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APPROXIMATION VIA STATISTICAL K2
a-CONVERGENCE ON

TWO-DIMENSIONAL WEIGHTED SPACES

SEVDA YILDIZ

Abstract. We give a non-regular statistical summability method named sta-
tistical K2

a-convergence and prove a Korovkin type approximation theorem
for this new and interesting convergence method on two-dimensional weighted
spaces. We also study the rate of statistical K2

a-convergence by using the
weighted modulus of continuity and afterwards we present a non-trivial appli-
cation.

1. Introduction and preliminaries

Statistical convergence of a number sequence for single sequences was first in-
troduced, independently, by Fast and Steinhaus ([9, 19]). Then this notion was
extended to double sequences by Moricz ([14]).

A double sequence x = (xij) is said to be convergent in Pringsheim’s sense if,
for every ε > 0, there exists J = J(ε) ∈ N, the set of all natural numbers, such
that |xij − L| < ε whenever i, j > J , where L is called the Pringsheim limit of x
and denoted by P- limi,j xij = L (see [18]). If there exists a positive number c such
that |xij | ≤ c for all (i, j) ∈ N2 = N×N, then a double sequence is called bounded.
As it is well known, a convergent single sequence is bounded whereas a convergent
double sequence need not be bounded.

If S ⊂ N2 is a two-dimensional subset of positive integers, the double natural
density of S is given by

d2(S) := P- lim
i,j

|{(m,n) ∈ S : m ≤ i, n ≤ j}|
ij

, if it exists,

where |S| denotes the cardinality of S. The number sequence x = (xij) is statisti-
cally convergent to L provided that for every ε > 0, the set

S := Sij(ε) := {m ≤ i, n ≤ j : |xmn − L| ≥ ε}
has natural density zero; in that case we write st2- limi,j xij = L. As it is well
known, a double sequence that is convergent in Pringsheim’s sense is statistically
convergent to the same value, but the converse is not always true and a statistically
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convergent double sequence need not be bounded. Also, a well-known relationship
states that statistical convergence for double sequences and almost convergence
for double sequences ([15]) overlap, and they are important in convergence theory.
There is also a new and interesting convergence method named Ka-convergence.
First, Lazic and Jovovic defined the Ka-convergence for single sequences in 1993
([12]). Then, more recently, Yıldız ([21]) has extended this notion to double se-
quences. She has showed that statistical convergence, almost convergence and
Ka-convergence for double sequences overlap. Our goal in this paper is to give a
non-regular (not necessarily positive) statistical summability method named sta-
tistical K2

a-convergence and prove a Korovkin type approximation theorem for this
convergence method on two-dimensional weighted spaces. We study the rate of
statistical K2

a-convergence by using the weighted modulus of continuity. Finally,
we present an application that shows that our result is stronger than proven by
earlier authors.

We first begin to recall the notion of K2
a-convergence ([21]). This new conver-

gence method is associated to the four-dimensional matrix

 a11 0 0 .
0 0 0 .
. . . .

  a12 a11 0 .
0 0 0 .
. . . .

  a13 a12 a11 0 .
0 0 0 0 .
. . . . .

 . . .


a12 0 0 .
a11 0 0 .
0 0 0 .
. . . .




a22 a21 0 .
a12 a11 0 .
0 0 0 .
. . . .




a23 a22 a21 0 .
a13 a12 a11 0 .
0 0 0 0 .
. . . . .

 . . .

. . . . . .

. . . . . .



.

Let a = (aij) and x = (xij) be double sequences. Set K2
a(x) = y, where y = (yij)

and yij =
∑i
m=1

∑j
n=1 ai−m+1j−n+1xmn (i, j = 1, 2, 3, . . . ). Then it is said that

y = (yij) is the K2
a-transformation of the double sequence x = (xij).

Definition 1.1 ([21]). The double sequence of real numbers x = (xij) is said to
be K2

a-convergent to the number L if its K2
a-transformation y = (yij) converges to

the number L in Pringsheim’s sense, i.e. P- limi,j yij = L, and we denote this limit
by K2

a-limi,j xij = L.

For a double sequence a = (aij) we introduce the following two conditions:

• P- lim
i,j

i∑
m=1

j∑
n=1
|amn| exists. (1.1)

• There exists a positive integer c such that
∑

(i,j)∈N2

|aij | < c. (1.2)
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Proposition 1.2 ([21]). Let a = (aij) be a double sequence.
(i) If x = (xij) is convergent in Pringsheim’s sense, with P- limi,j xij = L, and

conditions (1.1) and (1.2) are satisfied, then

K2
a- lim

i,j
xij = L

∑
(i,j)∈N2

aij .

(ii) A convergence method K2
a is RH-regular if and only if conditions (1.1) and

(1.2) and the relation ∑
(i,j)∈N2

aij = 1

are satisfied.

Now, we give the following definition of statistical K2
a-convergence.

