THE CONVEX AND WEAK CONVEX DOMINATION NUMBER OF CONVEX POLYTOPES

ZORAN LJ. MAKSIMOVIĆ, ALEKSANDAR LJ. SAVIĆ, AND MILENA S. BOGDANOVIĆ

Abstract

This paper is devoted to solving the weakly convex dominating set problem and the convex dominating set problem for some classes of planar graphs-convex polytopes. We consider all classes of convex polytopes known from the literature and present exact values of weakly convex and convex domination number for all classes, namely $A_{n}, B_{n}, C_{n}, D_{n}, E_{n}, R_{n}, R_{n}^{\prime \prime}, Q_{n}$, $S_{n}, S_{n}^{\prime \prime}, T_{n}, T_{n}^{\prime \prime}$ and U_{n}. When n is up to 26 , the values are confirmed by using the exact method, while for greater values of n theoretical proofs are given.

1. InTRODUCTION

This paper is dedicated to solving the weak convex and convex dominating set problems (WCDSP/CDSP) for some special classes of graphs. A dominating set of a graph G can be defined as a set of vertices in G such that any vertex $u \in V(G)$ either belongs to the dominating set or is adjacent to some vertex that belongs to the dominating set. A closely related problem is that of finding the domination number, i.e. finding the dominating set with the minimum cardinality. The minimal cardinality of a dominating set will be denoted as $\gamma(G)$.

In this paper, we consider only simple graphs, i.e. graphs without loops or parallel edges. In order to introduce the convexity property in graphs let us define the distance $d(u, v)$ between any two vertices u and v of G as the length of the shortest path between them. Since the graph is not weighted, the distance $d(u, v)$ is equal to the number of edges in the shortest path.

We say that a set of vertices $S, S \subset V(G)$, is a weakly convex (or isometric [17]) set in G if for any two vertices $u, v \in S$, there exists at least one shortest $u-v$ path that contains only vertices belonging to S. Now, a weakly convex dominating set is a set S that is both weakly convex and dominating. Similarly to the domination number, the weakly convex domination number $\gamma_{w c o n v}(G)$ is the minimal cardinality among all weakly convex dominating sets. The weakly convex dominating set problem (WCDSP) is the problem of finding such minimal cardinality.

[^0]As expected, convex domination requires stricter conditions. We will say that a set of vertices $S, S \subset V(G)$, is a convex set in G if for any two vertices $u, v \in S$ all vertices in all shortest $u-v$ paths belong to S. A set S is convex dominating if it is convex and dominating at the same time. The convex domination number $\gamma_{c o n v}(G)$ is the minimal cardinality among all convex dominating sets. The convex dominating set problem (CDSP) can be now defined as the problem of determining such minimal cardinality. There are other domination related problems depending on additional conditions such as Roman domination, signed Roman domination ${ }^{11}$ etc.

The convex domination number was defined during verbal communication between Jerzy Topp and Magdalena Lemanska in 2002 (stated in [15]). In [18] it was proven that decision problems of WCDSP and CDSP are NP-complete even for bipartite and split graphs. So, determining the weakly convex domination number and the convex domination number is NP-hard in a general case.

In [14, relations between $\gamma_{c o n v}$ and $\gamma_{w c o n v}$ were discussed for certain classes of graphs, and the following lemma was proposed for connected graphs:

Lemma 1.1 ([14]). For any connected graph G, we have

$$
\gamma(G) \leq \gamma_{w c o n v}(G) \leq \gamma_{c o n v}(G)
$$

In the paper [10] different bounds of the weakly convex domination and the convex domination number were obtained. It was shown in [4] that the convex domination number can be arbitrarily increased or decreased by an edge subdivision.

In this paper we will consider finding the weakly convex and the convex domination number for some classes of planar graphs. Some of these classes, called convex polytopes, were for the first time considered in [2], where they were denoted as R_{n} and Q_{n}. Other classes, such as $A_{n}, B_{n}, C_{n}, D_{n}, E_{n}, R_{n}^{\prime \prime}, S_{n}, S_{n}^{\prime \prime}, T_{n}$ and U_{n}, were introduced in [5, 6, 9, 8, 7]. Certain graph invariants of convex polytopes were considered in [11. For all these we assume that $n \geq 5$, and all indices are taken modulo n.

For $n \geq 27$, the values of both the weak convex and the convex domination number are stated by theorems. For $n \leq 26$, the exact method from [12 is used.

The largest graph for which the exact method was used is $R_{26}^{\prime \prime}$, with 156 vertices and 234 edges. The exact method found that the weak convex and the convex domination numbers are equal to 156 .

2. Convex polytopes D_{n}

The graph of convex polytope $D_{n}, n \geq 5$ (Figure 1), introduced in 1], consists of $2 n 5$-sided faces and a pair of n sided faces. We will use the standard notation $[n]=\{1,2, \ldots, n\}$ and $[n]_{0}=\{0,1,2, \ldots, n\}$.

[^1]

Figure 1. The graph of convex polytope D_{n}

We have

$$
\begin{aligned}
V\left(D_{n}\right) & =\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
E\left(D_{n}\right) & =\left\{a_{i} a_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, b_{i+1} c_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Theorem 2.1. For every convex polytope D_{n} with $n \geq 27$ it holds that $\gamma_{\text {wconv }}\left(D_{n}\right)=\left|V\left(D_{n}\right)\right|=4 n$.
Proof. Let S be a weak convex dominating set of D_{n}. We will prove that $S=$ $V\left(D_{n}\right)$. First we will show that $a_{i} \in S$ for every $i \in[n-1]_{0}$. From the fact that S is a dominating set, for arbitrary i it follows that there exist u from $\mathcal{N}\left[a_{i}\right] \cap S$ and w from $\mathcal{N}\left[a_{i+3}\right] \cap S$. Since $n \geq 27, \mathcal{N}\left[a_{i}\right]=\left\{a_{i}, a_{i-1}, a_{i+1}, b_{i}\right\}$ and $\mathcal{N}\left[a_{i+3}\right]=$ $\left\{a_{i+3}, a_{i+2}, a_{i+4}, b_{i+3}\right\}$, we have the 16 subcases displayed in Table 1

As it can be seen from Table 1, in all 16 subcases the shortest path is unique and all 16 shortest paths contain vertices a_{i+1} and a_{i+2}. Since for any $u \in \mathcal{N}\left[a_{i}\right]$ and any $w \in \mathcal{N}\left[a_{i+3}\right]$, vertex a_{i+1} belongs to a unique shortest $u-w$ path and S is a weak convex dominating set, vertex a_{i+1} must belong to S. As i is arbitrary we have $a_{i} \in S$ for every $i \in[n-1]_{0}$.

Note that the symmetry property holds for convex polytopes D_{n}, so vertices a_{i}, b_{i}, c_{i}, d_{i} can be relabeled as $d_{i}, c_{i}, b_{i}, a_{i}$, which gives the same graph D_{n}. Therefore, using the same argumentation as above, we have $d_{i} \in S$ for every $i \in[n-1]_{0}$.

As it can be shown, for arbitrary $i \in[n-1]_{0}$ the shortest path between a_{i} and d_{i} is unique ($a_{i}-b_{i}-c_{i}-d_{i}$) and has both endpoints in $S\left(a_{i}, d_{i} \in S\right)$. From the fact that S is a weak convex dominating set it must hold that vertices b_{i} and c_{i} belong to S for all $i \in[n-1]_{0}$. Due to the inclusion $\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\} \subset S$ and previous facts, it stands that $\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$, implying that $S=V\left(D_{n}\right)$.

