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LINEAR MAPS PRESERVING DRAZIN INVERSES OF
MATRICES OVER LOCAL RINGS

TUGCE PEKACAR CALCI, HUANYIN CHEN, SAIT HALICIOGLU, AND GUO SHILE

Abstract. Let R be a local ring and suppose that there exists a ∈ F ∗ such
that a6 6= 1; also let T : Mn(R) → Mm(R) be a linear map preserving
Drazin inverses. Then we prove that T = 0 or n = m and T preserves
idempotents. We thereby determine the form of linear maps from Mn(R) to
Mm(R) preserving Drazin inverses of matrices.

1. Introduction

Let R be a commutative ring with an identity. Mn(R) denotes the n×n matrix
algebra over R and GLn(R) stands for the general linear group of Mn(R) for
a positive integer n. A matrix A ∈ Mn(R) has Drazin inverse if there exists
B ∈Mn(R) such that

B = BAB, AB = BA, Ak = Ak+1B for some k ∈ N.

The preceding B is unique if it exists; we denote it by AD. The Drazin inverse
plays an important role in matrix and operator theory (see [7, 12, 13, 15, 14]). We
say that a linear map T : Mn(R) → Mm(R) preserves Drazin inverses of matrices
if the condition “A ∈Mn(R) has Drazin inverse” implies that T (A) ∈Mm(R) has
Drazin inverse and T (A)D = T (AD). Linear maps preserving generalized inverses
of matrices are extensively studied by many authors, e.g., [1, 2, 3, 4, 6, 8, 9, 10, 11,
12].

Recall that a ring R is local if R has exactly one maximal ideal M . The ring R/M
is called the residue field of R; we denote it by F . It is well known that a ring R
is local if and only if for any x ∈ R, either x or 1 − x is invertible. Clearly, every
field is a local ring. The purpose of this paper is to further explore the linear maps
preserving Drazin inverses of matrices over local rings. Let T : Mn(R) → Mm(R)
be a linear map preserving Drazin inverses. If a6 6= 1 for some a ∈ F ∗, we prove that
T = 0 or n = m and T preserves idempotents. That is, the preserving of Drazin
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inverses can be reduced to the case of idempotents. We thereby determine the form
of linear maps from Mn(R) to Mm(R) preserving Drazin inverses of matrices.

In what follows, Z and Zn denote respectively the ring of integers and the ring
of integers modulo n for some positive integer n. We write J(R) and U(R) for the
Jacobson radical of R and the set of all invertible elements of R, respectively.

Throughout the paper, R is a commutative local ring with the residue field F .
Also, F ∗ denotes the group of all nonzero elements in the field F . Moreover, Eij

denotes the matrices with 1 in the (i, j)-entry and 0 elsewhere, for any i, j ∈ [1, n].

2. Main results

Let R be a local ring with the residue field F , and let T be a linear map from
Mn(R) to Mm(R), with m, n > 1. The aim of this section is to investigate the
linear maps preserving Drazin inverses of matrices for such a local ring R.

Lemma 2.1. Let R be a local ring and suppose that there exists a ∈ F ∗ such that
a6 6= 1. Let T be a linear map from Mn(R) to Mm(R). If T preserves Drazin
inverses of matrices and T (Eii) = 0 for some i ∈ [1, n], then T = 0.

Proof. We claim that |F | ≥ 4. If not, |F ∗| < 3, and so either x3 = 1 or x3 = −1 for
any x ∈ F ∗. This shows that x6 = 1, a contradiction. We may assume T (E11) = 0.
Since |F | ≥ 4, we find some a 6∈ {0, 1,−1}. Then a ∈ U(R). Let x ∈ U(R). Then
(E11 + xE1j)D = E11 + xE1j for any j ∈ [2, n]. Hence,

T (E11 + xE1j)3 = T (E11 + xE1j),

and so x3T (E1j)3 = xT (E1j). In particular choose x = 1 and x = a; we see that

T (E1j)3 = T (E1j), a2T (E1j)3 = T (E1j).