Definition 1.3. The double sequence x = (xij) of real numbers is statistically
K2
a-convergent to the number L if its K2

a-transformation y = (yij) statistically
converges to the number L, i.e. st2- limi,j yij = L, and we write (st2)K2

a-limi,j xij =
L.

Example 1.4. Let

a = (aij) =


1 0 0 .
0 1 0 .
0 0 0 .
. . . .


and

x = (xij) =



1
3

2
3 1 1 1 1 1 .

1 2
3

1
3 0 0 0 0 .

1 0 1
3

2
3 1 1 1 .

1 0 1 2
3

1
3 0 0 .

1 0 1 0 1
3

2
3 1 .

. . . . . . . .


. (1.3)

It is easy to check that

(
i∑

m=1

j∑
n=1

ai−m+1j−n+1xij − 1
)

=


− 2

3 − 1
3 0 .

0 0 0 .
0 0 0 .
. . . .

 .

Then, clearly, x = (xij) is K2
a-convergent to the number 1, hence x = (xij) is

statistically K2
a-convergent to the number 1, i.e.

(st2)K2
a-lim

i,j
xij = 1.
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2. Approximation via statistical K2
a-convergence

Korovkin type theorems have a very important role in approximation theory.
Many mathematicians have investigated and improved them ([6, 7, 16, 17, 20, 22]).
The convergence of a sequence of positive linear operators defined on weighted
space was first studied by Gadjiev ([10]). These results were later improved by
Duman and Orhan via statistical convergence ([8]) and by Atlıhan and Orhan via
summability methods ([2]). Recently, Cao and Liu ([5]) studied Korovkin type
theorems for two variable functions by means of a single sequence on weighted
spaces, and more recently Akdag ([1]) studied this theorem for double sequences.

Now, we turn our attention to the two-dimensional weighted spaces.
A real valued function ρ is called a weight function if it is continuous on R2 and

for all (x, y) ∈ R2,

ρ(x, y) ≥ 1 and lim√
x2+y2→∞

ρ(x, y) =∞. (2.1)

Let Bρ denote the weighted space of real valued functions f defined on R2 and
satisfying |f(x, y)| ≤Mfρ(x, y) (for all x, y ∈ R), where Mf is a constant depending
on the function f . The weighted subspace Cρ of Bρ is given by

Cρ :=
{
f ∈ Bρ : f is continuous on R2} .

The spaces Bρ and Cρ are Banach spaces with the norm (see [5])

‖f‖ρ := sup
(x,y)∈R2

|f(x, y)|
ρ(x, y) .

Let ρ1 and ρ2 be two weight functions satisfying (2.1). Assume also that the
condition

lim√
x2+y2→∞

ρ1(x, y)
ρ2(x, y) = 0 (2.2)

holds. If T is a positive linear operator from Cρ1 into Bρ2 , then we know that

‖T‖Cρ1→Bρ2
:= ‖T (ρ1)‖ρ2

.

Now we recall the following Korovkin type approximation theorems on two-
dimensional weighted space for double sequences, before giving our main theorem.

Throughout the paper we use the test functions Fr (r = 0, 1, 2, 3) defined by

F0(x, y) = ρ1(x, y)
1 + x2 + y2 , F1(x, y) = xρ1(x, y)

1 + x2 + y2 ,

F2(x, y) = yρ1(x, y)
1 + x2 + y2 , F3(x, y) =

(
x2 + y2) ρ1(x, y)

1 + x2 + y2 .
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Theorem 2.1 ([1]). Assume that the functions ρ1 and ρ2 are weight functions
satisfying (2.2) and let (Lij) be a double sequence of positive linear operators from
Cρ1 into Bρ2 . Then, for all f ∈ Cρ1 ,

P- lim
i,j
‖Lij (f)− f‖ρ2

= 0

if
P- lim

i,j
‖Lij (Fr)− Fr‖ρ1

= 0, r = 0, 1, 2, 3.

Theorem 2.2 ([1]). Let ρ1 and ρ2 be weight functions satisfying (2.2). Assume
that (Lij) is a sequence of positive linear operators from Cρ1 into Bρ2 . Then, for
all f ∈ Cρ1 ,

st2- lim
i,j
‖Lij(f)− f‖ρ2

= 0

if
st2- lim

i,j
‖Lij (Fr)− Fr‖ρ1

= 0, r = 0, 1, 2, 3.

Theorem 2.3 ([1]). Let (Lij) be a sequence of positive linear operators from Cρ1

into Bρ2 , where ρ1 and ρ2 satisfy condition (2.2). Then, for all f ∈ Cρ1 ,
P- lim

i,j
‖Dk,l,i,j(f)− f‖ρ2

= 0 uniformly in k, l,

where Dk,l,i,j(f) = 1
ij

∑k+i−1
m=k

∑l+j−1
n=l Lmn (f ;x, y) provided that

P- lim
i,j
‖Dk,l,i,j(Fr)− Fr‖ρ1

= 0 uniformly in k, l (r = 0, 1, 2, 3).