Corollary 2.2. For every convex polytope D_{n} with $n \geq 27$ it holds that $\gamma_{\text {conv }}\left(D_{n}\right)=$ $\left|V\left(D_{n}\right)\right|=4 n$.

Proof. Since for each graph G it holds that $\gamma_{\text {wconv }}(G) \leq \gamma_{\text {conv }}(G) \leq|V(G)|$ and $\gamma_{w c o n v}\left(D_{n}\right)=\left|V\left(D_{n}\right)\right|=4 n$, we have $\gamma_{c o n v}\left(D_{n}\right)=4 n$.

Table 1. Shortest paths used in Theorems 2.1 and 3.1

u	w	Shortest path
a_{i}	a_{i+3}	$a_{i}-a_{i+1}-a_{i+2}-a_{i+3}$
	a_{i+2}	$a_{i}-a_{i+1}-a_{i+2}$
	a_{i+4}	$a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-a_{i+4}$
	b_{i+3}	$a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-b_{i+3}$
a_{i-1}	a_{i+3}	$a_{i-1}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}$
	a_{i+2}	$a_{i-1}-a_{i}-a_{i+1}-a_{i+2}$
	a_{i+4}	$a_{i-1}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-a_{i+4}$
	b_{i+3}	$a_{i-1}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-b_{i+3}$
a_{i+1}	a_{i+3}	$a_{i+1}-a_{i+2}-a_{i+3}$
	a_{i+2}	$a_{i+1}-a_{i+2}$
	a_{i+4}	$a_{i+1}-a_{i+2}-a_{i+3}-a_{i+4}$
	b_{i+3}	$a_{i+1}-a_{i+2}-a_{i+3}-b_{i+3}$
b_{i}	a_{i+3}	$b_{i}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}$
	a_{i+2}	$b_{i}-a_{i}-a_{i+1}-a_{i+2}$
	a_{i+4}	$b_{i}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-a_{i+4}$
	b_{i+3}	$b_{i}-a_{i}-a_{i+1}-a_{i+2}-a_{i+3}-b_{i+3}$

3. Convex polytopes $R_{n}^{\prime \prime}$

The graph of convex polytope $R_{n}^{\prime \prime}, n \geq 5$ (Figure 22), introduced in [16], has the following vertex and edge sets:

$$
\begin{aligned}
& V\left(R_{n}^{\prime \prime}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(R_{n}^{\prime \prime}\right)=\left\{\left(a_{i}, a_{i+1}\right),\left(f_{i}, f_{i+1}\right),\left(a_{i}, b_{i}\right),\left(b_{i}, c_{i}\right),\left(c_{i}, d_{i}\right),\right. \\
& \left.\qquad\left(d_{i}, e_{i}\right),\left(e_{i}, f_{i}\right),\left(b_{i+1}, c_{i}\right),\left(d_{i+1}, e_{i}\right) \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Figure 2. Polytope $R_{n}^{\prime \prime}$

Theorem 3.1. For every convex polytope $R_{n}^{\prime \prime}$ with $n \geq 27$ it holds that $\gamma_{w c o n v}\left(R_{n}^{\prime \prime}\right)=$ $\left|V\left(R_{n}^{\prime \prime}\right)\right|=6 n$.

Proof. Let S be a weak convex dominating set of $R_{n}^{\prime \prime}$. We will prove that $S=$ $V\left(R_{n}^{\prime \prime}\right)$. First we will show that $a_{i} \in S$ for every $i \in[n-1]_{0}$. Similarly to Theorem [2.1, from the fact that S is a dominating set for an arbitrary i, it stands that there exist $u \in \mathcal{N}\left[a_{i}\right] \cap S$ and $w \in \mathcal{N}\left[a_{i+3}\right] \cap S$. Because $n \geq 27$, $\mathcal{N}\left[a_{i}\right]=\left\{a_{i}, a_{i-1}, a_{i+1}, b_{i}\right\}$ and $\mathcal{N}\left[a_{i+3}\right]=\left\{a_{i+3}, a_{i+2}, a_{i+4}, b_{i+3}\right\}$, we have 16 subcases, same as for D_{n}, displayed in Table 1 .

Again, as it can be seen from Table 1] in all 16 subcases the shortest path is unique and all 16 shortest paths contain vertices a_{i+1} and a_{i+2}. Same as for D_{n}, a_{i+1} must belong to S. This is because S is a weak dominating set and some $u, w \in S$ contain a_{i+1} in its unique shortest $u-w$ path. As i is arbitrary we have $a_{i} \in S$ for every $i \in[n-1]_{0}$.

Note that the symmetry property also holds for convex polytopes $R_{n}^{\prime \prime}$, so vertices $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}$ can be relabeled as $f_{i}, e_{i}, d_{i}, c_{i}, b_{i}, a_{i}$, giving the same graph $R_{n}^{\prime \prime}$. Therefore, because of the same arguments used for a-vertices, we have that all f-vertices belong to S, i.e. $\left\{f_{i} \mid i \in[n-1]_{0}\right\} \subset S$.

As it can be shown, for arbitrary $i \in[n-1]_{0}$ the shortest path between a_{i+1} and f_{i} is unique $\left(a_{i+1}-b_{i+1}-c_{i}-d_{i}-e_{i}-f_{i}\right)$, and has both endpoints in $S\left(a_{i+1}, f_{i} \in S\right)$, so from the fact that S is a weak convex dominating set it must hold that for all $i \in[n-1]_{0}$ we have $b_{i+1}, c_{i}, d_{i}, e_{i} \in S$. Due to the inclusion $\left\{b_{i+1}, c_{i}, d_{i}, e_{i} \mid i \in\right.$ $\left.[n-1]_{0}\right\} \subset S$ and previous facts, we have $\left\{a_{i+1}, b_{i+1}, c_{i}, d_{i}, e_{i}, f_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$, implying that $V\left(R_{n}^{\prime \prime}\right) \subseteq S$. Therefore, it holds that $S=V\left(R_{n}^{\prime \prime}\right)$.
Corollary 3.2. For every convex polytope $R_{n}^{\prime \prime}$ with $n \geq 27$ it holds that $\gamma_{\text {conv }}\left(R_{n}^{\prime \prime}\right)=$ $\left|V\left(R_{n}^{\prime \prime}\right)\right|=6 n$.

Proof. Since, for each graph G, it holds that $\gamma_{w c o n v}(G) \leq \gamma_{\text {conv }}(G) \leq|V(G)|$ and $\gamma_{w c o n v}\left(R_{n}^{\prime \prime}\right)=\left|V\left(R_{n}^{\prime \prime}\right)\right|=6 n$, we have $\gamma_{c o n v}\left(R_{n}^{\prime \prime}\right)=6 n$.

