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THE ISOMETRY GROUPS OF LORENTZIAN
THREE-DIMENSIONAL UNIMODULAR SIMPLY CONNECTED

LIE GROUPS

MOHAMED BOUCETTA AND ABDELMOUNAIM CHAKKAR

Abstract. We determine the isometry groups of all three-dimensional, con-
nected, simply connected and unimodular Lie groups endowed with a left-
invariant Lorentzian metric.

1. Introduction

The main purpose of this paper is to consider the problem of computing the
isometry groups of three-dimensional, connected, simply connected and unimodular
non-abelian Lie groups with respect to the left-invariant Lorentzian metric. The
isometry groups of such Lie groups have been given for the Riemannian case in [8].
We recall first that there are, precisely, five such Lie groups: the nilpotent Lie
group Nil, the special unitary group SU(2), the universal covering group P̃SL(2,R)
of the special linear group, the solvable Lie group Sol and the universal covering
group Ẽ0(2) of the connected component of the Euclidean group. Left-invariant
Lorentzian metrics on these Lie groups were classified in our previous work [1] and
are listed in Table 1 and Table 2 below along with their symmetric endomorphisms.

Let (G, g) be a three-dimensional, unimodular, connected and simply connected
Lie group endowed with a left-invariant Lorentzian metric. Its group of isometries
Isom(G, g) is a Lie group under the compact open topology and acts on G transi-
tively. Let Isom0(G, g) denote its connected component. The isotropy subgroup of
Isom0(G, g) and the isotropy representation at the identity element e are given by

Isom0
e(G, g) :=

{
θ ∈ Isom0(G, g) : θ(e) = e

}
,

ρ : Isome(G, g)→ GL(TeG), θ 7→ Teθ.
(1.1)

The representation ρ is faithful since an isometry is determined by its value and its
differential at one point. This shows that Isom0

e(G, g) is identified with a subgroup
of SO(2, 1); more precisely, we will show that Isom0

e(G, g) is trivial or exactly
conjugated to one of the following subgroups:
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(1) The restricted Lorentz group SO0(2, 1).
(2) A one-parameter group of rotations around an axis in the three-dimensional

Minkowski space R3
1 spanned by a timelike vector; we will refer to this

subgroup as SO(2).
(3) A one-parameter group of rotations around an axis in R3

1 spanned by a
spacelike vector, which will be referred to as SO(1, 1).

(4) A one-parameter group of rotations around an axis in R3
1 spanned by an

isotropic vector, which will be denoted by K.
To state our main result in this respect, some notation needs to be introduced. For
an automorphism Φ ∈ Aut(G), so that for any a ∈ G we have Φ ◦ La = LΦ(a) ◦ Φ, we
say that Φ is an isometric automorphism with respect to the left-invariant metric g if
Φ∗g = g. We write Aut(G, g) for the subgroup of elements in Aut(G) that preserve
the metric g. Then Aut(G, g) is a subgroup of Isome(G, g).

We are now ready to give the following theorem.

Theorem 1.1 (Main Theorem). Let (G, g) be a connected, simply connected and
unimodular Lie group of dimension 3 with a left-invariant Lorentzian metric g.

(1) If (G, g) is a symmetric space, then Isome(G, g) ̸= Aut(G, g) and
Isome(G, g) ∼= O(2, 1).

(2) If G = Sol with a left-invariant Lorentzian metric equivalent to sol7 (see
Table 1), then Isome(G, g) ∼= K× Z2 and Aut(G, g) ∼= Z2.

(3) In all other cases, Isome(G, g) = Aut(G, g) with dim Isom(G, g) = 3 or 4.

When G is semi-simple, Aut0(G) = Inn(G), where Inn(G) is the group of inner
automorphisms of G and, as a consequence of Theorem 1.1, we get the following
corollary.

Corollary 1.2. Let G be a connected, simply connected and semi-simple Lie group
of dimension 3 and g be a left-invariant Lorentzian metric on G. Then Isom0

e(G, g)
is a subgroup of Inn(G).

As a consequence of Theorem 1.1, we recover the result in [6] which showed that
dim Isome(G, g) ̸= 2 when G = Nil, P̃SL(2,R) or Sol, and we extend this to all
simply connected Lorentzian unimodular Lie groups of dimension 3. The second
assertion of Theorem 1.1 corresponds in [6] to the maximal non-Riemannian Lorentz
geometries designated by Lorentz-Sol.

The isometry groups of left-invariant pseudo-Riemannian metrics have been
studied by many authors. We can cite, for example, the works [4, 13, 5, 11]. How-
ever, these studies have sought to identify the relationship between the isotropy
group Isome(G, g) and the isometric automorphism group Aut(G, g) or have deter-
mined the Lie algebra of the Killing vector fields. Here, we use the same approach
as the one used in the Riemannian case in [8]. We note that, roughly speaking, the
procedure for calculating the isometry groups involves a connection between the
symmetric endomorphism defining the Lie bracket and the Ricci operator of (G, g).
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Table 1. Left-invariant Lorentzian metrics on 3D unimodular Lie groups

Lie algebras n su(2) sol
Natural [X, Y ] = Z, [�x, �y] = 2�z, [X1, X2] = X2,
basis [Z, Y ] = 0, [�y, �z] = 2�x, [X1, X3] = −X3,

[Z,X] = 0. [�z, �x] = 2�y. [X2, X3] = 0.

Lie groups Nil SU(2) Sol
Lorentzian nil+ nil− nil0 su sol1 sol2 sol3 sol4 sol5 sol6 sol7

left-invariant

metrics
⎛

⎜

⎜

⎝

1 0 0
0 −1 0
0 0 �

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 −�

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
0 0 1
0 1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�1 0 0
0 �2 0
0 0 −�3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

4
u2−v2

0 0
0 1 u

v
0 u

v
1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

4
v2−u2

0 0
0 u

v
−1

0 −1 u
v

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
u+v

0 0
0 − v

u
1

0 1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
u

0 0
0 −1 0
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

0 0 − 2
u

0 1 1
− 2
u
1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

u2 0 0
0 u 1
0 1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 0 1
0 1 0
1 0 0

⎞

⎟

⎟

⎠

(modulo
automorphism)

�1 ≥ �2 > 0 −v < u < v −v < u < v u > 0
Parameters � > 0 � > 0 �3 > 0 v > 0 v > 0 v > 0 u > 0 u > 0 u ≠ 0

Symmetric diag diag ab2 diag diag diag azz̄ azz̄ ab2 ab2 a3

endomorphisms (�, 0, 0) (0, 0, ) a = 0 (�, �, ) (�, �, 0) (�, 0, ) a = 0 a = 0 a < 0 a = 0 a = 0
L � ≠ 0  ≠ 0 b = 0 �, �,  ≠ 0 �, � ≠ 0 �,  ≠ 0 ℜe(z) ≠ 0 ℜe(z) = 0 b = 0 b ≠ 0

Signature (+,+,+) (+,−,−) (0, 0, 0) (+,+,+) (+,−,−) (+,−,−) (+,−,−) (−, 0, 0) (+,−,−) (−, 0, 0) (−, 0, 0)
of if �1 < �2 + �3 if u ≠ 0 if u > 0 if u > 0

Ricci (+,−,−) (−, 0, 0) (+,+,+) (+, 0, 0)
curvature if �1 > �2 + �3 if u = 0 if u < 0 if u < 0

(+, 0, 0) (0, 0, 0)
if �1 = �2 + �3 if u = 0

Signature s = �∕2 s = �∕2 s = 0 s > 0 s = v2∕2 s = u2∕2 s = −2v s = −2u s = u2∕2
of scalar s > 0 s > 0 s > 0 s > 0 if u ≠ 0 s < 0 s < 0 s > 0 s = 0 s = 0
curvature s = 0 if u = 0
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Table 2. Left-invariant Lorentzian metrics on 3D unimodular Lie groups

Lie
algebras

sl(2,ℝ) e0(2)

Natural [X1, X2] = 2X3, [X1, X2] = X3,
basis [X3, X1] = 2X2, [X1, X3] = −X2,

[X3, X2] = 2X1. [X3, X2] = 0.