Thus, we have (a − 1)(a + 1)T (E1j) = 0. Clearly, a − 1, a + 1 ∈ U(R); hence,
T (E1j) = 0. Likewise, T (Ej1) = 0 for any j ∈ [2, n]. Set X = E11 + E1j + Ej1
and A = E1j + Ej1 − Ejj , where j ∈ [2, n]. Then T (X) = 0 and AD = X.
Then T (A)k = T (A)k+1T (X) = 0, and so (−1)kT (Ejj) = 0. Hence T (Ejj) = 0.
Therefore T = 0, as asserted. �

Lemma 2.2. Let R be a local ring and suppose that there exists a ∈ F ∗ such that
a6 6= 1. Let T be a linear map from Mn(R) to Mm(R). If T preserves Drazin
inverses of matrices, then

T (Eii)T (Ejj) = T (Ejj)T (Eii) = 0

for any distinct i, j ∈ [1, n].

Proof. Since a6 6= 1 for some a ∈ F ∗, from the above discussion we easily see
that |F | ≥ 4, and so we can find some a 6∈ {0, 1,−1}. Then a ∈ U(R). Let
A = Eii + a−1Ejj , X = Eii + aEjj for distinct i, j ∈ [1, n]. Then X = AD. Hence
we have

T (Eii + aEjj)T (Eii + a−1Ejj) = T (Eii + a−1Ejj)T (Eii + aEjj).
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It follows that
(a−1 − a)(T (Eii)T (Ejj)− T (Ejj)T (Eii)) = 0.

As a2 − 1 ∈ U(R), we see that T (Eii)T (Ejj) = T (Ejj)T (Eii).
Let i, j ∈ [1, n] be distinct. By hypothesis, there exists some a ∈ U(R) such that

a6 6= 1 in F . Set Y = Eii + aEjj and B = Eii + a−1Ejj . Then Y = BD. Hence

T (Y ) = T (BD) = T (B)D = (T (B)D)2T (B) = T (Y )2T (B).
It follows that

T (Eii) + aT (Ejj) =
(
T (Eii) + aT (Ejj)

)2(
T (Eii) + a−1T (Ejj)

)
= T (Eii)3 + (a−1 + 2a)T (Eii)2T (Ejj)

+ (2 + a2)T (Eii)T (Ejj)2 + aT (Ejj)3.

Since Eii is an idempotent, ED
ii = Eii and so T (Eii)D = T (ED

ii ) = T (Eii). Hence
it is easy to see that

T (Eii) = T (Eii)3.

Similarly, T (Ejj) = T (Ejj)3. Hence,

(a−1 + 2a)T (Eii)2T (Ejj) + (2 + a2)T (Eii)T (Ejj)2 = 0.

That is,
(1 + 2a2)T (Eii)2T (Ejj) + (2a + a3)T (Eii)T (Ejj)2 = 0. (2.1)

Since T (Eii) = T (Eii)3 and T (Ejj) = T (Ejj)3, we derive

(2a + a3)T (Eii)2T (Ejj) + (1 + 2a2)T (Eii)T (Ejj)2 = 0. (2.2)
Combining (2.1) and (2.2), we have

(a− 1)(a2 − a + 1)
(
T (Eii)2T (Ejj)− T (Eii)T (Ejj)2) = 0.

Clearly,
(a− 1)(a2 − a + 1)(a + 1)(a2 + a + 1) = a6 − 1 6= 0

in F ; hence,
(a− 1)(a2 − a + 1)(a + 1)(a2 + a + 1) ∈ U(R).

Therefore we get
T (Eii)2T (Ejj) = T (Eii)T (Ejj)2.

It follows by (2.2) that
(a + 1)(a2 + a + 1)T (Eii)2T (Ejj) = 0,

and then T (Eii)2T (Ejj) = 0. Consequently, we have

T (Eii)T (Ejj) = T (Eii)3T (Ejj) = 0.