4. Convex polytopes A_{n} and R_{n}

The classes of convex polytopes A_{n} and R_{n} (Figure 3) were introduced in [6] and [2] respectively. Their sets of vertices are

$$
V\left(A_{n}\right)=V\left(R_{n}\right)=\left\{a_{i}, b_{i}, c_{i} \mid i \in[n-1]_{0}\right\},
$$

while their sets of edges are

$$
\begin{aligned}
& E\left(R_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, a_{i} b_{i}, b_{i} c_{i}, a_{i+1} b_{i} \mid i \in[n-1]_{0}\right\}, \\
& E\left(A_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, a_{i} b_{i}, b_{i} c_{i}, a_{i+1} b_{i}, b_{i+1} c_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Theorem 4.1. For every convex polytope A_{n} with $n \geq 27$ it holds that $\gamma_{\text {wconv }}\left(A_{n}\right)=$ $\gamma_{c o n v}\left(A_{n}\right)=n$.
Proof. First, we will prove that $\gamma_{\text {conv }}\left(A_{n}\right) \leq n$. Let $S=\left\{b_{i} \mid i \in[n-1]_{0}\right\}$. Now, we will prove that S is a convex dominating set of A_{n}. The set S is a dominating set of A_{n}, since for all $i \in[n-1]_{0}$ it holds that $a_{i}, b_{i}, c_{i} \in \mathcal{N}\left[b_{i}\right]$, so

Figure 3. Polytopes A_{n} and R_{n}
$\bigcup_{i=0}^{n-1} \mathcal{N}\left[b_{i}\right]=\left\{a_{i}, b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}=V\left(A_{n}\right)$. Also, S is a convex set, since all shortest paths between b-vertices contain only b-vertices. Therefore, S is a convex dominating set of A_{n} and $\gamma_{c o n v}\left(A_{n}\right) \leq|S|=n$. Note that the mentioned shortest paths are not always unique, so this argument can be used only for the convex domination, and not for the weak convex domination.

Next, we will prove that $\gamma_{w c o n v}\left(A_{n}\right) \geq n$. Let $k=\lfloor n / 3\rfloor$ and let S be a weak convex dominating set of A_{n}.

Let us observe vertices a_{1} and c_{2} from $V\left(A_{n}\right)$. Since S is a dominating set, there exist some neighbours of a_{1} and c_{2} which are in S, i.e. there are u and w such that $u \in S \cap \mathcal{N}\left[a_{1}\right]$ and $w \in S \cap \mathcal{N}\left[c_{2}\right]$. Since $\mathcal{N}\left[a_{1}\right]=\left\{a_{1}, a_{0}, a_{2}, b_{0}, b_{1}\right\}$ and $\mathcal{N}\left[c_{2}\right]=\left\{c_{2}, c_{1}, c_{3}, b_{2}, b_{3}\right\}$, it is easy to see that each shortest $u-w$ path contains some b-vertex, either b_{0}, b_{1}, b_{2} or b_{3}. Since $u, w \in S$ and S is a weak convex set, one of the previously mentioned b-vertices is in S. Let $p \in\{0,1,2,3\}$ be an index of the b-vertex which is in S.

If we observe vertices a_{k+1} and c_{k+2} from $V\left(A_{n}\right)$, using the same argumentation as before, there is $q \in\{k, k+1, k+2, k+3\}$ such that $b_{q} \in S$. And similarly, for vertices $a_{2 k+1}$ and $c_{2 k+2}$ from $V\left(A_{n}\right)$ there is $r \in\{2 k, 2 k+1,2 k+2,2 k+3\}$ such that $b_{r} \in S$.

For $n \geq 27$ it holds that $q-p \leq n / 2-1, r-q \leq n / 2-1$ and $n+p-r \leq n / 2-1$, so all the shortest paths $b_{p}-b_{q}, b_{q}-b_{r}$ and $b_{r}-b_{p}$ are unique and each b-vertex is in one of them. Since S is a weak convex set, previously mentioned shortest paths are unique, and $b_{p}, b_{q}, b_{r} \in S$. So, every b-vertex is in S, i.e. for all i the vertex b_{i} belongs to S, which implies that $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$. Therefore $|S| \geq n$.

Finally, since $\gamma_{w c o n v}\left(A_{n}\right) \leq \gamma_{c o n v}\left(A_{n}\right), \gamma_{w c o n v}\left(A_{n}\right) \geq n$ and $\gamma_{c o n v}\left(A_{n}\right) \leq n$, we have $\gamma_{\text {wconv }}\left(A_{n}\right)=\gamma_{c o n v}\left(A_{n}\right)=n$.

Theorem 4.2. For every convex polytope R_{n} with $n \geq 27$ it holds that $\gamma_{\text {conv }}\left(R_{n}\right)=$ n.

Proof. The proof goes along similar lines as the proof of Theorem 4.1, and it will be omitted.

Figure 4. Polytope S_{n}

Figure 5. Polytope $S_{n}^{\prime \prime}$

Figure 6. Polytope T_{n}

5. Convex polytopes $S_{n}, S_{n}^{\prime \prime}$ and T_{n}

The class of convex polytopes S_{n} (Figure 4) was introduced in 6. The sets of vertices and edges are

$$
\begin{aligned}
& V\left(S_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(S_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, a_{i+1} b_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

The class of convex polytopes $S_{n}^{\prime \prime}$ (Figure 5) was introduced in [8], where the authors also determined its metric dimension. The sets of vertices and edges defining these convex polytopes are

$$
\begin{aligned}
& V\left(S_{n}^{\prime \prime}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(S_{n}^{\prime \prime}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, b_{i+1} c_{i} \mid i \in[n-1]_{0}\right\}
\end{aligned}
$$

The graph of convex polytope T_{n} (Figure 6), introduced in [8], consists of $4 n$ 3 -sided faces, $n 4$-sided faces and a pair of n sided faces. In this case, the vertices and edges are

$$
\begin{aligned}
& V\left(T_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(T_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, c_{i} c_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, a_{i+1} b_{i}, c_{i+1} d_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Theorem 5.1. For every $n \geq 27$ it holds that $\gamma_{\text {wconv }}\left(S_{n}\right)=\gamma_{\text {conv }}\left(S_{n}\right)=2 n$.
Proof. First let us prove that $\gamma_{c o n v}\left(S_{n}\right) \leq 2 n$. In order to accomplish this let us prove that the set $S=\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$ is a convex dominating set for S_{n}. The set S is obviously a dominating set of S_{n}, since for all $i \in[n-1]_{0}$ it holds
that $a_{i}, b_{i}, c_{i}, d_{i} \in \mathcal{N}\left[b_{i}\right] \cup \mathcal{N}\left[c_{i}\right]$, so $\bigcup_{i=0}^{n-1} \mathcal{N}\left[b_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[c_{i}\right]=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in\right.$ $\left.[n-1]_{0}\right\}=V\left(S_{n}\right)$. Also, S is a convex set, since:

- All shortest paths between b-vertices contain only b-vertices;
- all shortest paths between c-vertices contain only c-vertices;
- all shortest paths between any b-vertex and any c-vertex contain only some b-vertices and some c-vertices.
Therefore, S is a convex dominating set for S_{n} and $\gamma_{\text {conv }}\left(S_{n}\right) \leq|S|=2 n$. Note that the shortest paths mentioned are not always unique, so this argument can be used only for the convex domination, and not for the weak convex domination.