Lie groups P̃SL(2,ℝ) Ẽ0(2)
Lorentzian sll1 sll2 sll3 sll4 sll5 sll6 sll7 ee1 ee2 ee3

left-
invariant

metrics
⎛

⎜

⎜

⎝

−�1 0 0
0 �2 0
0 0 �3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�1 0 0
0 −�2 0
0 0 �3

⎞

⎟

⎟

⎠

K

⎛

⎜

⎜

⎜

⎝

M � 0
� N 0
0 0 a2�

N

⎞

⎟

⎟

⎟

⎠

K

⎛

⎜

⎜

⎜

⎝

−N 0 �
0 a2�

N
0

� 0 M

⎞

⎟

⎟

⎟

⎠

K
⎛

⎜

⎜

⎝

u 0 v
0 M 0
v 0 u

⎞

⎟

⎟

⎠

K
⎛

⎜

⎜

⎝

M −a 0
−a N 0
0 0 8a

b

⎞

⎟

⎟

⎠

K
⎛

⎜

⎜

⎝

M N 0
N S R
0 R 4a4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 1 0
1 u 0
0 0 v

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 −1 0
−1 u 0
0 0 v

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 1 0
1 0 0
0 0 u

⎞

⎟

⎟

⎠

(modulo

automor �1 > 0 �1 > 0 K = 4
a2�

√

�2+�2
K = 16

v2−u2
a ≠ 0 K = 2

a4(1+2a2)
u ≥ v u < 0 u > 0

phism) �2 ≥ �3 > 0 �2 > 0, �3 > 0. M = �2−�2
√

�2+�2
M = 2(u + v) b ≠ 0 M = 1 − 4a4 v > 0 v > 0

Parameters N =
√

�2 + �2 −v < u < v K = 1
2ab

N = (1 + 2a2)
3
2

� > 0, � > 0 � < 0, � > 0 v > 0 M = a − 8 S = 4a4 + 6a2 + 1
N = a + 8 R = 2a3

√

2, a > 0

Symmetric diag diag a2zz̄ a2zz̄ a2zz̄ ab2 a3 diag diag ab2

endomor (�, �, ) (�, �, ) a ≠ 0 a ≠ 0 a ≠ 0 a ≠ 0 a ≠ 0 (�, �, 0) (�, 0, ) a > 0
phisms � > 0, � > 0 � < 0, � > 0 ℜe(z) > 0 ℜe(z) < 0 ℜe(z) = 0 b ≠ 0 � > 0, � > 0 � > 0,  < 0 b = 0

L  > 0  < 0

Signature (+,+,+) (+,−,−) (+,−,−) (+,−,−) (+,−,−) (+,−,−) (0, 0, 0) (+,+,+) (+,−,−)
of if �3 < �1 − �2 if �1 < �2 − �3 a2 ≠ 2 ℜe(z) if a ≠ 2b if u = v if u < −v

Ricci (+,−,−) (−, 0, 0) (−, 0, 0) (+,−,−). (+,−,−)
curvature if �3 > �1 − �2 if �1 > �2 − �3 a2 = 2 ℜe(z) if a = 2b if u ≠ v if u > −v

(+, 0, 0) (+, 0, 0)
if �3 = �1 − �2 if �1 = �2 − �3 if u = −v

(−, 0, 0)
if �3 = −�1 + �2 if �1 = �2 + �3

Scalar s =
2[(

√

�1+
√

�2)2+��3][(
√

�1−
√

�2)2+��3]
�1�2�3

s = 1
2
a4 − 2a2� − 2�2 s = u

2
s = 1

2
a(a − 4b) s = − 3

2
a2 s = (u−v)2

2v
s = (u−v)2

2v
s = u

2
curvature � = −1 � = 1 s < 0 s ≥ 0 s > 0 s > 0
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Table 3. Isometric automorphism groups

Lie groups Lorentzian left
invariant metrics

Symmetric
endomorphism

Isometric
automorphism group

G metric parameters kind parameters A = Aut(G, g) infinite A/A0 or |A|

Nil nil− {diag} a = b ̸= c O(2) ✓ Z2

nil+ {diag} a ̸= b = c O(1, 1) ✓ Z2

nil0 {ab2} a = b K× Z2 ✓ Z2

SU(2) su µ1 ̸= µ2 {diag} a ̸= b ̸= c D4 4

su µ1 = µ2 {diag} a = b ̸= c O(2) ✓ Z2

P̃SL(2,R) sll1 µ1 ̸= µ2 ̸= µ3 {diag} a ̸= b ̸= c D4 4

sll1 µ1 ̸= µ2 = µ3 {diag} a = b ̸= c O(2) ✓ Z2

sll1 µ1 = µ2 ̸= µ3 {diag} a ̸= b = c O(1, 1) ✓ Z2

sll1 µ1 = µ3 ̸= µ2 {diag} a = c ̸= b O(1, 1) ✓ Z2

sll1 µ1 = µ2 = µ3 {diag} a = b = c SO(2, 1) ✓ Z2

sll2 µ1 = µ2 {diag} a = c ̸= b O(1, 1) ✓ Z2

sll2 µ1 ̸= µ2 {diag} a ̸= b ̸= c D4 4

sll6 a = b {ab2} a = b K× Z2 ✓ Z2

sll6 a ̸= b {ab2} a ̸= b Z2 2

sll3, sll4, sll5 {azz̄} a ̸= 0 Z2 2

sll7 {a3} a ̸= 0 {id} 1

Sol sol1
sol2

u ̸= 0
u ̸= 0

{diag} a ̸= b ̸= c
a ̸= −b

D4 4

sol1 u = 0 {diag} a ̸= b ̸= c
a = −b

D8 8

sol2 u = 0 {diag} a = c ̸= b O(1, 1) ✓ Z2

sol4 {azz̄} ℜe(z) = 0 D4 4

sol3 {azz̄} ℜe(z) ̸= 0 Z2 2

sol5, sol6 {ab2} a ̸= b Z2 2

sol7 {a3} a = 0 Z2 2

Ẽ0(2) ee1 u = v {diag} a = b ̸= c O(2) ✓ Z2

ee1 u ̸= v {diag} a ̸= b ̸= c D4 4

ee2 {diag} a ̸= b ̸= c D4 4

ee3 {ab2} a ̸= b Z2 2

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



358 M. BOUCETTA AND A. CHAKKAR

Table 4. Isometry group of Lorentzian 3D unimodular simply
connected Lie groups

Lie groups Lorentzian left
inv. metrics

Sy
m

m
et

ri
c Symmetric

endomorphism
Isometry groups Isom(G, g)

Isome(G, g)

G metric, parameters kind, parameters Isom(G, g) dim ≤ Aut(G)