Now, we give a Korovkin type approximation theorem for statistical K2
a-conver-

gence of positive linear operators from Cρ1 into Bρ2 . Our proofs take into consid-
eration the revised proofs presented in [3].

First of all, we give the following remark.
Let (Lij) be a sequence of positive linear operators from Cρ1 into Bρ2 . Suppose

that a = (aij) is a double sequence and conditions (1.1) and (1.2) are satisfied.
Then

‖Tij‖Cρ1→Bρ2
:= ‖Tij(ρ1)‖ρ2

≤
i∑

m=1

j∑
n=1
|ai−m+1j−n+1| ‖Lmn(ρ1)‖ρ2

,

where Tij(f ;x, y) =
∑i
m=1

∑j
n=1 ai−m+1j−n+1Lmn (f ;x, y). Since ρ1 ∈ Cρ1 , we

have Lij(ρ1) ∈ Bρ2 and therefore ‖Lij(ρ1)‖ρ2
< ∞. Also, since conditions (1.1)

and (1.2) are satisfied, we have ‖Tij‖Cρ1→Bρ2
< ∞, which implies the uniform

boundedness of Tij from Cρ1 into Bρ2 .
Now we present the next lemma, as we need to prove our main theorem.

Lemma 2.4. Let a = (aij) be a double sequence such that conditions (1.1) and
(1.2) are satisfied. Assume that (Lij) is a double sequence of positive linear opera-
tors from Cρ1 into Bρ2 , where ρ1 and ρ2 are weight functions satisfying condition
(2.2). If

st2- lim
i,j

∥∥T ∗ij (Fr)− Fr
∥∥
ρ1

= 0, (2.3)
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for r = 0, 1, 2, 3, where T ∗ij(f ;x, y) =
∑i
m=1

∑j
n=1 |ai−m+1j−n+1|Lmn (f ;x, y),

then, for any s > 0 and for all f ∈ Cρ1 , we have

st2- lim
i,j

 sup√
x2+y2≤s

|Tij(f ;x, y)− f(x, y)|
ρ2(x, y)

 = 0,

where Tij(f ;x, y) =
∑i
m=1

∑j
n=1 ai−m+1j−n+1Lmn(f ;x, y).

Proof. Let f ∈ Cρ1 and
√
x2 + y2 ≤ s. Since f is continuous on R2, given ε > 0,

there exists a δ > 0 such that |f(s, t)− f(x, y)| < ε with |s− x| < δ and |t− y| < δ.
When |s− x| ≥ δ or |t− y| ≥ δ, we have

|f(s, t)− f(x, y)|
< 2Mfρ1(x, y)ρ1(s, t)
= 2Mfρ1 (x, y)F0(s, t)

(
1 + s2 + t2

)
≤ 4Mfρ1(x, y)F0(s, t)

(
1 + x2 + y2 + (s− x)2 + (t− y)2)

= 4Mfρ1(x, y)F0(s, t)
[
(s− x)2 + (t− y)2

]( 1 + x2 + y2

(s− x)2 + (t− y)2 + 1
)

≤ Kρ1(x, y)
[
(s− x)2 + (t− y)2]F0(s, t),

where Kρ1(x, y) := 4Mfρ1(x, y)
{

1 + 1+x2+y2

δ2

}
. So, for all (s, t) ∈ R2 and√

x2 + y2 ≤ s, we see that

|f(s, t)− f(x, y)| < ε+Kρ1(x, y)
[
(s− x)2 + (t− y)2]F0(s, t). (2.4)

Then, we can write

|Tij(f ;x, y)− f(x, y)|

=
∣∣∣∣ i∑
m=1

j∑
n=1

ai−m+1j−n+1Lmn (f ;x, y)− f(x, y)
∣∣∣∣

≤
i∑

m=1

j∑
n=1
|ai−m+1j−n+1|Lmn (|f (s, t)− f(x, y)| ;x, y)

+ |f(x, y)|
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Lmn(1;x, y)− 1

∣∣∣∣
= T ∗ij(|f(s, t)− f(x, y)| ;x, y) + |f(x, y)|

∣∣T ∗ij(1;x, y)− 1
∣∣

≤ T ∗ij(ε+Kρ1(x, y)
[
(s− x)2 + (t− y)2]F0(s, t);x, y)

+ |f(x, y)|
∣∣T ∗ij(1;x, y)− 1

∣∣
= εT ∗ij(1;x, y) +Kρ1(x, y)T ∗ij

(
F0(s, t)

[
(s− x)2 + (t− y)2 ];x, y)

+ |f(x, y)|
∣∣T ∗ij(1;x, y)− 1

∣∣ .
Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



STATISTICAL K2
a-CONVERGENCE ON WEIGHTED SPACES 27

Hence

sup√
x2+y2≤s

|Tij(f ;x, y)− f(x, y)|

≤ εH1 sup√
x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y)

+H2 sup√
x2+y2≤s

T ∗ij
(
F0(s, t)

[
(s− x)2 + (t− y)2];x, y)

+H3 sup√
x2+y2≤s

∣∣T ∗ij(1;x, y)− 1
∣∣ ,

(2.5)

where

H1 := H1 (s) := sup√
x2+y2≤s

ρ1(x, y),

H2 := H2 (s) := sup√
x2+y2≤s

Kρ1(x, y),

H3 := H3 (s) := sup√
x2+y2≤s

|f(x, y)| .

