigations to residuated lattices. Our findings
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show that the results obtained by [3] can also be reproduced and improved via
state residuated lattices.

This paper is organized in four sections. In Section 2, some definitions, properties
and results relative to residuated lattices and state residuated lattices are recalled.
We illustrate them by some examples of residuated lattices which will be used in
the following sections of the paper. Also, it is shown that the filter lattice of a state
residuated lattice forms a complete Heyting algebra and the set of principal filters of
a state residuated lattice A is a sublattice of the filter lattice of A. In Section 3, the
notions of maximal, prime and minimal prime filter of a state residuated lattice are
investigated and two fundamental theorem are given for prime and minimal prime
filters (Theorems 3.8 and 3.11). Furthermore, it is observed that any filter of a state
residuated lattice contains a minimal prime filter (Corollary 3.12). In Section 4,
the notions of simple, local and subdirectly irreducible state residuated lattices are
investigated. It is proved that a good state residuated lattice Aν is simple if and
only if A is simple as a residuated lattice (Proposition 4.1). Local state residuated
lattices are characterized by means of nilpotent elements (Corollary 4.9) and it is
shown that a good and faithful state residuated lattice Aν is local if and only if
A is local as a residuated lattice (Corollary 4.11). Finally, subdirectly irreducible
state residuated lattices are characterized and it is shown that a good and faithful
state residuated lattice Aν is subdirectly irreducible if and only if A is subdirectly
irreducible as a residuated lattice (Corollary 4.21).

2. Preliminaries

In this section, we recall some definitions, properties and results relative to resid-
uated lattices and state residuated lattices which will be used in the following. For
a survey of residuated lattices we refer to [12] and for a survey of state residuated
lattices we refer to [19]. The results in this section are original, unless otherwise
stated.

2.1. Residuated lattices. An algebra A = (A;∨,∧,�,→, 1) is called a commu-
tative residuated lattice if `(A) = (A;∨,∧) is a lattice, (A;�, 1) is a commutative
monoid and (�,→) is an adjoint pair, i.e., a�b ≤ c iff a ≤ b→ c, for all a, b, c ∈ A.
A commutative residuated lattice with a constant 0 (which can denote any element)
is called a pointed commutative residuated lattice or a commutative full Lambek al-
gebra (FLe algebra). If 1 is a top element of `(A), then A is called a commutative
integral residuated lattice. An FLe algebra A in which (A;∨,∧, 0, 1) is a bounded
lattice is called a FLew algebra. An FLew algebra is sometimes called a commu-
tative bounded integral residuated lattice. In this paper, by a residuated lattice we
mean an FLew algebra. A residuated lattice A is called nondegenerate if 0 6= 1. For
a residuated lattice A and a ∈ A we put ¬a := a→ 0. We denote by RL the class
of residuated lattices. Following the results of [1], we deduce that the class RL
is equational, hence it forms a variety. A residuated lattice A is called a divisible
residuated lattice if it satisfies the divisibility condition

(div) x� (x→ y) = x ∧ y.
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We denote by DRL the class of divisible residuated lattices. Obviously, the class
DRL is equational. Hence it forms a subvariety of the variety RL. A residuated
lattice A in which x� y = x ∧ y (or equivalently, x2 = x) for all x, y ∈ A is called
a Heyting algebra or pseudo-Boolean algebra [20]. Obviously, any Heyting algebra
is a divisible residuated lattice.

The following remark provides some rules of calculus in a residuated lattice
which will be used in this paper.

Remark 2.1 ([12, Proposition 2.2]). Let A be a residuated lattice. The following
conditions are satisfied for any x, y, z ∈ A:

(r1) x� (y ∨ z) = (x� y) ∨ (x� z);
(r2) x ∨ (y � z) ≥ (x ∨ y)� (x ∨ z).

Example 2.2. Let A6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is given
by Figure 1. Routine calculation shows that A6 = (A6;∨,∧,�,→, 0, 1) is a resid-
uated lattice where the commutative operation “�” is given by Table 1 and the
operation “→” is defined by x→ y =

∨
{a ∈ A6 | x� a ≤ y}, for any x, y ∈ A6.

� 0 a b c d 1
0 0 0 0 0 0 0

a a a 0 a a
b a 0 a b

c c c c
d d d

1 1

Table 1

0

c
a

b
d

1

Figure 1

Example 2.3. Let C6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is given
by Figure 2. Routine calculation shows that C6 = (C6;∨,∧,�,→, 0, 1) is a resid-
uated lattice where the commutative operation “�” is given by Table 2 and the
operation “→” is defined by x→ y =

∨
{a ∈ C6 | x� a ≤ y}, for any x, y ∈ C6.

Example 2.4. Let A7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram is
given by Figure 3. Routine calculation shows that A7 = (A7;∨,∧,�,→, 0, 1) is a
residuated lattice where the commutative operation “�” is given by Table 3 and
the operation “→” is defined by x→ y =

∨
{a ∈ A7 | x�a ≤ y}, for any x, y ∈ A7.

Let A be a residuated lattice. A non-void subset F of A is called a filter of A if
x, y ∈ F implies x�y ∈ F and x∨y ∈ F for any x ∈ F and y ∈ A. The set of filters
of A is denoted by F (A). A filter F of A is called proper if F 6= A. Clearly, F is a
proper filter if and only if 0 /∈ F . For any subset X of A the filter of A generated
by X is denoted by F (X). For each x ∈ A the filter generated by {x} is denoted
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� 0 a b c d 1
0 0 0 0 0 0 0

a 0 0 0 0 a
b 0 0 0 b

c 0 0 c
d 0 d

1 1

Table 2

0

c
a

b
d

1

Figure 2

� 0 a b c d e 1
0 0 0 0 0 0 0 0

a a a a a a a
b b a b a b

c a a c c
d b c d

e e e
1 1

Table 3

0

a

b c

d e

1

Figure 3

by F (x) and called principal filter. The set of principal filters of A is denoted by
PF (A). Recall [10, Definition 41] that if A is a complete lattice, an element a ∈ A
is called compact provided that a ≤

∨
X, for any X ⊆ A, implies that a ≤

∨
Y for

some finite Y ⊆ X. According to [5], (F (A);∩,Y,1, A) is a complete lattice whose
compact elements are exactly the principal filters of A.