Nil nil− {diag}, a = b ̸= c Nil ⋊ O(2) 4 ✓

nil+ {diag}, a ̸= b = c Nil ⋊ O(1, 1) 4 ✓

nil0 ✓ {ab2}, a = b Nil×O(2, 1) 6

SU(2) su, µ1 ̸= µ2 {diag}, a ̸= b ̸= c SU(2) ⋊ D4 3 ✓

su, µ1 = µ2 {diag}, a = b ̸= c SU(2) ⋊ O(2) 4 ✓

P̃SL(2,R) sll1, µ1 ̸= µ2 ̸= µ3 {diag}, a ̸= b ̸= c P̃SL(2,R) ⋊ D4 3 ✓

sll1, µ1 ̸= µ2 = µ3 {diag}, a = b ̸= c P̃SL(2,R) ⋊ O(2) 4 ✓

sll1, µ1 = µ2 ̸= µ3 {diag}, a ̸= b = c P̃SL(2,R) ⋊ O(1, 1) 4 ✓

sll1, µ1 = µ3 ̸= µ2 {diag}, a = c ̸= b P̃SL(2,R) ⋊ O(1, 1) 4 ✓

sll1, µ1 = µ2 = µ3 ✓ {diag}, a = b = c P̃SL(2,R)×O(2, 1) 6

sll2, µ1 = µ2 {diag}, a = c ̸= b P̃SL(2,R) ⋊ O(1, 1) 4 ✓

sll2, µ1 ̸= µ2 {diag}, a ̸= b ̸= c P̃SL(2,R) ⋊ D4 3 ✓

sll6, a = b {ab2}, a = b P̃SL(2,R) ⋊ (K× Z2) 4 ✓

sll6, a ̸= b {ab2}, a ̸= b P̃SL(2,R) ⋊ Z2 3 ✓

sll3, sll4, sll5 {azz̄}, a ̸= 0 P̃SL(2,R) ⋊ Z2 3 ✓

sll7 {a3}, a ̸= 0 P̃SL(2,R) 3 ✓

Sol sol1, u ̸= 0
sol2, u ̸= 0

{diag}, a ̸= b ̸= c
a ̸= −b

Sol ⋊ D4 3 ✓

sol1, u = 0 {diag}, a ̸= b ̸= c
a = −b

Sol ⋊ D8 3 ✓

sol2, u = 0 ✓ {diag}, a = c ̸= b Sol×O(2, 1) 6

sol4 {azz̄}, ℜe(z) = 0 Sol ⋊ D4 3 ✓

sol3 {azz̄}, ℜe(z) ̸= 0 Sol ⋊ Z2 3 ✓

sol5, sol6 {ab2}, a ̸= b Sol ⋊ Z2 3 ✓

sol7 {a3}, a = 0 Sol× (K× Z2) 4

Ẽ0(2) ee1, u = v ✓ {diag}, a = b ̸= c Ẽ0(2)×O(2, 1) 6

ee1, u ̸= v {diag}, a ̸= b ̸= c Ẽ0(2) ⋊ D4 3 ✓

ee2 {diag}, a ̸= b ̸= c Ẽ0(2) ⋊ D4 3 ✓

ee3 {ab2}, a ̸= b Ẽ0(2) ⋊ Z2 3 ✓
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The rest of the article is organized as follows. In Section 2 we set up the general
notation and we recall some basic facts on the symmetric endomorphism associated
with (G, g). We also recall some well-known results on the isometry group of (G, g).
In Section 3, we start from the four types of the symmetric endomorphism. This
allows us to determine explicitly the isometric automorphisms group Aut(G, g)
of all possible Lorentzian three-dimensional unimodular Lie groups. Finally, in
Section 4, in order to prove the main result, we provide an algorithm to solve, on
the Lie algebra level, the problem of finding a complete description of the differential
of each isometry at the identity element e. This, in turn, allows us to work in a
much simpler setting using the symbolic computation software Maple.

2. Notation and preliminaries

Let g be a three-dimensional unimodular Lie algebra with Lie bracket [ , ] and
equipped with a Lorentzian scalar product ⟨ , ⟩. Let G be the connected simply
connected Lie group with Lie algebra g and left-invariant Lorentzian metric g de-
termined by ⟨ , ⟩. For left-invariant vector fields X, Y, and Z (or equivalently X, Y,
Z in g), we have that the Levi-Civita connection ∇ of (G, g) satisfies

g(∇XY, Z) + g(Y, ∇XZ) = 0 and ∇XY −∇YX− [X,Y] = 0,
and ∇ is described by the Koszul formula

g(∇XY,Z) = 1
2 {g([X, Y] ,Z)− g([Y, Z] ,X) + g([Z, X] ,Y)} .

The curvature tensor denoted by R on (G, g) is defined as the (1, 3)-tensor field
given by the following expression, for all X,Y,Z ∈ g:

R(X,Y,Z) = ∇[X,Y]Z− [∇X,∇Y] Z.
Covariant derivatives ∇R are defined by the usual product rules, for W ∈ g:

(∇WR)(X,Y,Z) = ∇WR(X,Y,Z)− R(∇WX,Y,Z)− R(X,∇WY,Z)
− R(X,Y,∇WZ).

The Ricci curvature ric associated to R is the symmetric bilinear form on g given
by the trace of the curvature endomorphism on its first and last indexes. More
precisely, if (e1, e2, e3) is a pseudo-orthonormal basis of g,

ric(X,Y) = Tr(R(X, .,Y)) =
3∑

i=1
ϵig(R(X, ei)Y, ei). ϵi = g(ei, ei) for all X,Y ∈ g.

The Ricci operator, which will be denoted by Ric, is the symmetric endomorphism
Ric : g → g given by g(Ric(u), v) = ric(u, v), and we denote by s the scalar
curvature. Note that a Lie group is unimodular if and only if its left-invariant
Haar measure is also right-invariant, or equivalently a Lie group is unimodular if
and only if the structure constants of the corresponding Lie algebra are trace free,
i.e., Tr(adX) = 0 for all X ∈ g.

The Bianchi classification provides a list of all real three-dimensional Lie algebras
up to isomorphism. It is pointed out in [9] that the five non abelian unimodular
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Lie algebras called Bianchi class A are Bianchi types II, VI0, VII0, VIII, and IX.
In addition, up to isomorphism, there exists exactly one connected and simply
connected Lie group associated with each type of algebra, which is one of the
following:

(1) The Lie algebra n with a natural basis X,Y,Z satisfying [X,Y] = Z.
The corresponding simply connected Lie group is the nilpotent Heisenberg
group Nil.

(2) The Lie algebra su(2) with a natural basis σx, σy, σz satisfying [σx, σy] =
2σz, [σy, σz] = 2σx, [σz, σx] = 2σy. The corresponding simply connected
Lie group is SU(2).

(3) The Lie algebra sl(2,R) with a natural basis X1,X2,X3 satisfying [X1, X2] =
2X3, [X3, X1] = 2X2, [X3, X2] = 2X1. The corresponding simply connected
Lie group is P̃SL(2,R).

(4) The Lie algebra sol with a natural basis X1,X2,X3 satisfying [X1, X2] =
X2, [X1, X3] = −X3. The corresponding simply connected Lie group is
Sol.

(5) The Lie algebra e0(2) with a natural basis X1,X2,X3 satisfying [X1, X2] =
X3, [X1, X3] = −X2. The corresponding simply connected Lie group is
Ẽ0(2).

It is well known that every automorphism of G induces an automorphism of the
Lie algebra g = TeG, but if G is connected and simply connected, every automor-
phism of g can be lifted to a unique automorphism of G and hence Aut(G) and
Aut(g) are isomorphic [14]. From now on, we do not make a distinction between
automorphisms of g and those of G.

Symmetric endomorphism. Recall that a Lorentzian cross product in dimen-
sion 3 is determined by a Lorentzian scalar product ⟨ , ⟩ and an orientation. Fix
an orientation on g and let × : g × g → g be the Lorentzian cross product sat-
isfying ⟨u, v × w⟩ = det([u v w]). Since the Lie bracket and the cross product in
the Lie algebra g are skew-symmetric bilinear forms, they are related by a unique
endomorphism L : g→ g satisfying

L(X×Y) = [X, Y] for all X,Y ∈ g.

Furthermore, g is unimodular if and only if L is self-adjoint with respect to ⟨ , ⟩.
Throughout this paper the self-adjoint map L is referred to as the symmetric
endomorphism. On the other hand, L mainly behaves like the Ricci operator
Ric with the fundamental similarity being that there exists a pseudo-orthonormal
basis {e1, e2, e3}, with e3 timelike, so that both Ric and L take one of the following
forms [2]:

kind {diag}(a, b, c) :

a 0 0
0 b 0
0 0 c

 , kind {azz̄} :

a 0 0
0 b −c
0 c b

 c ̸= 0,
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kind {ab2} :

a 0 0
0 b + 1/2 −1/2
0 1/2 b− 1/2

 , kind {a3} :

 a
√

2/2 0√
2/2 a −

√
2/2

0
√

2/2 a

 .

A self-adjoint linear map ϕ with respect to ⟨ , ⟩ is of kind {a3} if it has three equal
eigenvalues associated to a one-dimensional eigenspace; ϕ is of kind {ab2} if it has
two eigenvalues a and b, each associated to a one-dimensional eigenspace so that
b has multiplicity two; and ϕ is of kind {azz̄} if it has one real and two complex
conjugate eigenvalues z and z̄, where z = b + ic.

Isotropy group. A diffeomorphism θ on G is said to be an isometry with respect
to the left-invariant Lorentzian metric g if θ∗g = g; we denote by Isom(G, g) the
full group of isometries of (G, g). It is immediate that the left translation group
L(G) is a subgroup of Isom(G, g) and L(G) acts transitively on G. Furthermore
Isom(G, g) is generated by the left translation group and the isotropy group, i.e.,
the subgroup Isome(G, g) = {θ ∈ Isom(G, g) : θ(e) = e} consisting of all isometries
which leave the identity element fixed. The isotropy representation ρ, as already
mentioned in (1.1), is the linear action of Isome(G, g) on TeG = g where ρ.θ = Teθ.
An isometry is uniquely determined by its 1-jet at e. This is a consequence of the
fact that if an isometry θ has a fixed point x such that Txθ is the identity map, then
θ is the identity. Thus we can identify Isome(G, g) with its image ρ.Isome(G, g).
We can also consider Isome(G, g) as a subgroup of O(2, 1).