This completes the proof. �

Lemma 2.3. Let R be a local ring, and let A3 = A ∈ Mn(R). Then there exists
P ∈ GLn(R) such that PAP −1 = diag(A1, 0n−r), where A2

1 = Ir for some r ∈
[0, n].
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Proof. Clearly, A is regular. Since R is a local ring, it follows from [5, Theorem
7.3.2] that there exist P, Q ∈ GLn(R) such that

PAQ = diag(Ir, d1, . . . , dn−r),

where di ∈ J(R) for i ∈ [1, n − r]. Since A is regular, so is PAQ, and then each
di ∈ R is regular. Write di = dixidi for some xi ∈ R. Then di(1 − xidi) = 0.
As di ∈ J(R), we see that 1 − xidi ∈ U(R); hence, di = 0. Therefore PAQ =
diag(Ir, 0n−r). We have

PAP −1 = diag(Ir, 0n−r)Q−1P −1 =
(

A1 A2
0 0

)
.

Since A3 = A, we get
A2

1(A1, A2) = (A1, A2).
Choose Y = PQ. Then we have (A1, A2)Y = Ir, and so A2

1 = Ir. Hence,(
Ir A−1

1 A2
0 In−r

)
PAP −1

(
Ir −A−1

1 A2
0 In−r

)
=
(

A1 0
0 0

)
.

This completes the proof. �

Lemma 2.4. Let R be a local ring and suppose that there exists a ∈ F ∗ such that
a6 6= 1. Let T be a linear map from Mn(R) to Mm(R), n ≥ m. If T preserves
Drazin inverses of matrices, then T = 0 or n = m and T (In) = In.

Proof. If T (Eii) = 0 for some i ∈ [1, n], it follows by Lemma 2.1 that T = 0. Next,
we assume that T (Eii) 6= 0 for all i ∈ [1, n].

Since E3
11 = E11, by virtue of Lemma 2.3 there exists P1 ∈ GLm(R) such that

T (E11) = P1

(
A1 0
0 0

)
P −1

1 ,

where A2
1 = Ir1 for some r1 ∈ [0, m]. Let

T (E22) = P1

(
X11 X12
X21 X22

)
P −1

1 ,

where X11 ∈Mr1(R). In view of Lemma 2.2, we have

T (E11)T (E22) = T (E22)T (E11) = 0,

and so X12 = 0, X21 = 0 and X11 = 0. Thus,

T (E22) = P1

(
0 0
0 X22

)
P −1

1 ,

where X3
22 = X22. By using Lemma 2.3 again, there exists Q1 ∈ GLm−r1(R) such

that

X22 = Q1

(
A2 0
0 0

)
Q−1

1 ,
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where A2
2 = Ir2 for some r2 ∈ [0, m− r1]. It follows that

T (E22) = P1

(
Ir1 0
0 Q1

) 0 0 0
0 A2 0
0 0 0

( Ir1 0
0 Q−1

1

)
P −1

1 .

Set P2 = P1

(
Ir1 0
0 Q1

)
. Then

T (E22) = P2(0⊕A2 ⊕ 0)P −1
2 .

Moreover,
T (E11) = P2(A1 ⊕ 0⊕ 0)P −1

2 .

By iteration of this process, we have

T (Eii) = P (0⊕ · · · ⊕Ai ⊕ · · · ⊕ 0)P −1,

where A2
i = Iri

. Clearly, Ai 6= 0, and so

T (In) = T (E11 + · · ·+ Enn) = P (A1 ⊕ · · · ⊕An)P −1,

where A2
i = Iri

. As n ≥ m, we see that n = m, and so Ai = 1 for any i ∈ [1, n].
Therefore T (In) = In, as asserted. �

Lemma 2.5. Let R be a local ring and suppose that there exists a ∈ F ∗ such that
a6 6= 1. Let T be a linear map from Mn(R) to Mn(R). If T preserves Drazin
inverses of matrices, then T (Eii) = T (Eii)2 for all i ∈ [1, n].

Proof. If T = 0, then the result holds. We may assume that T 6= 0. In light of
Lemma 2.4, T (In) = In. As in the proof of Lemma 2.1, since |F | ≥ 4, we can find
some x 6∈ {0, 1, 2}. Clearly, we have

(In + (x−1 − 1)Eii)D = In + (x− 1)Eii,

and so

T (In + (x− 1)Eii)T (In + (x−1 − 1)Eii)T (In + (x− 1)Eii) = T (In + (x− 1)Eii).

Set A = T (Eii). Then,

(In + (x− 1)A)(In + (x−1 − 1)A)(In + (x− 1)A) = In + (x− 1)A.