Remark 2.5. Recall [10, §5.7] that a complete lattice A is called a frame if it
satisfies the join infinite distributive law (JID), i.e., for any a ∈ A and S ⊆ A,
a ∧

∨
S =

∨
{a ∧ s | s ∈ S}. It is well known that a complete lattice is a Heyting

algebra if and only if it is a frame. According to [9], for any residuated lattice A,
the complete lattice F (A) is a frame. So (F (A);∩,Y, ↪→, 0, 1) is a Heyting algebra
where F ↪→ G = Y{H ∈ F (A) | F ∩H ⊆ G}, for any F,G ∈ F (A).

The following proposition has a routine verification.

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)



STATE RESIDUATED LATTICES 369

Proposition 2.6. Let A be a residuated lattice and F be a filter of A. The following
assertions hold for any x, y ∈ A and X ⊆ A:

(1) F (F,X) := F YF (X) = {a ∈ A | f�x1�· · ·�xn ≤ a, f ∈ F, x1, . . . , xn ∈
X, n ≥ 1};

(2) F (F, x) ∩F (F, y) = F (F, x ∨ y);
(3) x ≤ y implies F (F, y) ⊆ F (F, x);
(4) F (F, x) YF (F, y) = F (F, x ∧ y) = F (F, x� y) = F (F, x, y);
(5) PF (A) is a sublattice of F (A).

Let A be a residuated lattice. We define the distance functions d(a, b) = (a →
b)� (b→ a), for any a, b ∈ A. With any filter of a residuated lattice A we associate
a binary relation ≡F on A by

(a, b) ∈ ≡F if and only if d(a, b) ∈ F .

The binary relation ≡F is an equivalence relation on A. ≡F is called the equiv-
alence relation induced by F . In the following, for any a ∈ A, the equivalence class
a/≡F is denoted by [a]F .

2.2. State residuated lattices.

Definition 2.7 ([19]). Let A be a residuated lattice. A mapping ν : A → A is
called a state operator on A if it satisfies the following assertions:

(s1) ν(0) = 0;
(s2) ν is monotone;
(s3) ν(x→ y) = ν(x)→ ν(x ∧ y);
(s4) ν(ν(x)� ν(y)) = ν(x)� ν(y);
(s5) ν(ν(x) ∨ ν(y)) = ν(x) ∨ ν(y);
(s6) ν(ν(x) ∧ ν(y)) = ν(x) ∧ ν(y).

If A is a residuated lattice and ν is a state operator on A, then the pair Aν =
(A; ν) is called a state residuated lattice or, more precisely, a residuated lattice with
internal state ν. We denote by SRL the class of state residuated lattices. By [19,
Lemma 3.1], it follows that the class SRL is equational and so it is a variety. For
any state operator ν on a residuated lattice A, we set ker(ν) = ν←(1). A state
operator ν is called faithful if ker(ν) = {1}.

Example 2.8. Let A be a residuated lattice. Clearly iA is a state operator. So
AiA is a state residuated lattice.

Example 2.9. Let A be a residuated lattice and ν be an idempotent endomorphism
of A. Clearly ν is a state operator. So Aν is a state residuated lattice.

Example 2.10. Consider Example 2.4. One can check that the mapping ν :
A7 −→ A7 defined by ν(x) = 0 for x ∈ {0, a, b, c} and ν(x) = 1 for x ∈ {d, e, 1} is
a state operator.
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Proposition 2.11. Let Aν be a state residuated lattice. The following assertions
hold for any x, y ∈ A:

(s7) ν(¬x) = ¬ν(x);
(s8) ν(x)� ν(y) ≤ ν(x� y);
(s9) ν2(x) = ν(x);

(s10) if x and y are comparable, then ν(x→ y) = ν(x)→ ν(y).

Proof. It follows by [19, Proposition 3.6]. �

Lemma 2.12. Let Aν be a state residuated lattice. If ν is faithful, then ν(x) = 0
implies that x = 0.

Proof. Let ν be a faithful operator and ν(x) = 0, for some x ∈ A. By (s7) it follows
that ν(¬x) = 1 and this implies that ¬x = 1. So we have 0 ≤ x ≤ ¬¬x = 0 and
thus the result holds. �

Let A be a residuated lattice. Following [19, Definition 3.7], a mapping ν : A→
A is called a good state operator on A if it satisfies (s1), (s4), (s5), (s6) and the
following assertion:

(gs) ν(x→ y) = ν(x)→ ν(y).
Let A be a residuated lattice and ν be a good state operator on A. The pair

Aν = (A; ν) is called a good state residuated lattice. By [19, Proposition 3.8] it
follows that if Aν is a good state residuated lattice, then it satisfies (s2) and (s3),
and so Aν is a state residuated lattice.

Proposition 2.13. Let A be a chain residuated lattice. Then any state operator
on A is good.

Proof. It is obvious by (s10). �

Lemma 2.14. Let Aν be a good state residuated lattice. The state operator ν is
faithful if and only if it is injective.

Proof. Let ν be a faithful operator and ν(x) = ν(y), for some x, y ∈ A. By (gs) we
have ν(x→ y) = ν(x)→ ν(y) = ν(y)→ ν(y) = 1 and this ensures that x→ y = 1
by the hypothesis of faithfulness of ν. Analogously, we can obtain that y → x = 1
and this shows that x = y. The converse is evident. �

Proposition 2.15. Let Aν be a good state residuated lattice. The following asser-
tion holds for any x, y ∈ A:

ν(x� y) = ν(x)� ν(y).