3. Isometric automorphism groups

In the present section we will describe Aut(g, ⟨ , ⟩), the isometric automoprhism
group (i.e., the group of all automorphisms which leave the metric invariant), as it
will serve us as the most important ingredient in the calculation of isometry groups.
In this first study we concern ourselves only with the four types of symmetric
endomorphism. This is summarized in the following proposition.

Proposition 3.1. Let (g, ⟨ , ⟩) be an oriented Lorentzian unimodular Lie algebra of
dimension 3 with corresponding symmetric endomorphism L. Then the following
conditions are equivalent:

(1) ϕ ∈ Aut(g).
(2) ϕ ◦ L = det(ϕ)L ◦ (ϕ−1)∗.

In particular, Aut(g, ⟨ , ⟩) = {ϕ ∈ GL(g) : ϕ∗⟨ , ⟩ = ⟨ , ⟩ and ϕ ◦ L = det(ϕ)L ◦ ϕ},
where det(ϕ) = ±1 for all ϕ ∈ Aut(g, ⟨ , ⟩).

Proof. Let ϕ ∈ Aut(g). For all X,Y ∈ g, we have

ϕ ([X,Y]) = [ϕ(X), ϕ(Y)]⇔ ϕ ◦ L(X×Y) = L(ϕ(X)× ϕ(Y))

⇔ ϕ ◦ L(X×Y) = det(ϕ)L ◦ (ϕ−1)∗(X×Y)

⇔ ϕ ◦ L = det(ϕ)L ◦ (ϕ−1)∗
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On the other hand,

ϕ ∈ Aut(g, ⟨ , ⟩)⇔ ϕ ∈ Aut(g) and ϕ∗⟨ , ⟩ = ⟨ , ⟩

⇔ ϕ ∈ Aut(g) and ϕ = (ϕ−1)∗
. □

By the choice of a positively oriented and pseudo-orthonormal basis, the au-
tomorphism group of g is identified with a subgroup of GL(3,R), so we separate
the group Aut(g) using the determinant as follows: Aut(g) = Aut+(g) ∪ Aut−(g),
where Aut+(g) (resp. Aut−(g)) is the subgroup of automorphisms with positive
determinant (resp. the set of automorphisms with negative determinant).

Having in mind the four types of symmetric endomorphims and the idea of
Proposition 3.1, we perform a careful case-by-case study in the following proposi-
tion.

Proposition 3.2. Let (g, ⟨ , ⟩) be an oriented Lorentzian unimodular Lie algebra of
dimension 3 with corresponding symmetric endomorphism L. Then there exists a
pseudo-orthonormal basis {e1, e2, e3}, with e3 timelike, in which Aut(g, ⟨ , ⟩) takes
one of the following forms:

I If L is of kind {diag}(α, β, β), α ̸= β, then

Aut(g, ⟨ , ⟩) =
{(

detS 0
0 S

)
: S ∈ O(1, 1)

}
.

II If L is of kind {diag}(α, α, β), α ̸= β, then

Aut(g, ⟨ , ⟩) =
{(

S 0
0 detS

)
: S ∈ O(2)

}
.

III If L is of kind {diag}(α, β, α), α ̸= β, then

Aut(g, ⟨ , ⟩) =


a 0 b

0 n 0
c 0 d

 : S =
(
a b
c d

)
∈ O(1, 1) and n = det(S)

 .

IV If L is of kind {diag}(α, α, α), α ̸= 0, then Aut(g, ⟨ , ⟩) = SO(2, 1).

V If L is of kind {diag}(α, β, γ), α ̸= β ̸= γ, then

(a) Aut(g, ⟨ , ⟩) =


ε 0 0

0 εσ 0
0 0 σ

 : σ = ±1, ε = ±1


∪


 0 ε 0
εσ 0 0
0 0 σ

 : σ = ±1, ε = ±1

,

if Aut−(g) ̸= ∅, α = −β and γ = 0;

(b) Aut(g, ⟨ , ⟩) =


ε 0 0

0 εσ 0
0 0 σ

 : σ = ±1, ε = ±1

, otherwise.
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VI If L is of type {ab2}, then
(a) Aut(g, ⟨ , ⟩)

=


 1 −λ λ
σλ σ − σ(1/2)λ2 σ(1/2)λ2

σλ −σ(1/2)λ2 σ + σ(1/2)λ2

 : λ ∈ R, σ = ±1

, if a = b;

(b) Aut(g, ⟨ , ⟩) =


1 0 0

0 σ 0
0 0 σ

 : σ = ±1

, if a ̸= b.

VII If L is of type {azz̄}, then

(a) Aut(g, ⟨ , ⟩) =


1 0 0

0 σ 0
0 0 ε

 : ε = ±, σ = ±1

, if Aut−(g) ̸= ∅ and

a = ℜe(z) = 0;

(b) Aut(g, ⟨ , ⟩) =


1 0 0

0 σ 0
0 0 σ

 : σ = ±1

, otherwise.

VIII If L is of type {a3}, then

(a) Aut(g, ⟨ , ⟩) =


1 0 0

0 σ 0
0 0 1

 : σ = ±1

, if Aut−(g) ̸= ∅ and a = 0;

(b) Aut(g, ⟨ , ⟩) = {id}, otherwise.

Notation 3.3. To state our next results concisely, it is convenient to introduce
the notation

K =


1 −λ λ
λ 1− (1/2)λ2 (1/2)λ2

λ −(1/2)λ2 1 + (1/2)λ2

 : λ ∈ R

 .

As already mentioned, K is called the one-parameter group of rotations in three-
dimensional Minkowski space R3

1 around an axis spanned by an isotropic vector.
Let D2n =

〈
X,Y | Xn = Y 2 = 1, Y XY = X−1〉 be the dihedral group of order

2n. We set

X =

 0 1 0
−1 0 0
0 0 −1

 and Y =

−1 0 0
0 1 0
0 0 −1

 ;

then we can easily see that
ε 0 0

0 εσ 0
0 0 σ

 : σ = ±1, ε = ±1

 ∪

 0 ε 0
εσ 0 0
0 0 σ

 : σ = ±1, ε = ±1

 ∼= D8.

It is clear without calculations that
1 0 0

0 σ 0
0 0 ε

 : ε = ±, σ = ±1

 ∼=

ε 0 0

0 εσ 0
0 0 σ

 : σ = ±1, ε = ±1

 ∼= D4.

As simple consequences of Proposition 3.2 we get the following results.
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3.1. Study of Aut(Nil, g). Note that if φ ∈ Aut(n, ⟨ , ⟩), then det(φ) = 1.

Proposition 3.4. For any left-invariant Lorentzian metric g on Nil,

Aut(Nil, g) ∼=


O(1, 1) if g ∼= nil+,
O(2) if g ∼= nil−,
K× Z2 if g ∼= nil0.

3.2. Study of Aut(SU(2), g). Note that if φ ∈ Aut(su(2), ⟨ , ⟩), then det(φ) = 1.

Proposition 3.5. For any left-invariant Lorentzian metric g ∼= su on SU(2),

Aut(SU(2), g) ∼=

{
O(2) if µ1 = µ2,

D4 if µ1 ̸= µ2.

3.3. Study of Aut(P̃SL(2,R), g). If φ ∈ Aut(sl(2,R), ⟨ , ⟩), then det(φ) = 1.

Proposition 3.6. For any left-invariant Lorentzian metric g ∼= sll1 on P̃SL(2,R),

Aut(P̃SL(2,R), g) ∼=


SO(2, 1) if µ1 = µ2 = µ3,

O(2) if µ1 ̸= µ2 = µ3,

O(1, 1) if µ1 = µ2 ̸= µ3 or µ1 = µ3 ̸= µ1,

D4 if µ1 ̸= µ2 ̸= µ3.

For any left-invariant Lorentzian metric g ∼= sll2 on P̃SL(2,R),

Aut(P̃SL(2,R), g) ∼=

{
O(1, 1) if µ1 = µ2,

D4 if µ1 ̸= µ2.

For any left-invariant Lorentzian metric g ∼= sll3, sll4, sll5 on P̃SL(2,R),

Aut(P̃SL(2,R), g) ∼= Z2.

For any left-invariant Lorentzian metric g ∼= sll7 on P̃SL(2,R),

Aut(P̃SL(2,R), g) = {id} .

For any left-invariant Lorentzian metric g ∼= sll6 on P̃SL(2,R),

Aut(P̃SL(2,R), g) ∼=

{
K× Z2 if a = b,

Z2 if a ̸= b.