For any s ∈ R, we have

sup√
x2+y2≤s

T ∗ij(F0(s, t)
[
(s− x)2 + (t− y)2];x, y)

= sup√
x2+y2≤s

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|

[
Lmn

((
s2 + t2

)
F0(s, t);x, y

)
− 2xLmn (sF0(s, t);x, y)− 2yLmn (tF0(s, t);x, y)
+
(
x2 + y2)Lmn (F0(s, t);x, y)

]
≤ sup√

x2+y2≤s

{∣∣T ∗ij(F3;x, y)− F3(x, y)
∣∣+ 2 |x|

∣∣T ∗ij(F1;x, y)− F1(x, y)
∣∣

+ 2 |y|
∣∣T ∗ij(F2;x, y)− F2(x, y)

∣∣+
(
x2 + y2) ∣∣T ∗ij(F0;x, y)− F0(x, y)

∣∣} ,
≤ H4

{
sup√
x2+y2≤s

∣∣T ∗ij(F0;x, y)− F0(x, y)
∣∣

ρ1(x, y) + sup√
x2+y2≤s

∣∣T ∗ij(F1;x, y)− F1(x, y)
∣∣

ρ1(x, y)

+ sup√
x2+y2≤s

∣∣T ∗ij(F2;x, y)− F2(x, y)
∣∣

ρ1(x, y) + sup√
x2+y2≤s

∣∣T ∗ij(F3;x, y)− F3(x, y)
∣∣

ρ1(x, y)

}
,

(2.6)
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where

H4 := H4 (s) := max
{

sup√
x2+y2≤s

ρ1(x, y), 2 sup√
x2+y2≤s

|x| ρ1(x, y),

2 sup√
x2+y2≤s

|y| ρ1(x, y), sup√
x2+y2≤s

(
x2 + y2) ρ1(x, y)

}
.

Since F0 ∈ Cρ1 and

F0(x, y)|T ∗ij(1;x, y)− 1| ≤ T ∗ij(|F0(s, t)− F0(x, y)|;x, y) + |T ∗ij(F0;x, y)− F0(x, y)|,

it follows from (2.4) that

∣∣T ∗ij(1;x, y)− 1
∣∣ ≤ 1

F0(x, y)

{
εT ∗ij(1;x, y) +

∣∣T ∗ij(F0;x, y)− F0(x, y)
∣∣

+Kρ1(x, y)T ∗ij(F0(s, t)
[
(s− x)2 + (t− y)2] ;x, y)

}
.

Hence, we have, for any s ∈ R and for all i, j ∈ N, that

sup√
x2+y2≤s

∣∣T ∗ij(1;x, y)− 1
∣∣

≤ H5

{
sup√
x2+y2≤s

∣∣T ∗ij(F0;x, y)− F0(x, y)
∣∣

ρ1(x, y) + ε sup√
x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y)

}
+H6 sup√

x2+y2≤s
T ∗ij(F0(s, t)

[
(s− x)2 + (t− y)2] ;x, y),

(2.7)

where

H5 := H5(s) := sup√
x2+y2≤s

ρ1(x, y)
F0(x, y) ,

H6 := H6(s) := sup√
x2+y2≤s

Kρ1(x, y)
F0(x, y) .

Also, by (2.3), for each r = 0, 1, 2, 3, there exists a set Kr ⊆ N2 such that d2(Kr) =
1 and P- lim(i,j)∈Kr

∥∥T ∗ij(Fr)− Fr∥∥ρ1
= 0, i.e., given ε > 0 there exists Jr (ε) such

that for all (i, j) ∈ Kr and i, j ≥ Jr(ε) we have
∥∥T ∗ij(Fr)− Fr∥∥ρ1

< ε. Hence, there
is a positive number Ar such that

∥∥T ∗ij(Fr)− Fr∥∥ρ1
≤ Ar for every (i, j) ∈ Kr. Let
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K :=
⋂3
r=0Kr. Observe that d2(K) = 1. So, for every (i, j) ∈ K, we have

sup√
x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y) ≤ sup√

x2+y2≤s

T ∗ij(ρ1;x, y)
ρ1(x, y)

≤ sup√
x2+y2≤s

∣∣T ∗ij(ρ1;x, y)− ρ1(x, y)
∣∣

ρ1(x, y) + 1

≤ sup√
x2+y2≤s

∣∣T ∗ij(F3;x, y)− F3(x, y)
∣∣

ρ1(x, y)