Hence,

(In + (x− 1)A)(In(x− 1 + 1)− (x− 1)A)(In + (x− 1)A)
= In(x− 1 + 1) + (x− 1 + 1)(x− 1)A.

This shows that

(In + (x− 1)A)(In + (x− 1)(In −A))(In + (x− 1)A)
= In + (x− 1)(In + A) + (x− 1)2A,

and so
(x− 1)2(A−A2)(In + (x− 1)A) = 0.
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Since A3 = A, we have
(x− 1)2(2− x)(A−A2) = 0.

As x− 1, x− 2 ∈ U(R), we see that A2 = A, as asserted. �

We have accumulated all the information necessary to prove the following result.

Theorem 2.6. Let R be a local ring and suppose that there exists a ∈ F ∗ such
that a6 6= 1. Let T be a linear map from Mn(R) to Mm(R), n ≥ m. If T preserves
Drazin inverses of matrices, then T = 0 or n = m and T preserves idempotents.

Proof. Suppose that T 6= 0. In view of Lemma 2.4, n = m and T (In) = In. Let
M2 = M ∈Mn(R). Then there exists Q ∈ GLn(R) such that M = Q(Ir ⊕ 0)Q−1.
Let T1(X) = T (QXQ−1). Then T1 is a linear map from Mn(R) to Mn(R) and it
preserves Drazin inverses of matrices with T1(In) = In. By Lemma 2.2,

T1(Eii)T1(Ejj) = T1(Ejj)T1(Eii) = 0
for any distinct i, j ∈ [1, n]. By Lemma 2.5, T1(Eii) = T1(Eii)2 for any i ∈ [1, n].
Therefore,

T (M) = T (Q(Ir ⊕ 0)Q−1)
= T1(Ir ⊕ 0)

=
r∑

i=1
T1(Eii)

=
r∑

i=1
T1(Eii)2

=
(

r∑
i=1

T1(Eii)
)2

= (T1(Ir ⊕ 0))2

= T (M)2,

as asserted. �

Note that the trivial map T = 0 preserves Drazin inverses of matrices. For the
nonzero case, we have the following.

Corollary 2.7. Let R be a local ring with 2, 3, 7 ∈ U(R), and let T be a nonzero
linear map from Mn(R) to Mm(R). Then T preserves Drazin inverses of matrices
if and only if n = m and either there exists P ∈ GLn(R) such that T (A) = PAP −1

or there exists P ∈ GLn(R) such that T (A) = PAtP −1.

Proof. If a6 = 1 for all x ∈ F ∗, then 26 = 1. Hence, 32 × 7 = 0, a contradiction.
Therefore we can find some a ∈ F ∗ such that a6 6= 1. In view of Theorem 2.6, T
preserves idempotents. Therefore we complete the proof by [3, Theorem]. �

We now construct a ring to illustrate the preceding result.
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Example 2.8. Let Z(5) = {p
q | p, q ∈ Z, (p, q) = 1 and 5 - q}. Then Z(5) is a local

ring with 2, 3, 7 ∈ U(Z(5)). Let T be a linear map from Mn(Z(5)) to Mm(Z(5)).
Then T preserves Drazin inverses of matrices if and only if T has the forms as in
Corollary 2.7.

Proof. Clearly, J(Z(5)) = 5Z(5), and so Z(5)/J(Z(5)) ∼= 5Z. Therefore we are
through by Corollary 2.7. �

The condition “a6 6= 1 for some a ∈ F ∗” in Theorem 2.6 is not superfluous, as
the following shows.

Example 2.9. Let T : M2(Z3)→M2(Z3) be the linear map given by(
a b
c d

)
7→
(
−a −c
−b −d

)
.

Then T preserves Drazin inverses of matrices, but T does not preserve idempotents.

Proof. Clearly, Z3 is local. Since T (A) = −At for any A ∈M2(Z3), we easily check
that T preserves Drazin inverses of matrices. But

T
(( 1 0

1 0

))
=
(
−1 −1
0 0

)
,

which is not an idempotent. Therefore T does not preserve idempotents. Observe
that in this case, a6 = 1 for all a ∈ Z∗

3. �
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