3.4. Study of Aut(Sol, g). Note that Aut−(sol) is not empty.

Proposition 3.7. For any left-invariant Lorentzian metric g ∼= sol1 on Sol,

Aut(Sol, g) ∼=

{
D8 if u = 0,
D4 if u ̸= 0.

For any left-invariant Lorentzian metric g ∼= sol2 on Sol,

Aut(Sol, g) ∼=

{
O(1, 1) if u = 0,
D4 if u ̸= 0.
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For any left-invariant Lorentzian metric g ∼= sol4 on Sol,
Aut(Sol, g) ∼= D4.

For any left-invariant Lorentzian metric g ∼= sol3, sol5, sol6, sol7 on Sol,
Aut(Sol, g) ∼= Z2.

3.5. Study of Aut(Ẽ0(2), g). Note that if φ ∈ Aut(n, ⟨ , ⟩), then det(φ) = 1.

Proposition 3.8. For any left-invariant Lorentzian metric g ∼= ee1 on Ẽ0(2),

Aut(Ẽ0(2), g) ∼=

{
O(2) if u = v,

D4 if u ̸= v.

For any left-invariant Lorentzian metric g ∼= ee2 on Ẽ0(2),

Aut(Ẽ0(2), g) ∼= D4.

For any left-invariant Lorentzian metric g ∼= ee3 on Ẽ0(2),

Aut(Ẽ0(2), g) ∼= Z2.

In the next section, we will introduce and complete the solution to the problem
in question.

4. Isometry groups

Here we propose a new method of identifying isometry groups that combines two
steps: in the first step, we determine all the different kinds of Ricci operators Ric;
and in the second, using the covariant derivatives ∇R, we implement an algorithm
that allows us to learn about the relationship between the groups obtained in the
previous section and the isotropy groups Isome(G, g). In what follows, we do some
preparations in order to solve the problem in question and, later in this section, we
will restrict our attention to the special case when the isotropy group Isome(G, g) is
wider than the isometric automorphism group Aut(G, g). Let us begin by quickly
reviewing the algebraic ingredients we need to formulate the solution.

4.1. Useful results for computing the isotropy groups. We quote a theorem
from [3] with some useful preliminary results from [12].

Theorem 4.1 ([3]). Let (G, g) be a Lorentzian, three-dimensional, connected, sim-
ply connected and unimodular Lie group and let L be its symmetric endomorphism.
(G, g) is symmetric if and only if one of the following cases occurs:

(1) G = P̃SL(2,R) with L of kind {diag}(α, α, α), α ̸= 0.
(2) G = Sol with L of kind {diag}(α, 0, α) and g is flat.
(3) G = Ẽ0(2) with L of kind {diag}(α, α, 0) and g is flat.
(4) G = Nil with L of kind {ab2}, a = b = 0 and g is flat.

A basic tool for computing Isome(G, g) on the symmetric space is the Ambrose–
Hicks–Cartan theorem (see [12], Thm. 17, Ch. 8).
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Theorem 4.2 ([12]). Let (M, g) be a complete, connected, simply connected and
locally symmetric pseudo-Riemannian manifold. If L : TpM → TqM is a linear
isometry that preserves curvature, then there is a unique isometry θ : M→ M such
that Tpθ = L.

We remark that the curvature tensor R of a three-dimensional Lorentzian man-
ifold (M, g) is completely determined by the Ricci curvature tensor. This means
that, given any L ∈ GL(g), we have that L preserves the curvature R if and only
if L commutes with the Ricci operator Ric, i.e., L∗R = R ⇔ [L,Ric] = 0.

It is well known that any isometry θ ∈ Isom(G, g) preserves the metric g and the
curvature tensor R; for that reason, we introduce a novel group, called symmetrical
group and denoted by Sym(G, g). The symmetrical group can be expressed as

Sym(G, g) := {L ∈ GL(g) : L∗⟨ , ⟩ = ⟨ , ⟩ and [L,Ric] = 0},
where ⟨ , ⟩ is induced by the metric g.

Remark 4.3. Given that the isotropy group Isome(G, g) is isometric as a Lie group
to a subgroup of O(g) ∼= O(2, 1), we can write

Aut(G, g) ⊂ Isome(G, g) ⊂ Sym(G, g).

An application of Theorem 4.2 and Theorem 4.1 is the following.

Corollary 4.4. If (G, g) a is a symmetric space, then Isome(G, g) ∼= O(2, 1).

Proof. By Theorem 4.2, for any linear map ϕ ∈ GL(g) preserving the metric g and
the curvature tensor R at the identity element, ϕ can be lifted to an unique isometry
θ ∈ Isome(G, g) such that Teθ = ϕ. Consequently, for any ϕ ∈ Sym(G, g) we have
that ϕ ∈ Isome(G, g), and hence Isome(G, g) ∼= Sym(G, g). From Theorem 4.1 we
immediately obtain that a symmetric space is a flat space or a negative constant
sectional curvature space. The corollary follows. □

Using the same procedure as in Section 3, we now give a list of all such sym-
metrical groups Sym(G, g) associated to each kind of the curvature operator Ric.
A pseudo-orthonormal basis {e1, e2, e3} with timelike e3 is considered for the sake
of simplicity.

Kind {diag}(a, b, c):
(1) if a ̸= b ̸= c, then Sym(G, g) is a finite group;

(2) if a = b ̸= c, then Sym(G, g) =
(

O(2) 0
0 ±1

)
;

(3) if a ̸= b = c, then Sym(G, g) =
(
±1 0
0 O(1, 1)

)
;

(4) if a = c ̸= b, then Sym(G, g) =


λ1 0 λ2

0 ±1 0
λ3 0 λ4

 :
(
λ1 λ2
λ3 λ4

)
∈ O(1, 1)

;

(5) if a = b = c, then Sym(G, g) = O(g) ∼= O(2, 1).

Kind {azz̄}: then Sym(G, g) is a finite group.
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Kind {ab2}:
(1) if a ̸= b, then Sym(G, g) is a finite group;
(2) if a = b, then
Sym(G, g)

=


 ε −λ λ
σλ σε(1− (1/2)λ2) (1/2)σελ2

σλ −(1/2)σελ2 σε(1 + (1/2)λ2)

 : λ ∈ R, ε = ±1, σ = ±1

.
Kind {a3}: then Sym(G, g) is a finite group.
We restrict ourselves to the kinds of the curvature operator Ric and symmetric

endomorphism L giving infinite groups, namely the kinds {diag}(a, b, c), a = b =
c, a = b ̸= c, a = c ̸= b, a ̸= b = c and {ab2} with a = b. Let us first introduce the
following terminology.

Definition 4.5. The curvature operator (resp. the symmetric endomorphism) is
said to be of infinite kind if it has an infinite symmetrical group (resp. infinite
isometric automorphism group); otherwise it is said to be of finite kind.

Remark 4.6. In view of Remark 4.3, if L is of infinite kind, then Ric is necessarily
of infinite kind.

This motivates the following definition.

Definition 4.7. Let (V, ⟨ , ⟩) denote a Lorentzian vector space. We say that two
self-adjoint endomorphisms ϕ1 and ϕ2 on V have the same infinite kind if there
exists a pseudo-orthonormal basis B for V with respect to which the matrix of ϕ1
(resp. ϕ2) is

i. {diag}(a, a, a) (resp. {diag}(a′, a′, a′)) for some a, a′ ∈ R;
ii. {diag}(a, a, c), a ̸= c (resp. {diag}(a′, a′, c′), a′ ̸= c′) for some a, c, a′, c′ ∈ R;
iii. {diag}(a, b, a), a ̸= b (resp. {diag}(a′, b′, a′), a′ ̸= b′) for some a, b, a′, b′ ∈ R;
iv. {diag}(a, b, b), a ̸= b (resp. {diag}(a′, b′, b′), a′ ̸= b′) for some a, b, a′, b′ ∈ R;
v. {ab2}, a = b (resp. {a′b′2}, a′ = b′) for some a,b, a′,b′ ∈ R.

For use in the proof of Proposition 4.9, we record the following obvious state-
ment.

Proposition 4.8. Let (G1, g1) and (G2, g2) be two Lorentzian three-dimensional
Lie groups with Ricci operator respectively Ric1 and Ric2. If Ric1 and Ric2 have
the same infinite kind, then Sym(G1, g1) = Sym(G2, g2).