Next, we will prove that $\gamma_{\text {wconv }}\left(S_{n}\right) \geq 2 n$. Using the same argumentation as in the proof of Theorem 4.1 it can be concluded that every b-vertex is in S, i.e. for all $i \in[n-1]_{0}$ it holds that $b_{i} \in S$, which implies that $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

Similarly, it can be concluded that c-vertices belong to the set S, i.e. $\left\{c_{i} \mid i \in\right.$ $\left.[n-1]_{0}\right\} \subseteq S$. Therefore, $\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$ so $|S| \geq 2 n$.

Finally, since $\gamma_{w c o n v}\left(S_{n}\right) \leq \gamma_{c o n v}\left(S_{n}\right), \gamma_{w c o n v}\left(S_{n}\right) \geq 2 n$ and $\gamma_{c o n v}\left(S_{n}\right) \leq 2 n$, we have $\gamma_{w \text { conv }}\left(S_{n}\right)=\gamma_{\text {conv }}\left(S_{n}\right)=2 n$.

Theorem 5.2. For every $n \geq 27$ it holds that

$$
\gamma_{w c o n v}\left(S_{n}^{\prime \prime}\right)=\gamma_{c o n v}\left(S_{n}^{\prime \prime}\right)=\gamma_{w c o n v}\left(T_{n}\right)=\gamma_{c o n v}\left(T_{n}\right)=2 n
$$

Proof. The proof goes along similar lines as the proof of Theorem 5.1, so it will be omitted.

6. Convex polytopes Q_{n} and $T_{n}^{\prime \prime}$

Convex polytopes of the class Q_{n} (Figure 7) were introduced in [2]. They are specified by these sets of vertices and edges:

$$
\begin{aligned}
& V\left(Q_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(Q_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, b_{i+1} c_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Figure 7. Polytope Q_{n}

Figure 8. Polytope $T_{n}^{\prime \prime}$

Convex polytopes of the class $T_{n}^{\prime \prime}$ (Figure 8) were introduced in 6]. They are specified by these sets of vertices and edges:

$$
\begin{aligned}
V\left(T_{n}^{\prime \prime}\right) & =\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \\
E\left(T_{n}^{\prime \prime}\right) & =\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, d_{i} d_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, b_{i+1} c_{i}, a_{i+1} b_{i} \mid i \in[n-1]_{0}\right\}
\end{aligned}
$$

Theorem 6.1. For every $n \geq 27$ it holds that $\gamma_{w c o n v}\left(Q_{n}\right)=\gamma_{\text {conv }}\left(Q_{n}\right)=2 n$.
Proof. We start by proving that $\gamma_{c o n v}\left(Q_{n}\right) \leq 2 n$. Let $S=\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$. Now, we will prove that S is a convex dominating set of Q_{n}. The set S is obviously a dominating set of Q_{n}, since for all $i \in[n-1]_{0}$ it holds that $a_{i}, b_{i}, c_{i}, d_{i} \in \mathcal{N}\left[b_{i}\right] \cup$ $\mathcal{N}\left[c_{i}\right]$, so $\bigcup_{i=0}^{n-1} \mathcal{N}\left[b_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[c_{i}\right]=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}=V\left(Q_{n}\right)$. Also, S is a convex set, since:

- All shortest paths between b-vertices contain only b-vertices;
- all shortest paths between c-vertices, except endpoints, contain only b-vertices;
- all shortest paths between any b-vertex and any c-vertex, except c-endpoint, contain only b-vertices.
Therefore, S is a convex dominating set for Q_{n} and $\gamma_{c o n v}\left(Q_{n}\right) \leq|S|=2 n$. Note that the shortest paths mentioned are not always unique, so this argument can be used only for the convex domination, and not for the weak convex domination.

Next, we will prove that $\gamma_{w c o n v}\left(Q_{n}\right) \geq 2 n$. Using the same argumentation as in the proof of Theorem 4.1 it can be concluded that every b-vertex is in S, i.e. for all $i \in[n-1]_{0}$ it holds that $b_{i} \in S$, which implies that $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

Since vertices b_{i} such that $i \in[n-1]_{0}$ are in S, and S is a weak convex dominating set, from the uniqueness of the shortest path $b_{j}-c_{j}-d_{j}$ the following implication holds:

$$
\begin{equation*}
Q_{n}: \quad d_{j} \in S \Rightarrow c_{j} \in S \tag{6.1}
\end{equation*}
$$

Let $k=\left\lfloor\frac{n-1}{2}\right\rfloor$ and $i \in[n-1]_{0}$. Therefore, it is easy to see that $2 k+1 \leq n \leq 2 k+$ 2. To obtain domination for all d-vertices, S must contain some of c-vertices or/and d-vertices. Precisely, for $\mathcal{N}\left[d_{i}\right]=\left\{d_{i}, d_{i-1}, d_{i+1}, c_{i}\right\}$ and $\mathcal{N}\left[d_{i+k}\right]=\left\{d_{i+k}, d_{i+k-1}\right.$, $\left.d_{i+k+1}, c_{i+k}\right\}$, the following conditions must hold: $\mathcal{N}\left[d_{i}\right] \cap S \neq \emptyset$ and $\mathcal{N}\left[d_{i+k}\right] \cap S \neq$ \emptyset.

There are 9 nontrivial possible cases. As it can be seen from Table 2, each of the 7 other possibilities can be directly reduced to one of the following cases.
Case 1: There is i such that $d_{i} \in S$ and $c_{k+i} \in S$. Let us consider the unique shortest path $d_{i}-d_{i+1}-\cdots-d_{k+i-1}-d_{k+i}-c_{k+i}$ whose endpoints are in S. Since S is a weak convex dominating set, we have that $d_{i}, d_{i+1}, \ldots, d_{k+i-1}, d_{k+i} \in S$. From (6.1) it follows that $c_{i}, c_{i+1}, \ldots, c_{k+i-1}, c_{k+i} \in S$. As S contains at least $k+1 c$-vertices and $k+1 d$-vertices and all $n b$-vertices, and $2 k+2 \geq n$, we have $|S| \geq n+2 k+2 \geq 2 n$.

Case 2: There is i such that $c_{i} \in S$ and $d_{k+i} \in S$. Similarly to Case 1, we can consider the unique shortest path $c_{i}-d_{i}-d_{i+1}-\cdots-d_{k+i-1}-d_{k+i}$ whose endpoints are in S. Again, since S is a weak convex dominating set, $d_{i}, d_{i+1}, \ldots, d_{k+i-1}, d_{k+i} \in$ S. In the same way, from (6.1) it follows that $c_{i}, c_{i+1}, \ldots, c_{k+i-1}, c_{k+i} \in S$, again giving $|S| \geq n+2 k+2 \geq 2 n$.

Case 3: There is i such that $c_{i} \in S$ and $d_{k+i-1} \in S$. Similarly to Case 2, we can consider the unique shortest path $c_{i}-d_{i}-d_{i+1}-\cdots-d_{k+i-2}-d_{k+i-1}$ whose endpoints are in S. Again, since S is a weak convex dominating set,
$d_{i}, d_{i+1}, \ldots, d_{k+i-2}, d_{k+i-1} \in S$. In the same way, from 6.1 it follows that $c_{i}, c_{i+1}, \ldots, c_{k+i-2}, c_{k+i-1} \in S$. Let $S^{\prime}=\left\{b_{l} \mid l \in[n-1]_{0}\right\} \cup\left\{c_{j}, d_{j} \mid j \in\right.$ $\left.[k+i-1]_{0}, j \geq i\right\}$; then $S^{\prime} \subseteq S$ and $\left|S^{\prime}\right| \geq 2 n-2$. Since S is a dominating set, at least one vertex from $\mathcal{N}\left[d_{i-2}\right]$ and at least one vertex from $\mathcal{N}\left[d_{i-5}\right]$ must be in S. We have $\mathcal{N}\left[d_{i-2}\right] \cap \mathcal{N}\left[d_{i-5}\right]=\emptyset$, and $n \geq 27$, which implies that $\mathcal{N}\left[d_{i-2}\right] \cap S^{\prime}=\emptyset$ and $\mathcal{N}\left[d_{i-5}\right] \cap S^{\prime}=\emptyset$. Therefore, we have $|S| \geq\left|S^{\prime}\right|+2=2 n$.