Proof. It follows by [19, Proposition 3.9]. �

Let Aν be a state residuated lattice. A subset F of A is called a filter of Aν if
F is a filter of A and ν(F ) ⊆ F . The set of filters of Aν is denoted by F (Aν).
It is obvious that {1}, ker(ν), A ∈ F (Aν). One can easily check that if F is a
filter of A contained in ker(ν), then F is a filter of Aν . For any subset X of A
the filter of Aν generated by X is denoted by FAν (X), and when there is no
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ambiguity it is denoted by F ν(X). For any x ∈ A, the filter of Aν generated by
{x} is denoted by F ν(x) and called principal filter of Aν . The set of principal
filters of Aν is denoted by PF (Aν). A congruence < of A is called a congruence
of Aν (or, ν-congruence) if (a1, a2) ∈ < implies (ν(a1), ν(a2)) ∈ <. The set of all
ν-congruences will be denoted by Con(Aν). It is obvious that ∆A, κ(ν) ∈ Con(Aν),
where ∆A = {(a, a) | a ∈ A} and κ(ν) = {(a1, a2) ∈ A2 | ν(a1) = ν(a2)}. By [19,
Proposition 4.10] it follows that if Aν is a state residuated lattice then there is a
lattice isomorphism between ν-filters and ν-congruences of Aν .

Example 2.16. Consider the state residuated lattices (A6; iA6) from Example 2.2,
(C6; iC6) from Example 2.3 and (A7; iA7) from Example 2.4. The set of their filters
is presented in Table 4.

filters
A6 {1}, {d, 1}, {a, b, d, 1}, {c, d, 1}, A6

C6 {1}, C6

A7 {1}, {b, d, 1}, {e, 1}, {a, b, c, d, e, 1}, A7

Table 4

By [19, Proposition 3.6 s18] it follows that if Aν is a state residuated lattice,
then ν(A) is a subalgebra of A. Let Aν be a state residuated lattice and F be a
ν-filter of Aν . In the following, we set ν←(F ) = {a ∈ A | ν(a) ∈ F}.

Proposition 2.17. Let Aν be a state residuated lattice. The following assertions
hold:

(1) F ∈ F (A) implies ν←(F ) ∈ F (Aν);
(2) F ∈ F (Aν) implies F ∩ ν(A) = ν(F ) ∈ F (ν(A));
(3) F ∈ F (ν(A)) implies ν←(F ) ∈ F (Aν).

Proof. It follows by [19, Proposition 4.2]. �

Proposition 2.18. Let Aν be a state residuated lattice and F be a filter of Aν . The
mapping ν/F : A/F −→ A/F defined by ν/F (a/F ) = ν(a)/F is a state operator
on A/F .

Proof. It follows by [19, Proposition 4.3]. �

Remark 2.19. The state residuated lattice (A/F ; ν/F ) in the above proposition
shall be called the quotient state residuated lattice and denoted by Aν/F .

Proposition 2.20. Let Aν be a state residuated lattice and X be a subset of A.
Then F ν(X) = F (X ∪ ν(X)).

Proof. It follows by [19, Proposition 4.4]. �
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Corollary 2.21. Let Aν be a state residuated lattice, F be a filter of Aν and
x, y ∈ A. The following assertions hold:

(1) F ν(x) = F (x� ν(x)) = F (x ∧ ν(x)) = F (x, ν(x)) = F (x) YF (ν(x));
(2) F ν(F, x) = F (F∪(x�ν(x))) = {a ∈ A | f�(x�ν(x))n ≤ a, f ∈ F, n ≥ 1};
(3) if x ≤ y then F ν(y) ⊆ F ν(x);
(4) F ν(ν(x)) ⊆ F ν(x).

Proof. It follows by [19, Corollary 4.5]. �

Proposition 2.22. Let Aν be a state residuated lattice. Then (F (Aν);∩,Y, {1}, A)
is a complete sublattice of F (A).

Proof. Let F be a subfamily of F (Aν). Obviously we have ∩F ∈ F (Aν). Also,
we have ν(∪F) = ∪F∈Fν(F ) ⊆ ∪F and so by Proposition 2.20 it follows that

ν(YF) = ν(F (∪F))
= ν(F (∪F ∪ ν(∪F)))
= ν(F ν(∪F))
⊆ F ν(∪F) = F (∪F) = YF .

This shows that F (Aν) is a complete sublattice of the complete lattice F (A). �

Corollary 2.23. Let Aν be a state residuated lattice. F (Aν) is a frame.

Proof. It follows by Remark 2.5 and Proposition 2.22. �

Corollary 2.24. Let Aν be a state residuated lattice and x, y ∈ A. The following
assertions hold:

(1) F ν(x) ∩F ν(y) = F (x ∨ y, x ∨ ν(y), ν(x) ∨ y, ν(x) ∨ ν(y));
(2) F ν(x) YF ν(y) = F (x, y, ν(x), ν(y));
(3) F ν(x� y) ⊆ F ν(x) YF ν(y).

Proof. (1): By distributivity of the lattice F (A), Proposition 2.6 (4) and Corol-
lary 2.21 (1), we have the following sequence of formulas:

F ν(x) ∩F ν(y) = F (x� ν(x)) ∩F (y � ν(y))
= (F (x) YF (ν(x))) ∩ (F (y) YF (ν(y)))
= (F (x) ∩F (y)) Y (F (x) ∩F (ν(y)))
Y (F (ν(x)) ∩F (y)) Y (F (ν(x)) ∩F (ν(y)))

= F (x ∨ y) YF (x ∨ ν(y)) YF (ν(x) ∨ y) YF (ν(x) ∨ ν(y))
= F (x ∨ y, x ∨ ν(y), ν(x) ∨ y, ν(x) ∨ ν(y)).