Proof. Sym(G, g) depends only on the five infinite kinds mentioned above of the
Ricci operator Ric. □

Proposition 4.9. Let (G, g) be a Lorentzian Lie group with Lie algebra g = TeG
such that its symmetric endomorphism L and its Ricci operator Ric have the same
infinite kind. Then

Isome(G, g) = Aut(G, g) or Isome(G, g) = Aut(G, g)× {±id}. (4.1)
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In particular, if (G, g) is a symmetric space, then Isome(G, g) = Aut(G, g)×{±id};
otherwise, Isome(G, g) = Aut(G, g).

Proof. It is enough to prove that the set Aut−(G, g) is empty. Let θ ∈ Aut(G, g)
be given. We have the equalities ϕ ◦ L = det(ϕ)L ◦ ϕ and ϕ ◦ Ric = Ric ◦ ϕ,
where ϕ = Teθ. If we additionally assume that ϕ ∈ Aut−(g), then ϕ satisfies
ϕ◦L = −L◦ϕ and ϕ◦Ric = Ric◦ϕ. It follows from the hypothesis that Sym(G, g)
can be written by substituting L in place of Ric, since according to Proposition 4.8,
Sym(G, g) is uniquely determined by the corresponding kind of Ric. Also, we can
write ϕ ◦ L = −L ◦ ϕ and ϕ ◦ L = L ◦ ϕ. This, in turn, implies that the set
Aut−(G, g) is empty and hence Aut(G, g) ⊂ Isome(G, g) ⊂ Aut(G, g) × {±id}.
Therefore Aut(G, g) is a subgroup of index at most 2 in Isome(G, g), and the
property (4.1) follows. The rest of the proposition is proved by the fact that (G, g)
is a symmetric space if and only if there exists an isometry θ ∈ Isome(G, g) such
that Teθ = −id. □

From considering the above discussion, it is natural to wonder when a Ricci
operator behaves as a symmetric endomorphism. This means that we only have to
find all possible kinds of Ric as a function of the kind of L.

We now state a lemma that leads us to the intuition behind the design of Algo-
rithm 1.

Lemma 4.10. Let (G, g) be a Lorentzian, connected and simply connected Lie
group, L its symmetric endomorphism and Ric its Ricci operator.

I If G = Nil, then we have three possibilities for kinds of L:
1 L is of kind {diag}(α, 0, 0) with α ̸= 0, then Ric is of kind {diag}(a, b, b),

a ̸= b (same kinds).
2 L is of kind {diag}(0, 0, γ) with γ ̸= 0, then Ric is of kind {diag}(a, a, c),

a ̸= c (same kinds).
3 L is of kind {ab2} with a = b, then Ric = 0 (different kinds and

symmetric space).
II If G = SU(2), then we have four possibilities for kinds of L:

1 L is of kind {diag}(α, α, γ) with α ̸= γ, then Ric is of kind
{diag}(a, a, c), a ̸= c (same kinds).

2 L is of kind {diag}(α, β, γ) with α ̸= β ̸= γ:
(i) if γ = α− β, then Ric is of kind {diag}(a, b, b), a ̸= b (different

kinds),
(ii) if γ = −(α − β), then Ric is of kind {diag}(a, b, a), a ̸= b (dif-

ferent kinds),
(iii) if γ ̸= ±(α − β), then Ric is of kind {diag}(a, b, c), a ̸= b ̸= c

(of finite kinds).
III If G = P̃SL(2,R), then we have fourteen possibilities for kinds of L:

1 L is of kind {diag}(α, β, γ) with α ̸= β ̸= γ,
(i) if γ = α− β, then Ric is of kind {diag}(a, b, b), a ̸= b (different

kinds).
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(ii) if α = γ − β, then Ric is of kind {diag}(a, a, c), a ̸= c (different
kinds).

(iii) if α = −γ+β, then Ric is of kind {diag}(a, b, a), a ̸= b (different
kinds).

(iv) if α ̸= ±(γ−β) and α ̸= γ+β, then Ric is of kind {diag}(a, b, c),
a ̸= b ̸= c (of finite kinds).

2 L is of kind {diag}(α, α, γ) with α ̸= γ, then Ric is of kind
{diag}(a, a, c), a ̸= c (same kinds).

3 L is of kind {diag}(α, β, α) with α ̸= β, then Ric is of kind
{diag}(a, b, a), a ̸= b (same kinds).

4 L is of kind {diag}(α, β, β) with α ̸= β, then Ric is of kind
{diag}(a, b, b), a ̸= b (same kinds).

5 L is of kind {diag}(α, α, α), then Ric is of kind {diag}(a, a, a), a ̸= 0
(same kinds and symmetric space).

6 L is of type {azz̄},
(i) if a ̸= 2ℜe(z), then Ric is of type {a′z′z̄′} (of finite kinds).
(ii) if a = 2ℜe(z), then Ric is of kind {diag}(a′, b′, b′), a′ ̸= b′

(different kinds).
7 L is of type {a3}, then Ric is of type {a′3} (of finite kinds).

8 L is of kind {ab2} with a = b ̸= 0, then −1
a .Ric is of kind {a′b′2},

a′ = b′ (same kinds).
9 L is of kind {ab2} with a ̸= b ̸= 0,

(i) if a ̸= 2b then Ric is of kind {a′b′2}, a′ ̸= b′ (of finite kinds).
(ii) if a = 2b, then Ric is of kind {diag}(a′, b′, b′), a′ ̸= b′ (different

kinds).
IV If G = Sol, then we have nine possibilities for kinds of L:

1 L is of kind {diag}(α, β, 0) with α > 0, β < 0 and α = −β, then Ric
is of kind {diag}(a, a, c), a ̸= c (different kinds).

2 L is of kind {diag}(α, β, 0) with α > 0, β < 0 and α ̸= −β, then Ric
is of kind {diag}(a, b, c), a ̸= b ̸= c (of finite kinds).

3 L is of kind {diag}(α, 0, γ) with α ̸= γ, then Ric is of kind
{diag}(a, b, c), a ̸= b ̸= c (of finite kinds).

4 L is of kind {diag}(α, 0, α) with α ̸= 0, then Ric = 0 (different kinds
and symmetric space).

5 L is of type {azz̄} with ℜe(z) ̸= 0, then Ric is of type {a′z′z̄′} (of finite
kinds).

6 L is of type {azz̄} with ℜe(z) = 0, then Ric is of kind {diag}(a′, b′, b′),
a′ ̸= b′ (different kinds).

7 L is of kind {ab2} with a ̸= b,
(i) if a = 0 then Ric is of kind {a′b′2}, a′ = b′ (different kinds).
(ii) if b = 0 then Ric is of kind {a′b′2}, a′ ̸= b′ (of finite kinds).
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8 L is of kind {a3} with a = 0, then Ric is of kind {a′b′2}, a′ = b′ = 0
(different kinds).

V If G = Ẽ0(2), then we have five possibilities for kinds of L:
1 L is of kind {diag}(α, 0, γ) with α > 0, γ < 0,

(i) if α = −γ, then Ric is of kind {diag}(a, b, a), a ̸= b (different
kinds).

(ii) if α ̸= −γ, then Ric is of kind {diag}(a, b, c), a ̸= b ̸= c (of finite
kinds).

2 L is of kind {diag}(α, α, 0) with α ̸= 0, then Ric = 0 (different kinds
and symmetric space).

3 L is of kind {diag}(α, β, 0) with α ̸= β, then Ric is of kind {diag}(a, b, c),
a ̸= b ̸= c (of finite kinds).

4 L is of kind {ab2} with a ̸= 0, b = 0, then Ric is of kind {a′b′2},
a′ ̸= b′ (of finite kinds).

We require the following lemma, which is essentially [8, Corollary 2.8], and a
useful result from [12].

Lemma 4.11 ([8]). If Isome(G, g) is a finite group, then Isome(G, g) = Aut(G, g).

Remark 4.12. Notice that if Ric is of finite kind, then Isome(G, g) = Aut(G, g).

Any isometry θ ∈ Isome(G, g) preserves the metric g, the curvature tensor R,
and its covariant derivative ∇R. More precisely, we have the following result.

Proposition 4.13 ([12]). If θ ∈ Isome(G, g) then θ∗∇R = ∇R, i.e., for any
U, V,W,Z ∈ g = TeG, if ψ = Teθ then

ψ(∇R(U, V,W,Z)) = ∇R(ψ(U), ψ(V ), ψ(W ), ψ(Z)).

These are all the ingredients that we need. So, we are now in a position to offer
an efficient algorithm.

