Interpolation theory for the HK-Fourier transform

Authors

  • Juan H. Arredondo Ruiz Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa Av. San Rafael Atlixco 186, 09340 Iztapalapa, CDMX, México
  • Alfredo Reyes Vazquez Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa Av. San Rafael Atlixco 186, 09340 Iztapalapa, CDMX, México

DOI:

https://doi.org/10.33044/revuma.1911

Abstract

 We use the Henstock-Kurzweil integral and interpolation theory to extend the Fourier cosine transform operator, broadening some classical properties such as the Riemann-Lebesgue lemma. Furthermore, we show that a qualitative difference between the cosine and sine transform is preserved on differentiable functions.

Downloads

Download data is not yet available.

Downloads

Published

2021-11-09

Issue

Section

Article