+ sup√
x2+y2≤s

∣∣T ∗ij(F0;x, y)− F0(x, y)
∣∣

ρ1(x, y) + 1 ≤ A,

where A := A3 +A1 + 1. From which, for every (i, j) ∈ K,

sup√
x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y) <∞ (2.8)

follows and considering the inequalities (2.5), (2.6) and (2.7), we have

sup√
x2+y2≤s

∣∣∣∣ i∑
m=1

j∑
n=1

ai−m+1j−n+1Lmn (f ;x, y)− f(x, y)
∣∣∣∣

≤ H

{
ε sup√

x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y) + sup√

x2+y2≤s

∣∣T ∗ij(F0;x, y)− F0(x, y)
∣∣

ρ1(x, y)

+ sup√
x2+y2≤s

∣∣T ∗ij(F1;x, y)− F1(x, y)
∣∣

ρ1(x, y)

+ sup√
x2+y2≤s

∣∣T ∗ij(F2;x, y)− F2(x, y)
∣∣

ρ1(x, y)

+ sup√
x2+y2≤s

∣∣T ∗ij(F3;x, y)− F3(x, y)
∣∣

ρ1(x, y)

}
,

where H := max {H1 +H3H5, H4 (H2 +H3H6) +H3H5}. By using (2.8) and tak-
ing

M = max
{
H sup√

x2+y2≤s

T ∗ij(1;x, y)
ρ1(x, y) , H

}
,

we get

sup√
x2+y2≤s

|Tij (f ;x, y)− f(x, y)|
ρ2(x, y) ≤M

{
ε+

3∑
r=0

sup√
x2+y2≤s

∣∣T ∗ij(Fr;x, y)− Fr(x, y)
∣∣

ρ1(x, y)

}
(2.9)
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for all (i, j) ∈ K for some M > 0 independent of (x, y). Now, for a given η > 0,
choose ε > 0 such that ε < η

M . Then, define

S(η) :=
{

(i, j) ∈ K : sup√
x2+y2≤s

|Tij (f ;x, y)− f(x, y)|
ρ2(x, y) ≥ η

}

and, for r = 0, 1, 2, 3,

Sr (η) :=
{

(i, j) ∈ K : sup√
x2+y2≤s

∣∣T ∗ij(Fr;x, y)− Fr(x, y)
∣∣

ρ1(x, y) ≥
η
M − ε

3

}
.

It follows from (2.9) that S (η) ⊂
3⋃
r=0

Sr (η) and hence d2 (S (η)) ≤
∑3
r=0 d2 (Sr (η)).

Then using the hypothesis (2.3) we get the desired result. �

Now, we are ready to give our main Korovkin type approximation theorem.

Theorem 2.5. Let a = (aij), ρ1 and ρ2 be as in Lemma 2.4, and assume that
conditions (1.1) and (1.2) hold. Let (Lij) be a double sequence of positive linear
operators from Cρ1 into Bρ2 . Then for all f ∈ Cρ1 ,

(st2)K2
a- lim

i,j
‖Lij (f)− f‖ρ2

= 0,

i.e.
st2- lim

i,j
‖Tij (f)− f‖ρ2

= 0,

where Tij(f ;x, y) =
i∑

m=1

j∑
n=1

ai−m+1j−n+1Lmn (f ;x, y), provided that

st2- lim
i,j

∥∥T ∗ij (Fr)− Fr
∥∥
ρ1

= 0, r = 0, 1, 2, 3, (2.10)

where T ∗ij(f ;x, y) =
i∑

m=1

j∑
n=1
|ai−m+1j−n+1|Lmn (f ;x, y).

Proof. Let K be as in the proof of Lemma 2.4. Observe that the hypothesis
(2.10) implies that, for all (i, j) ∈ K, T ∗ij (Fr;x, y) − Fr(x, y) ∈ Bρ1 and hence
T ∗ij (Fr;x, y) ∈ Bρ1 for r = 0, 1, 2, 3. Since ρ1 = F0 + F3, we also get T ∗ij (ρ1) ∈ Bρ1

for each (i, j) ∈ K. Hence if f ∈ Cρ1 then we obtain T ∗ij (f) ∈ Bρ1 . Furthermore,
since ∥∥T ∗ij∥∥Cρ1→Bρ1

=
∥∥T ∗ij(ρ1)

∥∥
ρ1

= sup
(x,y)∈R2

∣∣T ∗ij (ρ1;x, y)
∣∣

ρ1 (;x, y) ≤M1 <∞,
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we get

‖Tij‖Cρ1→Bρ1
= ‖Tij(ρ1)‖ρ1

= sup
(x,y)∈R2

|Tij (ρ1;x, y)|
ρ1(x, y)

≤ sup
(x,y)∈R2

T ∗ij (ρ1;x, y)
ρ1(x, y) ≤M1 <∞.