(2): By Proposition 2.6 (4) and Corollary 2.21 (1), we have the following sequence
of formulas:

F ν(x) YF ν(y) = F (x, ν(x)) YF (y, ν(y))
= F (x, y, ν(x), ν(y)).

(3): It is a direct consequence of Corollary 2.21 (1) and (2). �
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Corollary 2.25. Let Aν be a state residuated lattice and x, y ∈ A. The following
assertions hold:

(1) F ν(x) ∩F ν(y) = F ν((x� ν(x)) ∨ (y � ν(y)));
(2) F ν(x) YF ν(y) = F ν(x� y).

Proof. (1): By Proposition 2.21 (1) we have F ν((x� ν(x))∨ (y� ν(y))) = F ((x�
ν(x))∨ (y� ν(y))) YF (ν((x� ν(x))∨ (y� ν(y)))). By Proposition 2.6 (2) and (4)
we have

F ((x� ν(x)) ∨ (y � ν(y))) = F (x� ν(x)) ∩F (y � ν(y))
= (F (x) YF (ν(x))) ∩ (F (y) YF (ν(y)))
= (F (x) ∩F (y)) Y (F (x) ∩F (ν(y)))
Y (F (ν(x)) ∩F (y)) Y (F (ν(x)) ∩F (ν(y)))

= F (x ∨ y) YF (x ∨ ν(y)) YF (ν(x) ∨ y)
YF (ν(x) ∨ ν(y))

= F (x ∨ y, x ∨ ν(y), ν(x) ∨ y, ν(x) ∨ ν(y)).

On the other hand, by Proposition 2.6 (3) we have F (ν((x� ν(x))∨ (y� ν(y)))) ⊆
F (ν(x) ∨ ν(y)). So the result holds by Corollary 2.24 (1).

(2): It follows by Corollaries 2.21 (3) and 2.24 (3). �

Corollary 2.26. Let Aν be a state residuated lattice. Then PF (Aν) is a sublattice
of F (Aν).

Proof. It follows immediately by Corollary 2.25. �

3. Maximal, prime and minimal prime filters

In this section, the notions of maximal, prime and minimal prime filters of a state
residuated lattice are investigated. Let Aν be a state residuated lattice. Recall that
a proper filter M of Aν is called maximal if it is not strictly contained in any filter
of Aν [19]. We use Max(Aν) to denote the set of all maximal filters of Aν .

Proposition 3.1. Any proper ν-filter of a state residuated lattice Aν can be ex-
tended to a maximal ν-filter.

Proof. It follows by [19, Proposition 4.12]. �

The following proposition characterizes maximal filters of a residuated lattice.

Proposition 3.2. Let Aν be a state residuated lattice. For any proper ν-filter M ,
the following assertions are equivalent:

(1) M is a maximal ν-filter;
(2) if x /∈M , there exists an integer n such that ¬(ν(x))n ∈M .

Proof. It follows by [19, Theorem 4.14]. �
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Corollary 3.3. Let Aν be a state residuated lattice and M be a maximal filter
of Aν . Then the state operator ν/M is faithful.

Proof. Let ν/M(x/M) = 1/M . So ν(x)/M = 1/M and this implies that ν(x) ∈M .
Assume that x /∈ M . Then by Proposition 3.2 it follows that (¬ν(x))n ∈ M ,
for some integer n and so ¬ν(x) ∈ M . This means that 0 ∈ M and this is a
contradiction. So we have x ∈ M and so x/M = 1/M . This shows that the state
operator ν/M is faithful. �

Let Aν be a state residuated lattice and α be a cardinal. A proper filter G of Aν
is called α-irreducible if for any family of filters F of cardinal α, G =

⋂
F implies

G = F , for some F ∈ F . A filter G is called (finite) irreducible if it is α-irreducible
for any (finite) cardinal α. A filter P is called prime if it is finite irreducible. It
is obvious that a proper filter P of Aν is prime if and only if P is 2-irreducible.
The set of prime filters of Aν is called the prime spectrum of Aν and denoted by
Spec(Aν). Clearly, any maximal filter of Aν is irreducible and hence prime. The
next proposition characterizes prime filters of a state residuated lattice.
Proposition 3.4. Let Aν be a state residuated lattice. For any proper filter P
of Aν , the following assertions are equivalent:

(1) P is prime;
(2) F1 ∩ F2 ⊆ P implies F1 ⊆ P or F2 ⊆ P , for any F1, F2 ∈ F (Aν);
(3) (x� ν(x)) ∨ (y � ν(y)) ∈ P implies x ∈ P or y ∈ P , for any x, y ∈ A.

Proof. It follows by [19, Proposition 4.18]. �

Proposition 3.5. Let Aν be a state residuated lattice and P be a proper ν-filter
of Aν . If {F ∈ F (Aν) | P ⊆ F} is a chain, then P is ν-prime.

Proof. Let Σ = {F ∈ F (Aν) | P ⊆ F} be a chain. Assume that P is not ν-prime.
So there exist x, y ∈ A such that (x � ν(x)) ∨ (y � ν(y)) ∈ P , x /∈ P and y /∈ P .
Since F ν(P, x),F ν(P, y) ∈ Σ, without loss of generality let F ν(P, x) ⊆ F ν(P, y).
By distributivity of F (Aν) and Corollary 2.25 (1), we have the following sequence
of formulas:

P = P YF ν((x� ν(x)) ∨ (y � ν(y))) = P Y (F ν(x) ∩F ν(y))
= F ν(P, x) ∩F ν(P, y)
= F ν(P, x).