Case 4: There is i such that $c_{i} \in S$ and $d_{k+i+1} \in S$. If n is odd $(n=2 k+1)$, we can consider the unique shortest path $d_{k+i+1}-d_{k+i+2}-\cdots-d_{i-1}-d_{i}-c_{i}$ whose endpoints are in S. Again, since S is a weak convex dominating set, $d_{k+i+1}, d_{k+i+2}, \ldots, d_{i-1}, d_{i} \in S$. In the same way, from 6.1 it follows that $c_{k+i+1}, c_{k+i+2}, \ldots, c_{i-1}, c_{i} \in S$, giving $|S| \geq n+2(k+1)=n+2 k+2=2 n+1>2 n$. Otherwise, if n is even ($n=2 k+2$), we can consider the two shortest paths between vertices c_{i} and d_{k+i+1} :

- shortest path $c_{i}-d_{i}-d_{i+1}-\cdots-d_{k+i}-d_{k+i+1} ;$
- shortest path $d_{k+i+1}-d_{k+i+2}-\cdots-d_{i-1}-d_{i}-c_{i}$.

Since both endpoints c_{i} and d_{k+i+1} are in S, and S is a weak convex dominating set, at least one shortest path must be in S. Therefore, we have that $d_{i}, d_{i+1}, \ldots, d_{k+i}, d_{k+i+1} \in S$ or $d_{k+i+1}, d_{k+i+2}, \ldots, d_{i-1}, d_{i} \in S$, which leads to $c_{i}, c_{i+1}, \ldots, c_{k+i}, c_{k+i+1} \in S$ or $c_{k+i+1}, c_{k+i+2}, \ldots, c_{i-1}, c_{i} \in S$. In both subcases, S must have at least $n b$-vertices, $k+2 c$-vertices and $k+2 d$-vertices, giving $|S| \geq n+2(k+2)=n+2 k+4=2 n+2>2 n$.

Case 5: There is i such that $d_{i+1} \in S$ and $c_{k+i} \in S$. Similarly to Case 3, we can consider the unique shortest path $d_{i+1}-d_{i+2}-\cdots-d_{k+i-1}-d_{k+i}-c_{k+i}$ whose endpoints are in S. Again, since S is a weak convex dominating set, d_{i+1}, d_{i+2}, \ldots, $d_{k+i-1}, d_{k+i} \in S$. In the same way, (6.1) implies that $c_{i+1}, c_{i+2}, \ldots, c_{k+i-1}$, $c_{k+i} \in S$. Let $S^{\prime}=\left\{b_{l} \mid l \in[n-1]_{0}\right\} \cup\left\{c_{j}, d_{j} \mid j \in[k+i], j \geq i+1\right\}$; it follows that $S^{\prime} \subseteq S$ and $\left|S^{\prime}\right| \geq 2 n-2$. Since S is a dominating set, at least one vertex from $\mathcal{N}\left[d_{i-1}\right]$ and at least one vertex from $\mathcal{N}\left[d_{i-4}\right]$ must be in S. We have $\mathcal{N}\left[d_{i-1}\right] \cap \mathcal{N}\left[d_{i-4}\right]=\emptyset$ and $n \geq 27$, which imply that $\mathcal{N}\left[d_{i-1}\right] \cap S^{\prime}=\emptyset$ and $\mathcal{N}\left[d_{i-4}\right] \cap S^{\prime}=\emptyset$. Therefore, we have $|S| \geq\left|S^{\prime}\right|+2=2 n$.

Case 6: There is i such that $d_{i+1} \in S$ and $d_{k+i-1} \in S$. Similarly to Cases 3 and 5 , we can consider the unique shortest path $d_{i+1}-d_{i+2}-\cdots-d_{k+i-2}-$ d_{k+i-1} whose endpoints are in S. Again, since S is a weak convex dominating set, $d_{i+1}, d_{i+2}, \ldots, d_{k+i-2}, d_{k+i-1} \in S$. In the same way, 6.1) implies that $c_{i+1}, c_{i+2}, \ldots, c_{k+i-2}, c_{k+i-1} \in S$. Let $S^{\prime}=\left\{b_{l} \mid l \in[n-1]_{0}\right\} \cup\left\{c_{j}, d_{j} \mid j \in\right.$ [$k+i-1], j \geq i+1\}$, which leads to $S^{\prime} \subseteq S$ and $\left|S^{\prime}\right| \geq 2 n-4$. Since S is a dominating set, at least one vertex from neighbourhoods $\mathcal{N}\left[d_{i-1}\right], \mathcal{N}\left[d_{i-4}\right], \mathcal{N}\left[d_{i-7}\right]$ and $\mathcal{N}\left[d_{i-10}\right]$ must be in S. It is easy to see that all four mentioned neighbourhoods are mutually disjoint and, since $n \geq 27$, we conclude that each neighbourhood has an empty intersection with S^{\prime}, so $|S| \geq\left|S^{\prime}\right|+4=2 n$.

Table 2. Other possibilities in Theorem 6.1

Possibility	Reduced to case	Reason
$(\exists i)\left(d_{i} \in S \wedge d_{k+i} \in S\right)$	1	$d_{k+i} \in S \Rightarrow c_{k+i} \in S$
$(\exists i)\left(d_{i} \in S \wedge d_{k+i-1} \in S\right)$	3	$d_{i} \in S \Rightarrow c_{i} \in S$
$(\exists i)\left(d_{i} \in S \wedge d_{k+i+1} \in S\right)$	4	$d_{i} \in S \Rightarrow c_{i} \in S$
$(\exists i)\left(d_{i-1} \in S \wedge d_{k+i} \in S\right)$	7	$d_{k+i} \in S \Rightarrow c_{k+i} \in S$
$(\exists i)\left(d_{i-1} \in S \wedge d_{k+i-1} \in S\right)$	1	$i^{\prime}=i-1, d_{k+i} \in S \Rightarrow c_{k+i} \in S$
$(\exists i)\left(d_{i+1} \in S \wedge d_{k+i} \in S\right)$	5	$d_{k+i} \in S \Rightarrow c_{k+i} \in S$
$(\exists i)\left(d_{i+1} \in S \wedge d_{k+i+1} \in S\right)$	1	$i^{\prime}=i+1, d_{k+i} \in S \Rightarrow c_{k+i} \in S$

Case 7: There is i such that $d_{i-1} \in S$ and $c_{k+i} \in S$. Similarly to Case 4, for odd $n(n=2 k+1)$ we have the unique shortest path $c_{k+i}-d_{k+i}-d_{k+i+1}-\cdots-$ $d_{i-2}-d_{i-1}$ whose endpoints are in S. Again, since S is a weak convex dominating set, $d_{k+i}, d_{k+i+1}, \ldots, d_{i-2}, d_{i-1} \in S$. In the same way, 6.1) implies that $c_{k+i}, c_{k+i+1}, \ldots, c_{i-2}, c_{i-1} \in S$, giving $|S| \geq n+2(k+1)=n+2 k+2=2 n+1>2 n$. Otherwise, for even $n(n=2 k+2)$, we can consider the two shortest paths between vertices d_{i-1} and c_{k+i} :

- shortest path $d_{i-1}-d_{i}-\cdots-d_{k+i-1}-d_{k+i}-c_{k+i}$;
- shortest path $c_{k+i}-d_{k+i}-d_{k+i+1}-\cdots-d_{i-2}-d_{i-1}$.