Therefore we may write for a given f ∈ Cρ1 that

‖Tij(f)‖ρ1
≤ ‖Tij‖Cρ1→Bρ1

‖f‖ρ1
≤M1 ‖f‖ρ1

. (2.11)

Now for a given ε > 0, pick an s0 > 0 such that ρ1(x,y)
ρ2(x,y) ≤ ε for every

√
x2 + y2 ≥

s0 This is possible by (2.2), and hence we may write for f ∈ Cρ1 :

‖Tij (f)− f‖ρ2
= sup

(x,y)∈R2

|Tij (f ;x, y)− f(x, y)|
ρ2(x, y)

≤ sup√
x2+y2≤s0

|Tij (f ;x, y)− f (x, y)|
ρ2(x, y)

+ sup√
x2+y2≥s0

|Tij (f ;x, y)− f(x, y)|
ρ2 (x, y)

ρ1(x, y)
ρ1(x, y)

≤ sup√
x2+y2≤s0

|Tij (f ;x, y)− f(x, y)|
ρ2 (x, y) + ε ‖Tij (f)− f‖ρ1

≤ sup√
x2+y2≤s0

|Tij (f ;x, y)− f(x, y)|
ρ2 (x, y) + ε

(
‖Tij (f)‖ρ1

+ ‖f‖ρ1

)
,

and by (2.11) we immediately get, for all (i, j) ∈ K,

‖Tij (f)− f‖ρ2
≤ sup√

x2+y2≤s0

|Tij (f ;x, y)− f(x, y)|
ρ2(x, y) + ε ‖f‖ρ1

(M1 + 1) .

Hence, using Lemma 2.4, the proof is completed. �

Using the Pringsheim limit instead of the statistical limit, we can get the fol-
lowing result, which is a Korovkin type theorem for K2

a-convergence.

Corollary 2.6. Let a = (aij), ρ1 and ρ2 be as in Lemma 2.4, and assume that
conditions (1.1) and (1.2) hold. Let (Lij) be a double sequence of positive linear
operators from Cρ1 into Bρ2 . Then for all f ∈ Cρ1 ,

K2
a- lim

i,j
‖Lij (f)− f‖ρ2

= 0,

i.e.
P- lim

i,j
‖Tij (f)− f‖ρ2

= 0,

provided that
P- lim

i,j

∥∥T ∗ij (Fr)− Fr
∥∥
ρ1

= 0, r = 0, 1, 2, 3.
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3. Rate of convergence

In this section, we obtain the rate of statistical K2
a-convergence. Now, defining

the weight function ρ1 in Theorem 2.5 by ρ1(x, y) = 1 + x2 + y2 on R2, we study
the rate of statistical K2

a-convergence by using the following weighted modulus of
continuity:

wρ1 (f, δ) = sup√
(s−x)2+(t−y)2≤δ

|f (s, t)− f(x, y)|
ρ1(s, t) + ρ1(x, y) ,

where δ is a positive constant and f ∈ Cρ1 . It can be easily seen that, for any c > 0
and all f ∈ Cρ1 ,

wρ1(f, cδ) ≤ (2 + bcc)wρ1(f, δ),

where bcc is defined as the greatest integer less than or equal to c. Also, follow-
ing [3], we may write, for any δ > 0:

|f(s, t)− f(x, y)| ≤ 4ρ1(s, t)ρ1(x, y)
(

1 + (s− x)2 + (t− y)2

δ2

)
wρ1(f, δ).

If we use the same operators Lmn as in Theorem 2.5, we can write, for any δ > 0:

|Tij (f ;x, y)− f(x, y)|

=
∣∣∣∣ i∑
m=1

j∑
n=1

ai−m+1j−n+1Lmn (f ;x, y)− f(x, y)
∣∣∣∣

≤
i∑

m=1

j∑
n=1
|ai−m+1j−n+1|Lmn (|f (s, t)− f(x, y)| ;x, y)

+ |f(x, y)|
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Lmn (F0;x, y)− F0 (x, y)

∣∣∣∣
= T ∗ij (|f(s, t)− f(x, y)| ;x, y) + |f(x, y)|

∣∣T ∗ij (F0;x, y)− F0(x, y)
∣∣

≤ 4ρ1(x, y)wρ1 (f, δ)T ∗ij

(
ρ1(s, t) +

ρ1 (s, t)
[
(s− x)2 + (t− y)2]

δ2 ;x, y
)

+ |f(x, y)|
∣∣T ∗ij (F0;x, y)− F0(x, y)

∣∣
≤ 4ρ1(x, y)wρ1 (f, δ)

×
{ ∣∣T ∗ij (ρ1;x, y)− ρ1(x, y)

∣∣+ ρ1(x, y) + 1
δ2T

∗
ij

(
ρ1ϕ(x,y);x, y

)}
+ |f(x, y)|

∣∣T ∗ij (F0;x, y)− F0(x, y)
∣∣ ,

where ϕ(x,y)(s, t) := (s− x)2 + (t− y)2, and we obtain
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‖Tijf − f‖ρ2
2
≤ 4 ‖ρ1‖ρ2

wρ1 (f, δ)

×
{∥∥T ∗ij (ρ1)− ρ1

∥∥
ρ2

+ ‖ρ1‖ρ2
+ 1
δ2

∥∥T ∗ij (ρ1ϕ(x,y)
)∥∥
ρ2

}
+ ‖f‖ρ2

‖ρ1‖ρ2

∥∥T ∗ij (F0)− F0
∥∥
ρ1
,

(3.1)

provided that T ∗ij
(
ρ1ϕ(x,y)

)
∈ Bρ2 .