This shows that x ∈ P ; a contradiction. Hence P must be a prime filter. �

Let Aν be a state residuated lattice. A nonempty subset C of A is called a
∨-closed subset of Aν if x, y ∈ C implies that (x� ν(x)) ∨ (y � ν(y)) ∈ C . The set
of ∨-closed subsets of Aν shall be denoted by C (Aν). Clearly, {1}, A ∈ C (Aν).
Remark 3.6. (1) It is obvious that a filter P is prime if and only if P c := A\P

is ∨-closed. Also, if Γ is a family of prime filters, then (∪Γ)c is ∨-closed.
(2) A ∨-closed set C in [6, Theorem 3.8] and [13, Lemma 1] is defined as a

subset in which x, y ∈ C implies x ∨ y ∈ C , but in Theorem 3.11 we show
that the complement of a prime filter must be a ∨-closed set.
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Let Aν be a state residuated lattice. It is obvious that (A; C (Aν)) is a closed set
system. The closure operator associated with this system shall be denoted by C ν .

Lemma 3.7. Let Aν be a state residuated lattice, F be a filter of Aν and x ∈ A.
If C ν(x) ∩ F 6= ∅, then x ∈ F .

Proof. It is obvious that y ∈ C ν(x) implies y ≤ x. This proves the result. �

Theorem 3.8 (Prime filter theorem). If C is a ∨-closed subset of a state residuated
lattice Aν which does not meet the filter F , then F is contained in a filter P which
is maximal with respect to the property of not meeting C ; furthermore P is prime.

Proof. Let Σ = {G ∈ F (Aν) | F ⊆ G, G ∩ C = ∅}. We can easily find that Σ
satisfies the conditions of Zorn’s lemma. Let P be a maximal element of Σ. Let
(x� ν(x)) ∨ (y � ν(y)) ∈ P and neither x /∈ P nor y /∈ P . By maximality of P we
have F ν(P, x)∩C 6= ∅ and F ν(P, y)∩C 6= ∅. Suppose that ax ∈ F ν(P, x)∩C and
ay ∈ F ν(P, y)∩C . By Corollary 2.25 (1), we get that (ax�ν(ax))∨ (ay�ν(ay)) ∈
P ∩ C ; a contradiction. �

Corollary 3.9. Let F be a filter of a state residuated lattice Aν and X be a subset
of A. The following assertions hold:

(1) if X * F , there exists a prime filter P which is maximal with respect to
the property of containing F and X * P ;

(2) F ν(X) =
⋂
{P ∈ Spec(Aν) | X ⊆ P}.

Proof. (1): Let x ∈ X − F . By taking C ν(x) and using Lemma 3.7 it follows that
C ν(x) ∩ F = ∅. So the result holds by Theorem 3.8.

(2): Set σ = {P ∈ Spec(Aν) | X ⊆ P}. Obviously, we have F ν(X) ⊆
⋂
σ. Let

a /∈ F ν(X). By (1) it follows that there exits a prime filter P containing F ν(X)
such that a /∈ P . This shows that a /∈

⋂
σ. �

Let Aν be a state residuated lattice and X be a subset of A. A prime filter P
is called a minimal prime filter belonging to X, or an X-minimal prime filter, if
{Q ∈ Spec(Aν) | X ⊆ Q ⊆ P} = P . The set of all X-minimal prime filters
of Aν is denoted by MinX(Aν). A prime filter P is called a minimal prime filter if
P ∈ Min1(Aν). The following result is an easy consequence of Zorn’s lemma.

Lemma 3.10. Let F be a filter of a state residuated lattice Aν . If C is a ∨-
closed subset of Aν which does not meet F , then C is contained in a state ∨-closed
subset C of Aν which is maximal with respect to the property of not meeting F .

The following theorem gives a fundamental characterization of minimal prime
filters in a state residuated lattice.

Theorem 3.11 (Minimal prime filter theorem). Let F be a filter of a state resid-
uated lattice Aν . A subset P of A is an F -minimal prime filter of Aν if and only if
P c (the complement of P in A) is a ∨-closed subset of Aν which is maximal with
respect to the property of not meeting F .
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Proof. Let P be a subset of A such that P c is a ∨-closed subset of Aν which is
maximal with respect to the property of not meeting F . By Proposition 3.8, there
exists a prime filter Q containing F which does not meet P c. So Q is contained
in P . By Remark 3.6 (1), Qc is a ∨-closed subset of Aν containing P c and we have
Qc ∩F = ∅. So by maximality of P c we deduce that P c = Qc and this means that
P = Q. This shows that P is a prime filter and moreover that P is an F -minimal
prime filter.

Conversely, let P be an F -minimal prime filter of Aν . By Remark 3.6 (1), P c
is a ∨-closed subset of Aν . By using Lemma 3.10, we can get a ∨-closed subset C
of Aν which is maximal with respect to the property of not meeting F . By the
case just proved, C c is an F -minimal prime filter which does not meet P c and this
implies that C c ⊆ P . By hypothesis C = P c, and this shows that P c is a ∨-closed
subset of Aν which is maximal with respect to the property of not meeting F . �

Corollary 3.12. Let Aν be a state residuated lattice, X be a subset of A and P
be a prime filter containing X. There exists an X-minimal prime filter which is
contained in P .

Proof. By Remark 3.6 (1), P c is a ∨-closed subset of Aν such that P c∩F ν(X) = ∅.
By Lemma 3.10, we can obtain a ∨-closed subset C of Aν containing P c which is
maximal with respect to the property of not meeting F ν(X). By Theorem 3.11,
C c is an F ν(X)-minimal prime filter which is contained in P . Consequently, C c

is an X-minimal prime filter which is contained in P . �

The following corollary should be compared with Corollary 3.9 (2).

Corollary 3.13. Let F be a filter of a state residuated lattice Aν and X be a subset
of A. The following assertions hold:

(1) If X * F , there exists an F -minimal prime filter m such that X * m;
(2) F ν(X) =

⋂
MinX(Aν).