Since both endpoints d_{i-1} and c_{k+i} are in S, and S is a weak convex dominating set, at least one shortest path must be in S. Therefore, $d_{i-1}, d_{i}, \ldots, d_{k+i-1}, d_{k+i} \in S$ or $d_{k+i}, d_{k+i+1}, \ldots, d_{i-2}, d_{i-1} \in S$, which leads to $c_{i-1}, c_{i}, \ldots, c_{k+i-1}, c_{k+i} \in S$ or $c_{k+i}, c_{k+i+1}, \ldots, c_{i-2}, c_{i-1} \in S$. In both subcases, S must have at least $n b$-vertices, $k+2 c$-vertices and $k+2 d$-vertices, giving $|S| \geq n+2(k+2)=n+2 k+4=$ $2 n+2>2 n$.

Case 8: There is i such that $d_{i-1} \in S$ and $d_{k+i+1} \in S$. Let us consider the unique shortest path $d_{k+i+1}-d_{k+i+2}-\cdots-d_{i-2}-d_{i-1}$ whose endpoints are in S. Since S is a weak convex dominating set, $d_{k+i+1}, d_{k+i+2}, \ldots, d_{i-2}, d_{i-1} \in S$. From 6.1) it follows that $c_{k+i+1}, c_{k+i+2}, \ldots, c_{i-2}, c_{i-1} \in S$. Let $S^{\prime}=\left\{b_{l} \mid l \in[n-1]_{0}\right\} \cup$ $\left.\left\{c_{j}, d_{j} \mid j \in[n+i-1], j \geq k+i+1\right\}\right\}$. First, S^{\prime} is a subset of S. Second, since $n+i-1-(k+i+1)+1=n-k-1, S^{\prime}$ must have $n b$-vertices, $n-k-1 c$-vertices and $n-k-1 d$-vertices, giving $\left|S^{\prime}\right|=n+2(n-k-1)=3 n-2 k-2 \geq 2 n-1$. Since S is a dominating set, at least one vertex from $\mathcal{N}\left[d_{i+1}\right]$ must be in S. From $n \geq 27$ we have $\mathcal{N}\left[d_{i+1}\right] \cap S^{\prime}=\emptyset$. Therefore, we have $|S| \geq\left|S^{\prime}\right|+1 \geq 2 n$.

Case 9: For all i it holds that $c_{i} \in S$ and $c_{k+i} \in S$. Since $i \in[n-1]_{0}$, it holds that all c-vertices are in S. As all b-vertices are already in S, we have $|S| \geq 2 n$.

Finally, since $|S| \geq 2 n$ for all nine cases, $\gamma_{w c o n v}\left(Q_{n}\right) \geq 2 n$. Since $\gamma_{w c o n v}\left(Q_{n}\right) \leq$ $\gamma_{\text {conv }}\left(Q_{n}\right), \gamma_{w c o n v}\left(Q_{n}\right) \geq 2 n$ and $\gamma_{c o n v}\left(Q_{n}\right) \leq 2 n$, we have that $\gamma_{w c o n v}\left(Q_{n}\right)=$ $\gamma_{\text {conv }}\left(Q_{n}\right)=2 n$.
Theorem 6.2. For every $n \geq 27$ it holds that $\gamma_{\text {wconv }}\left(T_{n}^{\prime \prime}\right)=\gamma_{\text {conv }}\left(T_{n}^{\prime \prime}\right)=2 n$.
Proof. The proof goes along similar lines as the proof of Theorem 6.1, so it will be omitted.

7. Convex polytopes B_{n}, C_{n} and E_{n}

The graph of convex polytope B_{n} (Figure 9) was introduced in [2] and consists of $2 n 4$-sided faces, $n 3$-sided faces, $n 5$-sided faces and a pair of n-sided faces. The set of vertices is

$$
V\left(B_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}
$$

and the set of edges is

$$
E\left(B_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, d_{i} d_{i+1}, e_{i} e_{i+1}, a_{i} b_{i}, b_{i} c_{i}, b_{i+1} c_{i}, c_{i} d_{i}, d_{i} e_{i} \mid i \in[n-1]_{0}\right\} .
$$

Figure 9. Polytope B_{n}
Convex polytopes C_{n} (Figure 10) were introduced in 9 and consist of $3 n 3$-sided faces, $n 4$-sided faces, $n 5$-sided faces and a pair of n-sided faces. Their sets of vertices and edges are

$$
V\left(C_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}
$$

and

$$
\begin{aligned}
& E\left(C_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, d_{i} d_{i+1}, e_{i} e_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}\right. \\
& \left.d_{i} e_{i}, b_{i+1} c_{i}, d_{i-1} e_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

The graph of convex polytope E_{n} (Figure 11), similar to the C_{n}, introduced in [9], consists of $5 n 3$-sided faces, $n 5$-sided faces and a pair of n-sided faces, where

$$
\begin{aligned}
& V\left(E_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(E_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, d_{i} d_{i+1}, e_{i} e_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i},\right. \\
& \left.\qquad d_{i} e_{i}, b_{i+1} c_{i}, d_{i-1} e_{i}, a_{i-1} b_{i} \mid i \in[n-1]_{0}\right\} .
\end{aligned}
$$

Theorem 7.1. For every $n \geq 27$ it holds that $\gamma_{w c o n v}\left(B_{n}\right)=\gamma_{c o n v}\left(B_{n}\right)=3 n$.

Figure 10. Polytope C_{n}

Figure 11. Polytope E_{n}
Proof. First we will prove that $\gamma_{c o n v}\left(B_{n}\right) \leq 3 n$. Let $S=\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$. Now, we will prove that S is a convex dominating set for B_{n}. The set S is obviously a dominating set of B_{n}, since for all $i \in[n-1]_{0}$ it holds that $a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \in$ $\mathcal{N}\left[b_{i}\right] \cup \mathcal{N}\left[c_{i}\right] \cup \mathcal{N}\left[d_{i}\right]$, so $\bigcup_{i=0}^{n-1} \mathcal{N}\left[b_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[c_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[d_{i}\right]=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid\right.$ $\left.i \in[n-1]_{0}\right\}=V\left(B_{n}\right)$. Also, S is a convex set, since each shortest path between two vertices from $\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$ contains only b-vertices, c-vertices or d-vertices.

Therefore, S is a convex dominating set for B_{n} and $\gamma_{\text {conv }}\left(B_{n}\right) \leq|S|=3 n$. Note that, as before, shortest paths are not always unique, so this argument can be used only for the convex domination, and not for the weak convex domination.