Theorem 3.1. Let a = (aij) and (Lij) be the same as in Theorem 2.5. Let
T ∗ij
(
ρ1ϕ(x,y)

)
∈ Bρ2 , where ϕ(x,y)(s, t) := (s− x)2 + (t− y)2. If

(i) st2- limi,j

∥∥T ∗ij(F0)− F0
∥∥
ρ1

= 0,
(ii) st2- limi,j

∥∥T ∗ij (ρ1)− ρ1
∥∥
ρ2

= 0,

(iii) st2- limi,j wρ1(f, δ) = 0, where δ :=
√∥∥T ∗ij(ϕ(x,y))

∥∥
ρ2

,

then for all f ∈ Cρ1 ,
st2- lim

i,j
‖Tij(f)− f‖ρ2

2
= 0.

Proof. By (3.1) and (i), (ii), (iii), we get the desired result. �

4. Application

We now present an example of a double sequence of positive linear operators
that satisfies the conditions of Theorem 2.5 but does not satisfy the conditions of
Theorem 2.1, Theorem 2.2 and Theorem 2.3.

Example 4.1. Let us consider the following linear positive operators given in [11],
defined by:

Lij(f ;x, y) :=
∞∑
v=0

∞∑
µ=0

f

(
v

βi
,
µ

γj

)
Ki,v(x)Kj,µ(y) (−αi)v

v!
(−αj)µ

µ! .

Here (αi), (βi) and (γi) are real number sequences satisfying:
(a) lim

i→∞
βi =∞ and lim

j→∞
γj =∞,

(b) lim
i→∞

αi
βi

= 0 and lim
j→∞

αj
γj

= 0,

(c) lim
i→∞

iαiβi = 1 and lim
j→∞

j
αj
γj

= 1,

and Ki,v(x) and Kj,µ(y) are functions satisfying:
(i) For any natural i, j, v, µ = 0, 1, 2, . . . and for any x, y ∈ [0,∞),

(−1)vKi,v(x) ≥ 0 and (−1)µKj,µ(y) ≥ 0,

(ii) For any x, y ∈ [0,∞),
∞∑
v=0

Ki,v(x) (−αi)v

v! = 1 and
∞∑
µ=0

Kj,µ(y) (−αj)µ

µ! = 1,
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(iii) For any x, y ∈ [0,∞),

Ki,v(x) = −ixKi+m,v−1(x) and Kj,µ(y) = −jyKj+n,µ−1(y),

where i+m, j+n are natural numbers and m,n are constants independent
of v, µ.

Now let a = (aij) =


−1 0 0 .
0 −1 0 .
0 0 0 .
. . . .

 and let x = (xij) be given by (1.3) in

Example 1.4. Observe now that
∑

(i,j)∈N2
|aij | = 2 and

∑
(i,j)∈N2

ank = −2. Using the

operators Lij(f ;x, y), we introduce the following positive linear operators:

Bij(f ;x, y) = xijLij(f ;x, y).

Also, take ρ1(x, y) = 1 + x2 + y2 and ρ2(x, y) arbitrary such that the condition
lim√

x2+y2→∞
ρ1(x,y)
ρ2(x,y) = 0 is satisfied. Then we obtain the test functions F0(x, y) =

1, F1(x, y) = x, F2(x, y) = y and F3(x, y) = x2 + y2. Now we claim that

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(Fr)− Fr

∥∥∥∥
ρ1

= 0 for each r = 0, 1, 2, 3.

(4.1)
First observe that

Bij(F0;x, y) = xijF0(x, y),

Bij(F1;x, y) = xij
αi
βi
iF1(x, y),

Bij(F2;x, y) = xij
αj
γj
jF2(x, y),

Bij(F3;x, y) = xij

[
α2
i

β2
i

i(i+m)x2 + αi
β2
i

ix+
α2
j

γ2
j

j(j + n)y2 + αj
γ2
j

jy

]
.

So,∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F0;x, y)−F0(x, y)

∣∣∣∣ =
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij−1

∣∣∣∣
and then

(∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij − 1

∣∣∣∣
)

=


2
3

1
3 0 .

0 0 0 .
0 0 0 .
. . . .

 .

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



STATISTICAL K2
a-CONVERGENCE ON WEIGHTED SPACES 35

Since sup(x,y)∈[0,∞)×[0,∞)
1

1+x2+y2 <∞, we obtain

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F0)− F0

∥∥∥∥
ρ1

= st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

∣∣∑i
m=1

∑j
n=1 |ai−m+1j−n+1|xij − 1

∣∣
1 + x2 + y2 = 0,

which guarantees that (4.1) holds true for r = 0. It is obvious that

∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F1;x, y)− F1(x, y)

∣∣∣∣
=
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αi
βi
ix− x

∣∣∣∣
= |x|

∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αi
βi
i− 1

∣∣∣∣;
then, by virtue of (c), we can easily see that st2- limi,j yij = 1, where

(yij) =
(

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αi
βi
i

)
.