Proof. (1): It is a direct consequence of Corollary 3.9 (1) and Corollary 3.12.
(2): Set σX = {P ∈ Spec(Aν) | X ⊆ P}. By Corollary 3.9 (2), it is sufficient

to show that
⋂

MinX(Aν) =
⋂
σX . It is obvious that

⋂
σX ⊆

⋂
MinX(Aν). Let

a ∈
⋂

MinX(Aν) and P be an arbitrary element of σX . By Corollary 3.12, there
exists an X-minimal prime filter m containing in P . Hence, a ∈ m ⊆ P and this
states that

⋂
MinX(Aν) ⊆

⋂
σX . �

Example 3.14. Consider the state residuated lattices (A6; iA6) from Example 2.2,
(C6; iC6) from Example 2.3 and (A7; iA7) from Example 2.4. The set of their max-
imal, prime and minimal prime filters is presented in Table 5.
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prime filters
Maximal Minimal

A6 {a,b,d,1},{c,d,1} {d,1} {1}
C6 {1} {1}
A7 {a,b,c,d,e,1} {b,d,1},{e,1}

Table 5

4. Simple, local and subdirectly irreducible state
residuated lattices

In this section we study the notion of simple, local and subdirectly irreducible
state residuated lattices and find relations between them. Recall that for a residu-
ated lattice A and a ∈ A we put an := a� · · · � a (n times), for any integer n. An
element a ∈ A is called nilpotent if an = 0, for some integer n. The set of nilpotent
elements of A is denoted by ni(A). It is easy too see that ni(A) is an ideal of `(A).
In the following, we set in(A) = A \ ni(A).

A residuated lattice A is called simple if F (A) = {{1}, A} (see Figure 4).
A residuated lattice A is simple if and only if ni(A) = A \ {1}, [15, Lemma
1.1]. Following [11, Definition 3.20] a state residuated lattice Aν is called sim-
ple if F (Aν) = {{1}, A}.

Proposition 4.1. Let Aν be a state residuated lattice. Aν is simple if and only if
ν(A) is a simple residuated lattice and ν is faithful.

Proof. It follows by [19, Corollary 4.7]. �

Figure 4. The filter lattice of a simple state residuated lattice

Corollary 4.2. Let Aν be a simple state residuated lattice. Then for any 1 6= a ∈
A, ν(a) ∈ ni(A).

Proof. Let 1 6= a ∈ A. By Proposition 4.1 it follows that ν(a) 6= 1 and so there
exists an integer n such that (ν(a))n = 0. �

Proposition 4.3. Let Aν be a state residuated lattice and M be a proper filter
of Aν . The following assertions are equivalent:

(1) Aν/M is simple;
(2) M is maximal.

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)



378 M. TAHERI, F. KHAKSAR HAGHANI, AND S. RASOULI

Proof. (1)⇒(2): Let x /∈ M . So x/M 6= 1/M . By Proposition 2.18 and Corol-
lary 4.2 it follows that (ν(x))n/M = (ν(x)/M)n = (ν/M(x/M))n = 0/M , for
some integer n. This implies that ¬(ν(x))n ∈ M and so M is a maximal filter by
Proposition 3.2.

(2)⇒(1): By Corollary 3.3 it follows that the state operator ν/M is faithful.
Now, let ν(x)/M = ν/M(x/M) 6= 1/M . So ν(x) /∈ M . By (s9) and Proposi-
tion 3.2 it follows that ¬(ν(x))n = ¬(ν(ν(x)))n ∈ M . Thus (ν/M(x/M))n =
(ν(x)/M)n = 0/M and this shows that ν/M(Aν/M) is simple. So the result holds
by Proposition 4.1. �

Let Aν be a state residuated lattice. It is obvious that if A is a simple residuated
lattice, then Aν is a simple state residuated lattice. The following proposition gives
a sufficient condition for a simple state residuated lattice to be a simple residuated
lattice.

Proposition 4.4. Let Aν be a good and simple state residuated lattice. Then A is
simple.

Proof. Let Aν be simple and 1 6= x ∈ A. By Corollary 4.2 it follows that (ν(x))n =
0, for some integer n. Since Aν is good, by Proposition 2.15 it follows that ν(xn) =
0, and since ν is faithful (thanks to Proposition 4.1), by Lemma 2.12 it follows that
xn = 0. Thus x ∈ ni(A) and this shows that A is simple. �

Following [3, Definition 4.1], a residuated lattice A is called local if it has exactly
one maximal filter, denoted by MA (see Figure 5). In [3, Proposition 4.4] it was
shown that A is a local residuated lattice if and only if in(A) is a filter of A.

Figure 5. The filter lattice of a local state residuated lattice

Recall that a local state residuated lattice is a state residuated lattice with
exactly one state maximal filter. This class of state residuated lattices are charac-
terized in [11, Proposition 3.24].

Corollary 4.5. Let Aν be a state residuated lattice. The following assertions are
equivalent:

(1) Aν is local;
(2) ν(A) is local.
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Proposition 4.6. Let Aν be a state residuated lattice. The following assertions
are equivalent:

(1) in(ν(A)) is a filter of ν(A);
(2) Aν is a local state residuated lattice;
(3) x, y ∈ in(ν(A)) implies x� y ∈ in(ν(A)), for any x, y ∈ ν(A).

Proof. (1)⇒(2): It is obvious that in(ν(A)) is a proper filter. Let F be a proper
filter of ν(A) and x ∈ F . So we have F ν(A)(x) ⊆ F and this implies that x ∈
in(ν(A)). Thus F ⊆ in(ν(A)) and this shows that in(ν(A)) is the unique maximal
filter of ν(A). So ν(A) is a local residuated lattice. By Corollary 4.5 it follows that
Aν is a local state residuated lattice.

(2)⇒(1): By Corollary 4.5 it follows that Aν is a local state residuated lattice.
Let x ∈ in(ν(A)). So F ν(A)(x) is a proper filter of ν(A). By Proposition 3.1 it
follows that x ∈ F ν(A)(x) ⊆ MAν . This shows that in(ν(A)) ⊆ MAν . The inverse
inclusion is evident and so we have in(ν(A)) = MAν . Thus the result holds.