Next, we will prove that $\gamma_{w c o n v}\left(B_{n}\right) \geq 3 n$. Using the same argumentation as in the proof of Theorem 4.1, it can be concluded that every b-vertex is in S, i.e. $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

Using the same argumentation as in the proof of Theorem 4.1, it can be concluded that $\left\{d_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

For an arbitrary $i \in[n-1]_{0}$ the shortest path between b_{i} and d_{i} is unique $\left(b_{i}-c_{i}-d_{i}\right)$, and has both endpoints in $S\left(b_{i}, d_{i} \in S\right)$, so from the fact that S is a weak convex dominating set it must hold that for all $i \in[n-1]_{0}, c_{i} \in S$. Due to the inclusion $\left\{c_{i} \mid i \in[n-1]_{0}\right\} \subset S$ and previous facts, we have $\left\{b_{i}, c_{i}, d_{i} \mid i \in\right.$ $\left.[n-1]_{0}\right\} \subseteq S \Rightarrow|S| \geq 3 n$.

Finally, since $\gamma_{w c o n v}\left(B_{n}\right) \leq \gamma_{c o n v}\left(B_{n}\right), \gamma_{w c o n v}\left(B_{n}\right) \geq 3 n$ and $\gamma_{c o n v}\left(B_{n}\right) \leq 3 n$, we have that $\gamma_{w c o n v}\left(B_{n}\right)=\gamma_{c o n v}\left(B_{n}\right)=3 n$.

Theorem 7.2. For every $n \geq 27$ it holds that

$$
\gamma_{w c o n v}\left(C_{n}\right)=\gamma_{c o n v}\left(C_{n}\right)=\gamma_{w c o n v}\left(E_{n}\right)=\gamma_{c o n v}\left(E_{n}\right)=3 n
$$

Proof. The proof goes along similar lines as the proof of Theorem 7.1, so it will be omitted.

8. Convex polytopes U_{n}

The convex polytopes $U_{n}, n \geq 5$ (Figure 12), were introduced in [8]. They consist of $n 4$-sided faces, $2 n 5$-sided faces and a pair of n-sided faces, having these vertex and edge sets:

$$
\begin{aligned}
& V\left(U_{n}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\} \\
& E\left(U_{n}\right)=\left\{a_{i} a_{i+1}, b_{i} b_{i+1}, e_{i} e_{i+1}, a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, d_{i} e_{i}, c_{i+1} d_{i} \mid i \in[n]\right\}
\end{aligned}
$$

Figure 12. Polytope U_{n}

Theorem 8.1. For every $n \geq 27$ it holds that $\gamma_{\text {wconv }}\left(U_{n}\right)=\gamma_{\text {conv }}\left(U_{n}\right)=4 n$.
Proof. First, we will prove that $\gamma_{\text {conv }}\left(U_{n}\right) \leq 4 n$. Let $S=\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}$. Now, we will prove that S is a convex dominating set for U_{n}. The set S is obviously a dominating set of U_{n}, since for all $i \in[n-1]_{0}$ it holds that $a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \in$ $\mathcal{N}\left[b_{i}\right] \cup \mathcal{N}\left[c_{i}\right] \cup \mathcal{N}\left[d_{i}\right] \cup \mathcal{N}\left[e_{i}\right]$, so $\bigcup_{i=0}^{n-1} \mathcal{N}\left[b_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[c_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[d_{i}\right] \cup \bigcup_{i=0}^{n-1} \mathcal{N}\left[e_{i}\right]$ $=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}=V\left(U_{n}\right)$. Also, S is a convex set, since each shortest path between two vertices from $\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}$ contains only b-vertices, c-vertices, d-vertices or e-vertices.

Therefore, S is a convex dominating set for U_{n} and $\gamma_{c o n v}\left(U_{n}\right) \leq|S|=4 n$. Note that, as previously, mentioned shortest paths are not always unique, so this argument can be used only for the convex domination, and not for the weak convex domination.

Next, we will prove that $\gamma_{w c o n v}\left(U_{n}\right) \geq 4 n$. Using the same argumentation as in the proof of Theorem 4.1 it can be concluded that every b-vertex is in S, i.e. for all $i \in[n-1]_{0}$ it holds that $b_{i} \in S$ implies that $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

Also, we will prove that all e-vertices must be in the weak convex dominating set of U_{n}, i.e. for all $i \in[n-1]_{0}$ it holds that $e_{i} \in S$. We can notice that by removing vertices $\left\{a_{i} \mid i \in[n-1]_{0}\right\}$ from U_{n} we obtain D_{n}, and $\left\{b_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$. Using
the same argumentation for vertices $\left\{d_{i} \mid i \in[n-1]_{0}\right\}$ as in Theorem 2.1 we can conclude that $\left\{e_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$.

Similarly to the proof of Theorem 2.1] for an arbitrary $i \in[n-1]_{0}$ the shortest path between b_{i} and e_{i} is unique ($b_{i}-c_{i}-d_{i}-e_{i}$), and has both endpoints in S $\left(b_{i}, e_{i} \in S\right)$. From the fact that S is a weak convex dominating set it must hold that for all $i \in[n-1]_{0}$ the vertices b_{i} and d_{i} belong to S. Since $\left\{c_{i}, d_{i} \mid i \in[n-1]_{0}\right\} \subset S$, and from previous facts, it stands that $\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\} \subseteq S$, implying that $|S| \geq 4 n$.

Finally, since $\gamma_{w c o n v}\left(U_{n}\right) \leq \gamma_{c o n v}\left(U_{n}\right), \gamma_{w c o n v}\left(U_{n}\right) \geq 4 n$ and $\gamma_{c o n v}\left(U_{n}\right) \leq 4 n$, we have that $\gamma_{w c o n v}\left(U_{n}\right)=\gamma_{c o n v}\left(U_{n}\right)=4 n$.

9. Conclusion

This paper presents values of the weak convex and the convex domination numbers for all known convex polytopes. Validity of these values is proven for $n \geq 27$, while for $n \leq 26$ the values are computed using the exact method. Values obtained by the exact method satisfy formulas obtained theoretically, except in some particular cases which will be mentioned below.

The results obtained are summarized in Table 3 Each row describes the weak convex and the convex dominating sets with minimal cardinality, and the corresponding weak convex and convex domination numbers for a certain polytope. The first column, labeled with G, contains the type of polytope. The second and third columns, labeled with $|V(G)|$ and $|E(G)|$, contain the number of vertices and edges, respectively. The fourth column, labeled Cond., denotes the polytopes for which a certain result applies. In this column, 'gc' denotes that the result stands in the general case, while $n=5$ means that the result presented with given row stands for the polytope where $n=5$. The fifth column, labeled Type, describes the type of domination: 'wconv' for the weak convex domination and 'conv' for the convex domination, while 'wconv, conv' in a certain row means that the result stands for both weak convex and convex domination. The sixth column, labeled Card., contains the weak convex and convex domination numbers. The seventh column, labeled Basis, contains the weak convex and the convex dominating set with minimal cardinality. For example, polytope B_{n}, in general, has the weak convex and convex dominating sets $\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$ with $3 n$ elements, with one exception for $n=5$ where the weak convex dominating set with minimal cardinality 14 is $\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in\{0,1,2\}\right\} \cup\left\{b_{3}, b_{4}\right\}$.

