Note on the generalized conformable derivative

Authors

  • Alberto Fleitas Universidad Autónoma de Guerrero, Centro Acapulco, CP 39610, Acapulco de Juárez, Guerrero, México
  • Juan E. Nápoles Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, 3400 Corrientes, Argentina
  • José M. Rodríguez Universidad Carlos III de Madrid, Departamento de Matemáticas, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
  • José M. Sigarreta Facultad de Matemáticas, Universidad Autónoma de Guerrero, Guerrero, México

DOI:

https://doi.org/10.33044/revuma.1930

Abstract

 We introduce a definition of a generalized conformable derivative of order $\alpha \gt 0$ (where this parameter does not need to be integer), with which we overcome some deficiencies of known local derivatives, conformable or not. This definition allows us to compute fractional derivatives of functions defined on any open set on the real line (and not just on the positive half-line). Moreover, we extend some classical results to the context of fractional derivatives. Also, we obtain results for the case $\alpha \gt 1$.

Downloads

Download data is not yet available.

Downloads

Published

2021-12-16

Issue

Section

Article