(1)⇒(3): It is evident.
(3)⇒(1): Since 1 ∈ in(ν(A)), in(ν(A)) is nonempty. Let x ∈ in(ν(A)) and

y ∈ ν(A). Thus for any integer n we have 0 < xn ≤ (x ∨ y)n and this shows that
x ∨ y ∈ in(ν(A)). �

Corollary 4.7. Any simple state residuated lattice is local.

Proof. Let Aν be a simple state residuated lattice. By Corollary 4.2 it follows that
in(ν(A)) = {1} and so the result holds by Proposition 4.6. �

Let A be a residuated lattice and F be a filter of A. We set F> = {a ∈ A |
a� x = 0, ∃x ∈ F}. Elements of F> are called orthogonal elements to F .

Lemma 4.8. Let A be a residuated lattice and F be a filter of A. The following
assertions hold:

(1) F> = {a ∈ A | ¬a ∈ F};
(2) F> is an ideal of `(A).

Proof. (1): Set Σ = {a ∈ A | ¬a ∈ F}. If a ∈ F>, then a� x = 0, for some x ∈ F .
This implies that x ≤ ¬a and so a ∈ Σ. Conversely, a ∈ Σ implies that ¬a = x, for
some x ∈ F , and this implies that a� x = 0. So we have a ∈ F>.

(2): It is evident by (r1). �

Corollary 4.9. Let Aν be a local state residuated lattice. The following assertions
hold:

(1) For any x ∈ ν(A), x ∈ ni(ν(A)) or ¬x ∈ ni(ν(A));
(2) (in(ν(A)))> ⊆ ni(ν(A));
(3) (in(ν(A)))> ∩ in(ν(A)) = ∅.

Proof. (1): Since x� ¬x ∈ ni(ν(A)), it follows by Proposition 4.6(3).
(2): Let a ∈ (in(ν(A)))>. By Lemma 4.8 (1) it follows that ¬a ∈ in(ν(A)) and

so by (1) we obtain that a ∈ ni(ν(A)).
(3): It is evident. �
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Lemma 4.10. Let Aν be a good state residuated lattice and ν be faithful. We have
in(A) = ν←(in(ν(A))).

Proof. It is an immediate consequence of Lemma 2.12, Lemma 2.14 and Proposi-
tion 2.15. �

Corollary 4.11. Let Aν be a good state residuated lattice and ν be faithful. The
following assertions are equivalent:

(1) Aν is local;
(2) A is local.

Proof. (1)⇒(2): By Proposition 4.6, in(ν(A)) is a filter of ν(A). So by Propo-
sition 2.17 (3) it follows that ν←(in(ν(A))) is a filter of A. Consequently, by
Lemma 4.10, in(A) is a filter of A and so A is a local residuated lattice.

(2)⇒(1): Since A is local, in(A) is a filter of A. By Lemma 4.10 it follows that
ν←(in(ν(A))) is a filter of A. Let y1, y2 ∈ in(ν(A)). So there exist x1, x2 ∈ A
such that ν(x1) = y1 and ν(x2) = y2. This implies that x1, x2 ∈ in(A) and so
x1 � x2 ∈ in(A). By Proposition 2.15 we get that y1 � y2 = ν(x1) � ν(x2) =
ν(x1 � x2) ∈ in(ν(A)) and this means that Aν is a local state residuated lattice by
Proposition 4.6. �

Proposition 4.12 ([3, Proposition 4.9]). Any chain residuated lattice is local.

Corollary 4.13. Any chain state residuated lattice is local.

Proof. It is an immediate consequence of Proposition 2.13, Corollary 4.11 and
Proposition 4.12. �

Let Aν and Bµ be state residuated lattices. A mapping h : A −→ B is called a
morphism, in symbols h : Aν −→ Bµ, if it preserves the fundamental operations.
If h : Aν −→ Bµ is a morphism we put coker(h) = h←(1). It is easy to check
that coker(h) is a filter of Aν . Also, it is obvious that h is injective if and only if
coker(h) = {1}. For a family of state residuated lattices {Aν}∪{Aiνi}i∈I a subdirect
representation of Aν with factors Aiνi is an embedding h : Aν −→

∏
i∈I A

i
νi such

that each πi ◦ h is surjective. A is called a subdirect product of a family {Aiνi}i∈I if
there exists a subdirect representation of Aν with factors Aiνi .

Lemma 4.14. Let Aν be a state residuated lattice and F be a family of filters
of Aν . If

⋂
F = {1}, then Aν is a subdirect product of the family {Aν/F}F∈F .

Proof. Define h : Aν −→
∏
F∈F Aν/F , by h(a)(F ) = a/F , for any a ∈ A and

F ∈ F . It is easy to see that h is a morphism and coker(h) =
⋂
F . So h is

an embedding. Also, for any F ∈ F , πF ◦ h is the canonical projection, which is
surjective. Therefore, h is a subdirect representation. �

Corollary 4.15. Any state residuated lattice Aν is a subdirect product of the family
{Aν/m}m∈Min(A).

Proof. It follows by Corollary 3.13 (2) and Lemma 4.14. �
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Proposition 4.16. Any simple state residuated lattice is subdirectly irreducible.

Proof. It is evident. �

The following theorem characterizes subdirectly irreducible state residuated lat-
tices by means of subdirectly irreducible residuated lattices.

Theorem 4.17. Let Aν be a faithful state residuated lattice. The following asser-
tions are equivalent:

(1) Aν is subdirectly irreducible;
(2) ν(A) is subdirectly irreducible.

Proof. It follows by [19, Theorem 4.22]. �

Proposition 4.18 ([18, Lemmas 4.1 & 4.2]). Let A be a residuated lattice. A is
subdirectly irreducible if and only if there exists an element 1 6= a ∈ A such that
for any 1 6= x ∈ A there exists a positive integer n for which xn ≤ a.