We only care about the case where Algorithm 1 produces a empty set, so the
best way to proceed in this case is as follows. We introduce a modified symmetrical
group, denoted by Sym′(G, g), defined by

Sym′(G, g) = {ψ ∈ GL(g) : ψ∗⟨ , ⟩ = ⟨ , ⟩, ψ∗R = R, ψ∗∇R = ∇R} ,
where ⟨ , ⟩ is induced by the metric g.

Remark 4.14. Since from Remark 4.3 it follows that Isome(G, g) ⊂ O(g), we
further deduce that

Aut(G, g) ⊂ Isome(G, g) ⊂ Sym′(G, g) ⊂ Sym(G, g).

By computing the covariant derivative ∇R for each case that we have called
different kinds in Lemma 4.10, we find that all the modified symmetrical groups
Sym′(G, g) are finite groups except in a single case presented in Item 8 on the
solvable Lie group Sol, where Sym′(G, g) becomes one-dimensional. This case will
be explained in more detail in the next paragraph.

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



ISOMETRY GROUPS OF LORENTZIAN 3D UNIMODULAR LIE GROUPS 371

Algorithm 1: Isometric automorphism groups and isotropy groups
Inputs : • [Gi]5i=1 :=

{
Nil, SU(2), P̃SL(2,R), Sol, Ẽ0(2)

}
,

• integers K1 · · ·K5,
•
[
[Li,j ]Ki

j=1, i = 1 · · · 5
]

:= a list of symmetric endomorphisms
associated to each Gi, i = 1 · · · 5.

Outputs: • a list of isometric automorphism groups Aut(G, g),
• a list of isotropy groups Isome(G, g).

22 for i = 1 to 5 do
3 foreach j ∈ {1, 2, . . . ,Ki} do
4 kind L← the kind of Li,j // Part 1: Isometric automorphism groups

5 A[i, j]← Aut(Gi, g) associated to kind L
6 [e2, e1] := Li,j · e3, [e2, e3] := Li,j · e1, [e3, e1] := Li,j · e2 // will be

used to compute Ric
/* B = {e1, e2, e3} is a pseudo-orthonormal basis with e3 timelike */

7 Ric←Ricci operator // with respect to this basis B
8 kind Ric← the kind of Ric // Part 2: Isotropy groups

9 if kind Ric = finite then
10 I[i, j]← A[i, j] /* if Ric is of finite kind */

11 else
12 if kind Ric = symmetric then
13 I[i, j]← O(2, 1) /* if (G, g) is a symmetric space */

14 else
15 if kind Ric= kind L then
16 I[i, j]← A[i, j] /* if Ric and L have the same infinite kind

*/
17 else
18 I[i, j]← ∅ /* to proceed in this case, we must use the

covariant derivative */

19 end
20 end
21 end
22 end
23 end
24 return (A, I)

Special case. We deal with the case when the symmetric endomorphism L is of
kind {a3}, a = 0 on the solvable Lie group Sol which can be identified with R⋉ϕR2

equipped with the following group operation ⋆:(
x,
[

y
z

])
⋆

(
m,

[
n
p

])
=
(

x +m,

[
y
z

]
+ ϕ(x)

[
n
p

])
,
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where

ϕ(x) =
(
ex 0
0 e−x

)
and the covering projection π is(

x,
[

y
z

])
7→
(
ϕ(x),

[
y
z

])
.

If we denote by ∂x, ∂y, ∂z the usual coordinate vector fields on R3, we can define
the following left-invariant vector fields on Sol:

E1 = ∂x, E2 = exp(x)∂y, E3 = exp(−x)∂z, (4.2)

so that the set {E1,E2,E3} is a basis of the Lie algebra sol with non-vanishing com-
mutation relations [E1, E2] = E2, [E1, E3] = −E3, and E∗

1 = dx, E∗
2 = exp(−x)dy,

E∗
3 = exp(x)dz, where E∗

i denotes the dual form to Ei.
The left-invariant Lorentzian metric g on Sol admitting L of kind {a3}, a = 0

as symmetric endomorphism is equivalent to the metric sol7 (see Table 1):

g = exp(x)dxdz + exp(−2x)dy2. (4.3)

The isotropy group of this metric is one-dimensional.
Indeed, we consider a one-parameter group ξt : R⋉ϕ R2 → R⋉ϕ R2 of diffeo-

morphisms defined by

ξt

(
x,
[

y
z

])
=
(

x,
[
− 1

3 t exp(3x) + y + 1
3 t

− 1
6 exp(3x) t2 + t y + z + 1

6 t2

])
.

We can easily verify that ξt leaves the identity element invariant and the differential
of ξt with respect to the basis (4.2) has the matrix

ξt∗ =

 1 0 0
−t exp(3x) 1 0
−t2

2 exp(3x) t 1

 .

By inspection we see that ξt is itself an isometry with respect to the metric g given
in (4.3). It follows that Isome(Sol, g) = K × Z2, since the other two connected
components of Sym(Sol, g) do not preserve the covariant derivative ∇R and hence
Isome(Sol, g) ̸= Aut(Sol, g).

4.2. Results. Let (G, g) be a Lorentzian and simply connected Lie group with L
its symmetric endomorphism and Ric its Ricci operator. The following calculations
are performed for each case listed in Lemma 4.10.

I Lie group: Nil
1 L is of kind {diag}(α, 0, 0) (non-symmetric space).

✓□ Ric and L have the same infinite kind, then Isome(G, g) =
Aut(G, g).

Result 1: Aut(G, g) ∼= O(1, 1) and Isom(G, g) ∼= Nil ⋊ O(1, 1).
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2 L is of kind {diag}(0, 0, γ) (non-symmetric space).
✓□ Ric and L have the same infinite kind, then Isome(G, g) =

Aut(G, g).
Result 2: Aut(G, g) ∼= O(2) and Isom(G, g) ∼= Nil ⋊ O(2).
3 L is of kind {ab2} with a = b = 0.

⊠ g is flat and (Nil, g) is a symmetric space.
Result 3: Aut(G, g) ∼= K× Z2 and Isom(G, g) ∼= Nil×O(2, 1).

II Lie group: SU(2)
1 L is of kind {diag}(α, α, γ), α ̸= γ (non-symmetric space).

✓□ Ric and L have the same infinite kind, then Isome(G, g) =
Aut(G, g).

Result 1: Aut(G, g) ∼= O(2) and Isom(G, g) ∼= SU(2) ⋊ O(2).
2 L is of kind {diag}(α, β, γ), α ̸= β ̸= γ.

(i) If γ = α−β, then Ric is of kind {diag}(a, b, b), a ̸= b (of infinite
kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ = ψ; then there exists
t ∈ R such that

M(ψ,B) =

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2 sinh(t)(α− β)(α− 2β) = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(ii) If γ = −(α − β), then Ric is of kind {diag}(a, b, a), a ̸= b (of

infinite kind). Let Θ ∈ Isom0
e(G, g) and put TeΘ = ψ; then

there exists t ∈ R such that

M(ψ,B) =

cosh(t) 0 sinh(t)
0 1 0

sinh(t) 0 cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2 sinh(t)2α2(α− β) = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(iii) If γ ̸= ±(α− β),

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 2: Aut(G, g) ∼= D4 and Isom(G, g) ∼= SU(2) ⋊ D4.

III Lie group: P̃SL(2,R)
1 L is of kind {diag}(α, β, γ), α ̸= β ̸= γ.

(i) If γ = α−β, then Ric is of kind {diag}(a, b, b), a ̸= b (of infinite
kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ = ψ; then there exists
t ∈ R such that

M(ψ,B) =

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 .
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Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2 sinh(t)(α− β)(α− 2β) = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(ii) If α = γ−β, then Ric is of kind {diag}(a, a, c), a ̸= c (of infinite

kind). Let Θ ∈ Isom0
e(G, g) and put TeΘ = ψ; then there exists

t ∈ R such that

M(ψ,B) =

 cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2 sin3(t)β(γ − β)(γ − 2β) = 0, i.e., sin(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(iii) If γ = −(α − β), then Ric is of kind {diag}(a, b, a), a ̸= b (of

infinite kind). Let Θ ∈ Isom0
e(G, g) and put TeΘ = ψ; then

there exists t ∈ R such that

M(ψ,B) =

cosh(t) 0 sinh(t)
0 1 0

sinh(t) 0 cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2 sinh(t)2α2(α− β) = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(iv) If γ ̸= ±(α− β) and α ̸= γ − β

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 1: Aut(G, g) ∼= D4 and Isom(G, g) ∼= P̃SL(2,R) ⋊ D4.
2 L is of kind {diag}(α, α, γ), α ̸= γ (non-symmetric space).