Also, since sup
(x,y)∈[0,∞)×[0,∞)

|x|
1+x2+y2 <∞, we get

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F1)− F1

∥∥∥∥
ρ1

= st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

|x|
∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij αiβi i− 1

∣∣∣
1 + x2 + y2 = 0,

which guarantees that (4.1) holds true for r = 1. Similarly we have

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F2)− F2

∥∥∥∥
ρ1

= 0.
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Finally, since

∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F3;x, y)− F3(x, y)

∣∣∣∣
=
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

[
α2
i

β2
i

i(i+m)x2 + αi
β2
i

ix+
α2
j

γ2
j

j(j + n)y2

+ αj
γ2
j

jy

]
− x2 − y2

∣∣∣∣
=
∣∣x2∣∣ ∣∣∣∣ i∑

m=1

j∑
n=1
|ai−m+1j−n+1|xij

α2
i

β2
i

i(i+m)− 1
∣∣∣∣

+
∣∣y2∣∣ ∣∣∣∣ i∑

m=1

j∑
n=1
|ai−m+1j−n+1|xij

α2
j

γ2
j

j(j + n)− 1
∣∣∣∣

+ |x|
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αi
β2
i

i

∣∣∣∣+ |y|
∣∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αj
γ2
j

j

∣∣∣∣,
and because of (c), we can easily see that

st2- lim
i,j

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

α2
i

β2
i

i(i+m) = 1,

st2- lim
i,j

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

α2
j

γ2
j

j(j + n) = 1,

(4.2)

and since lim
i→∞

1
bi

= 0 and lim
j→∞

1
γj

= 0 from (a) and (c), we get

st2- lim
i,j

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αi
β2
i

i = 0,

st2- lim
i,j

i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

αj
γ2
j

j = 0.

(4.3)

Using (4.2) and (4.3) and since

sup
(x,y)∈[0,∞)×[0,∞)

|x|2

1 + x2 + y2 <∞, sup
(x,y)∈[0,∞)×[0,∞)

|y|2

1 + x2 + y2 <∞,

sup
(x,y)∈[0,∞)×[0,∞)

|x|
1 + x2 + y2 <∞, sup

(x,y)∈[0,∞)×[0,∞)

|y|
1 + x2 + y2 <∞,
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we can write

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(F3)− F3

∥∥∥∥
ρ1

≤ st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

∣∣x2
∣∣ ∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij α

2
i

β2
i
i(i+m)− 1

∣∣∣
1 + x2 + y2

+ st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

∣∣y2
∣∣ ∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij

α2
j

γ2
j
j(j + n)− 1

∣∣∣
1 + x2 + y2

+ st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

|x|
∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij αiβ2

i
i
∣∣∣

1 + x2 + y2

+ st2- lim
i,j

sup
(x,y)∈[0,∞)×[0,∞)

|y|
∣∣∣ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|xij αjγ2

j
j
∣∣∣

1 + x2 + y2

So, our claim (4.1) holds true for each i = 0, 1, 2, 3. The sequence (Bij) satisfies all
hypothesis of Theorem 2.5 and we immediately see that

st2- lim
i,j

∥∥∥∥ i∑
m=1

j∑
n=1
|ai−m+1j−n+1|Bmn(f)− f

∥∥∥∥
ρ2

= 0, for all f ∈ Cρ1 .

However, since ‖Bij (F0)− F0‖ρ1
= |xij − 1|, a sequence

(
‖Bij (F0)− F0‖ρ1

)
does not converge in Pringsheim’s and statistical senses. So, Theorem 2.1 and
Theorem 2.2 do not work for the sequence (Bij). Also, since

P- lim
i,j

∥∥∥∥ 1
ij

k+i−1∑
m=k

l+j−1∑
n=l

Bmn (F0)− F0

∥∥∥∥
ρ1

6= 0, n ∈ N,

Theorem 2.3 does not work for the sequence (Bij), either.

5. Conclusion

We introduced a new method of summability, namely, statistical K2
a-convergence

and obtained a Korovkin type approximation theorem for double sequences on
two-dimensional weighted spaces via this method. We obtained the rate of sta-
tistical K2

a-convergence and finally we presented an application that shows that
our result is stronger than studied before. We note that if conditions (1.1), (1.2)
and

∑
(i,j)∈N2 aij = 1 hold, then the four-dimensional matrix A given via a non-

negative double sequence a = (aij) is RH-regular. In that case the statistical
K2
a-convergence is a special case of statistical A-summability for double sequences

([4, 13]). But in this paper we consider any double sequence a = (aij) and condi-
tions (1.1) and (1.2) are satisfied. Hence, our results here are meaningful.
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