Corollary 4.19. Let Aν be a faithful state residuated lattice. The following asser-
tions are equivalent:

(1) Aν is subdirectly irreducible;
(2) there exists an element 1 6= a ∈ A such that for any 1 6= x ∈ A there exists

a positive integer n for which (ν(x))n ≤ ν(a).

Proof. It is an immediate consequence of Theorem 4.17 and Proposition 4.18. �

Corollary 4.20. Let Aν be a faithful subdirectly irreducible residuated lattice and
1 6= x ∈ A. If ν(x) ∨ ν(y) = 1, for some y ∈ A, then y = 1.

Proof. Let 1 6= y be an element of A such that ν(x) ∨ ν(y) = 1. Since Aν is
subdirectly irreducible and ν is faithful, there exists an element 1 6= a ∈ A and an
integer n such that 1 = (ν(x))n ∨ (ν(y))n ≤ ν(a); a contradiction. So ν(y) = 1 and
this implies that y = 1. �

Corollary 4.21. Let Aν be a good state residuated lattice and ν be faithful. The
following assertions are equivalent:

(1) Aν is subdirectly irreducible;
(2) A is subdirectly irreducible.

Proof. (1)⇒(2): By Corollary 4.19, there exists an element 1 6= a ∈ A such that
for any 1 6= x ∈ A there exists a positive integer n for which (ν(x))n ≤ ν(a).
Consider a ∈ A and let 1 6= x ∈ A. By Proposition 2.15 it follows that ν(xn) =
(ν(x))n ≤ ν(a) and this implies that xn ≤ a by Lemma 2.14. So the result holds
by Proposition 4.18.

(2)⇒(1): By Proposition 4.18, there exists an element 1 6= a ∈ A such that for
any 1 6= x ∈ A there exists a positive integer n for which xn ≤ a. Consider a ∈ A
and let 1 6= x ∈ A. So we have (ν(x))n ≤ ν(xn) ≤ ν(a) and this implies that Aν is
subdirectly irreducible by Corollary 4.19. �
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Example 4.22. Consider the state residuated lattices (A6; iA6) from Example 2.2,
(C6; iC6) from Example 2.3 and (A7; iA7) from Example 2.4. We have as shown in
Table 6.

Simple Subdirectly irreducible Local
A6 X

C6 X X X

A7 X

Table 6
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[4] L. C. Ciungu, A. Dvurečenskij, and M. Hyčko, State BL-algebras, Soft Comput. 15 (2010),

619–634. https://doi.org/10.1007/s00500-010-0571-5.
[5] P. M. Cohn, Universal Algebra, second edition, D. Reidel, Dordrecht, 1981. MR 0620952.
[6] N. M. Constantinescu, On pseudo BL-algebras with internal state, Soft Comput. 16 (2012),

no. 11, 1915–1922. https://doi.org/10.1007/s00500-012-0864-y.
[7] T. Flaminio and F. Montagna, An algebraic approach to states on MV-algebras, in New Di-

mensions in Fuzzy Logic and Related Technologies, vol. II, Proceedings of the 5th EUSFLAT
Conference, Ostrava, Czech Republic, September 11–14, 2007, 201–206.

[8] T. Flaminio and F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics,
Internat. J. Approx. Reason. 50 (2009), no. 1, 138–152. MR 2519034.

[9] N. Galatos et al., Residuated Lattices: an Algebraic Glimpse at Substructural Logics, Elsevier,
Amsterdam, 2007. MR 2531579.

[10] G. Grätzer, Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel, 2011.
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[14] F. Kôpka and F. Chovanec, D-posets, Math. Slovaca 44 (1994), no. 1, 21–34. MR 1290269.
[15] T. Kowalski and H. Ono, The variety of residuated lattices is generated by its finite simple

members, Rep. Math. Logic No. 34 (2000), 59–77. MR 1836322.
[16] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties. Vol. 1, AMS

Chelsea Publishing/American Mathematical Society, Providence, RI, 2018. MR 3793673.
[17] D. Mundici, Averaging the truth-value in  Lukasiewicz logic, Studia Logica 55 (1995), no. 1,

113–127. MR 1348840.
[18] H. Ono, Logics without the contraction rule and residuated lattices, Australas. J. Log. 8

(2010), 50–81. MR 2721600.
[19] S. Rasouli and Z. Zarin, On residuated lattices with left and right internal state, Fuzzy Sets

and Systems 373 (2019), 37–61. MR 3996802.
[20] B. Van Gasse et al., Filters of residuated lattices and triangle algebras, Inform. Sci. 180

(2010), no. 16, 3006–3020. MR 2653329.

M. Taheri
Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
taheri.mohamad96@yahoo.com

F. Khaksar HaghaniB
Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
haghani1351@yahoo.com

S. Rasouli
Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran &
Department of Mathematics, Persian Gulf University, Bushehr, Iran
srasouli@pgu.ac.ir

Received: August 6, 2019
Accepted: December 17, 2019

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)

https://mathscinet.ams.org/mathscinet-getitem?mr=1290269
https://mathscinet.ams.org/mathscinet-getitem?mr=1836322
https://mathscinet.ams.org/mathscinet-getitem?mr=3793673
https://mathscinet.ams.org/mathscinet-getitem?mr=1348840
https://mathscinet.ams.org/mathscinet-getitem?mr=2721600
https://mathscinet.ams.org/mathscinet-getitem?mr=3996802
https://mathscinet.ams.org/mathscinet-getitem?mr=2653329

	1. Introduction
	2. Preliminaries
	2.1. Residuated lattices
	2.2. State residuated lattices

	3. Maximal, prime and minimal prime filters
	4. Simple, local and subdirectly irreducible state  residuated lattices
	Acknowledgments
	References