✓□ Ric and L have the same infinite kind, then Isome(G, g) =
Aut(G, g).

Result 2: Aut(G, g) ∼= O(2) and Isom(G, g) ∼= P̃SL(2,R) ⋊ O(2).
3 L is of kind {diag}(α, β, α), α ̸= β (non-symmetric space).

✓□ Ric and L have the same infinite kind, then Isome(G, g) =
Aut(G, g).

Result 3: Aut(G, g) ∼= O(1, 1) and Isom(G, g) ∼= P̃SL(2,R) ⋊ O(1, 1).
4 L is of kind {diag}(α, β, β), α ̸= β (non-symmetric space).

✓□ Ric and L have the same infinite kind, then Isome(G, g) =
Aut(G, g).

Result 4: Aut(G, g) ∼= O(1, 1) and Isom(G, g) ∼= P̃SL(2,R) ⋊ O(1, 1).
5 L is of kind {diag}(α, α, α), α ̸= 0 (symmetric space).

⊠ Ric and L have the same infinite kind, then
Isome(G, g) = Aut(G, g)× {±id}.

Result 5: Aut(G, g) ∼= SO(2, 1) and Isom(G, g) ∼= P̃SL(2,R)×O(2, 1).
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6 L is of type {azz̄}.
(i) If a ̸= 2ℜe(z), one gets that

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
(ii) If a = 2ℜe(z), Ric is of kind {diag}(a′, b′, b′) (of infinite kind).

Let Θ ∈ Isom0
e(G, g) and put TeΘ = ψ; then there exists t ∈ R

such that

M(ψ,B) =

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 4 sinh(t)ℑm(z)|z|2 = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
Result 6: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= P̃SL(2,R) ⋊ Z2.
7 L is of kind {a3}, with a ̸= 0.

✓□ Ric is of finite kind, this implies that Isome(G, g) = Aut(G, g).
Result 7: Aut(G, g) = {id} and Isom(G, g) = P̃SL(2,R).
8 L is of kind {ab2}, with a = b (non-symmetric space)

✓□ Ric and L have same infinite kind, then Isome(G, g) = Aut(G, g).
Result 8: Aut(G, g) ∼= K× Z2 and Isom(G, g) ∼= P̃SL(2,R) ⋊ (K× Z2).
9 L is of kind {ab2}, with a ̸= b ̸= 0.

(i) If a ̸= 2b, one gets that
✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).

(ii) If a = 2b, one gets that Ric is of kind {diag}(a′, b′, b′) (of infinite
kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ = ψ; then there exists
t ∈ R such that

M(ψ,B) =

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1))−ψ(∇R(e2, e3, e2, e1)) = 0,
we have 2b sinh(t) = 0, i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial; this implies that
Isome(G, g) = Aut(G, g).

Result 9: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= P̃SL(2,R) ⋊ Z2.
IV Lie group: Sol

1 L is of kind {diag}(α, β, 0), α ̸= β ̸= 0 and α = −β, then Ric is of
kind {diag}(a, a, c), a ̸= c (of infinite kind). Let Θ ∈ Isom0

e(G, g) and
put TeΘ = ψ; let t ∈ R be such that

M(ψ,B) =

 cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1)) − ψ(∇R(e2, e3, e2, e1)) = 0, we
have 4 sin3(t)β3 = 0, i.e., sin(t) = 0.
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✓□ Isom0
e(G, g) is trivial. This implies that Isome(G, g) = Aut(G, g).

Result 1: Aut(G, g) ∼= D8 and Isom(G, g) ∼= Sol ⋊ D8.
2 L is of kind {diag}(α, β, 0), α ̸= β ̸= 0 and α ̸= −β, then Ric is of

kind {diag}(a, b, c), a ̸= b ̸= c.
✓□ Ric is of finite kind. This implies that Isome(G, g) = Aut(G, g).

Result 2: Aut(G, g) ∼= D4 and Isom(G, g) ∼= Sol ⋊ D4.
3 L is of kind {diag}(α, 0, γ), α ̸= γ ̸= 0.

✓□ Ric is of finite kind. This implies that Isome(G, g) = Aut(G, g).
Result 3: Aut(G, g) ∼= D4 and Isom(G, g) ∼= Sol ⋊ D4.
4 L is of kind {diag}(α, 0, α), α ̸= 0.

⊠ g is flat and (Sol, g) is a symmetric space.
Result 4: Aut(G, g) ∼= O(1, 1) and Isom(G, g) ∼= Sol×O(2, 1).
5 L is of type {azz̄} with ℜe(z) ̸= 0.

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 5: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= Sol ⋊ Z2.
6 L is of type {azz̄} with ℜe(z) = 0, one gets that Ric is of kind
{diag}(a′, b′, b′) (of infinite kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ =
ψ; then there exists t ∈ R such that

M(ψ,B) =

1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 .

Since ∇R(ψ(e2), ψ(e3), ψ(e2), ψ(e1)) − ψ(∇R(e2, e3, e2, e1)) = 0, we
have 4 sinh(t)(ℑm(z))3 = 0, i.e., sinh(t) = 0.

✓□ Isom0
e(G, g) is trivial. This implies that Isome(G, g) = Aut(G, g).

Result 6: Aut(G, g) ∼= D4 and Isom(G, g) ∼= Sol ⋊ D4.
7 L is of kind {ab2}, with a ̸= b.

(i) If a = 0, one gets that Ric is of kind {a′b′2} with a′ = b′ (of
infinite kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ = ψ; then
there exists t ∈ R such that

M(ψ,B) =

1 −t t
t 1− (1/2)t2 (1/2)t2
t −(1/2)t2 1 + (1/2)t2

 .

Since ∇R(ψ(e2), ψ(e2), ψ(e1), ψ(e1))−ψ(∇R(e2, e2, e1, e1)) = 0,
we have 2 t b2 = 0, i.e., t = 0.
✓□ Isom0

e(G, g) is trivial. Hence Isome(G, g) = Aut(G, g).
(ii) If b = 0, one gets that

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 7: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= Sol ⋊ Z2.
8 L is of kind {a3}, with a = 0, one gets that Ric is of kind {a′b′2}, a′ = b′

(of infinite kind); see Special case.
⊠ Isome(G, g) ̸= Aut(G, g).

Result 8: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= Sol× (K× Z2).
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V Lie group: Ẽ0(2)
1 L is of kind {diag}(α, 0, γ), α ̸= γ ̸= 0.

(i) If α = −γ, then Ric is of kind {diag}(a, b, a), a ̸= b (of infinite
kind). Let Θ ∈ Isom0

e(G, g) and put TeΘ = ψ; then there exists
t ∈ R such that

M(ψ,B) =

cosh(t) 0 sinh(t)
0 1 0

sinh(t) 0 cosh(t)

 .

Since ∇R(ψ(e1), ψ(e2), ψ(e1), ψ(e1))−ψ(∇R(e1, e2, e1, e1)) = 0,
we have 4γ3 sinh3(t), i.e., sinh(t) = 0.
✓□ Isom0

e(G, g) is trivial, one gets Isome(G, g) = Aut(G, g).
(ii) If α ̸= −γ, then Ric is of kind {diag}(a, b, c), a ̸= b ̸= c (of finite

kind),
✓□ Ric is of finite kind. This implies that Isome(G, g) =

Aut(G, g).
Result 1: Aut(G, g) ∼= D4 and Isom(G, g) ∼= Ẽ0(2) ⋊ D4.
2 L is of kind {diag}(α, α, 0), α ̸= 0 (symmetric space)

⊠ g is flat and (Ẽ0(2), g) is a symmetric space.
Result 2: Aut(G, g) ∼= O(2) and Isom(G, g) ∼= Ẽ0(2)×O(2, 1).
3 L is of kind {diag}(α, β, 0), α ̸= β ̸= 0.

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 3: Aut(G, g) ∼= D4 and Isom(G, g) ∼= Ẽ0(2) ⋊ D4.
4 L is of kind {ab2}, with a ̸= b.

✓□ Ric is of finite kind, then Isome(G, g) = Aut(G, g).
Result 4: Aut(G, g) ∼= Z2 and Isom(G, g) ∼= Ẽ0(2) ⋊ Z2.
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