Future work could be directed to obtaining the weakly convex and convex domination numbers of some other classes of graphs. Another promising direction for future research would be to calculate other graph invariants of convex polytopes.

Table 3. Summary of results

G	$\|V(G)\|$	$\|E(G)\|$	Cond.	Type	Card.	Basis
A_{n}	$3 n$	$7 n$	gc	wconv, conv	n	$\left\{b_{i} \mid i \in[n-1]_{0}\right\}$
B_{n}	$5 n$	$9 n$	gc	wconv, conv	$3 n$	$\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$
			$n=5$	wconv	14	$\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i=0,1,2\right\} \cup\left\{b_{3}, b_{4}\right\}$
C_{n}	$5 n$	$10 n$	gc	wconv, conv	$3 n$	$\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$
D_{n}	$4 n$	$6 n$	gc	wconv, conv	$4 n$	$\left\{a, b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$
			$n=5$	wconv	10	$\left\{a_{2}, a_{3}, a_{4}, b_{2}, b_{4}, c_{1}, c_{4}, d_{0}, d_{1}, d_{4}\right\}$
E_{n}	$5 n$	$11 n$	gc	wconv, conv	$3 n$	$\left\{b_{i}, c_{i}, d_{i} \mid i \in[n-1]_{0}\right\}$
Q_{n}	$4 n$	$7 n$	gc	wconv, conv	$2 n$	$\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$
R_{n}	$3 n$	$6 n$	gc	wconv, conv	n	$\left\{b_{i} \mid i \in[n-1]_{0}\right\}$
$R_{n}^{\prime \prime}$	$6 n$	$9 n$	gc	wconv, conv	$6 n$	$\left\{a, b_{i}, c_{i}, d_{i}, e_{i}, f_{i} \mid i \in[n-1]_{0}\right\}$
			$n=5$	wconv	20	$\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in\{0,1,2,3,4\}\right\}$
S_{n}	$4 n$	$8 n$	gc	wconv, conv	$2 n$	$\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$
$S_{n}^{\prime \prime}$	$4 n$	$8 n$	gc	wconv, conv	$2 n$	$\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$
T_{n}	$4 n$	$9 n$	gc	wconv, conv	$2 n$	$\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$
			$n=5$	wconv	8	$\left\{a_{1}, b_{0}, b_{3}, b_{4}, c_{0}, c_{3}, c_{4}, d_{0}\right\}$
$T_{n}^{\prime \prime}$	$4 n$	$8 n$	gc	wconv, conv	$2 n$	$\left\{b_{i}, c_{i} \mid i \in[n-1]_{0}\right\}$
U_{n}	$5 n$	$8 n$	gc	wconv, conv	$4 n$	$\left\{b_{i}, c_{i}, d_{i}, e_{i} \mid i \in[n-1]_{0}\right\}$
			$n=5$	wconv	13	$\left\{a_{0}, a_{3}, a_{4}, b_{0}, b_{3}, b_{4}, c_{0}, c_{3}, d_{0}, d_{2}, e_{0}, e_{1}, e_{2}\right\}$

Acknowledgments

We wish to thank V. Filipović for sharing the exact solvers for the problems of the weakly convex and convex domination number.

References

[1] M. Bača, Labelings of two classes of convex polytopes, Utilitas Math. $\mathbf{3 4}$ (1988), 24-31. MR 0982242
[2] M. Bača, On magic labellings of convex polytopes, in Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), 13-16, Ann. Discrete Math., 51, North-Holland, Amsterdam, 1992. MR 1206237
[3] J. Cyman, M. Lemańska and J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006), no. 2, 307-316. MR 2330331
[4] M. Dettlaff and M. Lemańska, Influence of edge subdivision on the convex domination number, Australas. J. Combin. 53 (2012), 19-30. MR 2962128.
[5] M. Imran, A. Q. Baig and A. Ahmad, Families of plane graphs with constant metric dimension, Util. Math. 88 (2012), 43-57. MR 2975822.
[6] M. Imran, A. Q. Baig, M. K. Shafiq and A. Semaničová-Feňovčíková, Classes of convex polytopes with constant metric dimension, Util. Math. 90 (2013), 85-99. MR 3059386.
[7] M. Imran, S. A. U. H. Bokhary, A. Ahmad and A. Semaničová-Feňovčíková, On classes of regular graphs with constant metric dimension, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 1, 187-206. MR 3003753
[8] M. Imran, S. A. U. H. Bokhary and A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl. 60 (2010), no. 9, 2629-2638. MR 2728092
[9] M. Imran, S. A. U. H. Bokhary and A. Q. Baig, On the metric dimension of rotationallysymmetric convex polytopes, J. Algebra Comb. Discrete Struct. Appl. 3 (2016), no. 2, 45-59. MR 3493642
[10] T. N. Janakiraman and P. J. A. Alphonse, Weak convex domination in graphs. Int. J. Eng. Sci. Adv. Comput. Biotech. 1 (2010), no. 1, 1-13.
[11] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric dimension of some convex polytopes, Appl. Math. Comput. 218 (2012), no. 19, 9790-9801. MR 2916158.
[12] J. Kratica, V. Filipović, D. Matić and A. Kartelj, An integer linear programming formulation for the convex dominating set problems, https://arxiv.org/abs/1904.02541 [math.OC], 2019.
[13] M. A. Labendia and S. R. Canoy, Jr., Convex domination in the composition and Cartesian product of graphs, Czechoslovak Math. J. 62(137) (2012), no. 4, 1003-1009. MR 3010253
[14] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004), no. 2, 181-188. MR 2100881
[15] M. Lemańska and R. Zuazua, Convex universal fixers, Discuss. Math. Graph Theory 32 (2012), no. 4, 807-812. MR 2993524
[16] M. Miller, M. Bača and J. A. MacDougall, Vertex-magic total labeling of generalized Petersen graphs and convex polytopes, J. Combin. Math. Combin. Comput. 59 (2006), 89-99. MR 2277342
[17] N. Polat, On isometric subgraphs of infinite bridged graphs and geodesic convexity, Discrete Math. 244 (2002), no. 1-3, 399-416. MR 1844048
[18] J. Raczek, NP-completeness of weakly convex and convex dominating set decision problems, Opuscula Math. 24 (2004), no. 2, 189-196. MR 2100882

Zoran Lj. Maksimović ${ }^{\boxtimes}$
Military Academy, University of Defence, Generala Pavla Jurišića Šturma 33, 11000 Belgrade, Serbia
zoran.maksimovic@gmail.com
Aleksandar Lj. Savić
Faculty of Mathematics, University of Belgrade, Studentski trg 16/IV, 11000 Belgrade, Serbia asavic@matf.bg.ac.rs

Milena S. Bogdanović
Department of Information Technology, Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade, Serbia
mb2001969@beotel.net

Received: August 22, 2019
Accepted: June 12, 2020

[^0]: 2020 Mathematics Subject Classification. 05C69, 05C38, 05C40.
 This research was partially supported by the Serbian Ministry of Science under grant no. 174010.

[^1]: ${ }^{1}$ A. Kartelj, D. Matić and V. Filipović, Solving the signed Roman domination and signed total Roman domination problems by exact and heuristic methods (unpublished manuscript).

